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Abstract

We study �nite l-colourable structures with an underlying pregeometry. The prob-
ability measure that is used corresponds to a process of generating such structures
(with a given underlying pregeometry) by which colours are �rst randomly assigned
to all 1-dimensional subspaces and then relationships are assigned in such a way
that the colouring conditions are satis�ed but apart from this in a random way. We
can then ask what the probability is that the resulting structure, where we now
forget the speci�c colouring of the generating process, has a given property. With
this measure we get the following results:

1. A zero-one law.

2. The set of sentences with asymptotic probability 1 has an explicit axiomati-
sation which is presented.

3. There is a formula ξ(x, y) (not directly speaking about colours) such that, with
asymptotic probability 1, the relation �there is an l-colouring which assigns the
same colour to x and y� is de�ned by ξ(x, y).

4. With asymptotic probability 1, an l-colourable structure has a unique l-colouring
(up to permutation of the colours).

Keywords: model theory, �nite structure, zero-one law, colouring, pregeometry.

1 Introduction

We begin with some background. Let l ≥ 2 be an integer. Random l-colourable (undi-
rected) graphs were studied by Kolaitis, Prömel and Rothschild in [7] as part of proving
a zero-one law for (l+1)-clique-free graphs. They proved that random l-colorable graphs
satis�es a (labelled) zero-one law, when the uniform probability measure is used. In other
words, ifCn denotes the set of undirected l-colourable graphs with vertices 1, . . . , n, then,
for every sentence ϕ in a language with only a binary relation symbol (besides the iden-
tity symbol), the proportion of graphs in Cn which satisfy ϕ approaches either 0 or 1.
They also showed that the proportion of graphs in Cn which have a unique l-colouring
(up to permuting the colours) approaches 1 as n → ∞. In [7] its authors also proved
the other statements labelled 1�4 in this paper's abstract, when using the uniform prob-
ability measure on Cn, although in case of 3 it is not made explicit. This work was
preceeded, and probably stimulated, by an article of Erdös, Kleitman and Rothschild
[4] in which it was proved that proportion of triangle-free graphs with vertices 1, . . . , n
which are bipartite (2-colourable) approaches 1 as n→∞.

One can generalise l-colourings from structures with only binary relations to struc-
tures with relations of any arity r ≥ 2 by saying that a structureM is l-coloured if the
elements ofM can be assigned colours from the set of colours {1, . . . , l} in such that if
M |= R(a1, . . . , ar) for some relation symbol R, then {a1, . . . , ar} contains at least two
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elements with di�erent colour. Another way of generalising the notion of l-colouring for
graphs, giving the notion of strong l-colouring, is to require that if M |= R(a1, . . . , ar)
then i 6= j implies that ai and aj have di�erent colours. (If the language has only binary
relation symbols then there is no di�erence between the two notions of l-colouring.)

In [8], Koponen proved that, for every �nite relational langauge, if Cn is the set of
l-colourable structures with universe {1, . . . , n}, then the statements 1�4 from the ab-
stract hold, for the dimension conditional probability measure, as well as for the uniform
probability measure, on Cn. The same results hold if we instead consider strongly l-
colourable structures. Moreover, the results still hold, for both types of colourings and
both probability measures, if we insist that some of the relation symbols are always in-
terpreted as irre�exive and symmetric relations. A consequence of the zero-one law for
(strongly) l-colourable structures is that if, for some �nite relational vocabulary and for
each positive n ∈ N, Kn is a set of structures with universe {1, . . . , n} containing every
l-colourable structure with that universe, and the probability, using either the dimension
conditional measure or the uniform measure, that a random member of Kn is (strongly)
l-colourable approaches 1 as n→∞, then Kn has a zero-one law for the corresponding
measure; i.e. for every sentence ϕ, the probability that ϕ is true in a randomM ∈ Kn

approaches either 0 or 1 as n→∞. In [11], Person and Schacht proved that if F denotes
the Fano plane as a 3-hypergraph (so F has seven elements and seven 3-hyperedges
such that every pair of distinct elements are contained in a unique 3-hyperedge) and
Kn is the set of F-free 3-hypergraphs with universe (vertex set) {1, . . . , n}, then the
proportion of hypergraphs in Kn which are 2-colourable approaches 1 as n→∞. Since
every 2-colourable 3-hypergraph is F-free, it follows the F-free 3-hypergraphs satisfy a
zero-one law if we use the uniform probability measure. As another example, Balogh
and Mubayi [1] have proved that if H denotes the hypergraph with vertices 1, 2, 3, 4, 5
and 3-hyperedges {1, 2, 3}, {1, 2, 4} and {3, 4, 5} and if Kn denotes the set of H-free 3-
hypergraphs with universe {1, . . . , n}, then the proportion of hypergraphs in Kn which
are strongly 3-colourable approaches 1 as n → ∞. Since every strongly 3-colourable
3-hypergraph is H-free it follows that H-free 3-hypergraphs satisfy a zero-one law.

In the present article we generalise the work in [8] to the context of (strongly) l-
colourable structures with an underlying (combinatorial) pregeometry, also called ma-
troid. Roughly speaking, a structureM with a pregeometry will be called l-colourable if
its 1-dimensional subspaces (i.e. closed subsets ofM) can be assigned colours from l given
colours in such a way that if R is a relation symbol andM |= R(a1, . . . , ar), then there
are i and j such that the subspaces spanned by ai and by aj , respectively, have di�erent
colours. A structureM will be called strongly l-colourable if its 1-dimensional subspaces
can be assigned colours from l given colours in such a way that ifM |= R(a1, . . . , ar), then
any two distinct 1-dimensional subspaces that are included in the closure of {a1, . . . , ar}
have di�erent colours. The main motivation for this generalisation is to understand how
the combinatorics of colourings work out if the elements of a structure are related to
each other in a �geometrical way�, where in particular, the role of cardinality is taken
over by dimension. The main examples of pregeometries for which the results of this
article apply are vector spaces, projective spaces and a�ne spaces over some �xed �nite
�eld. Another motivation is the fact that pregeometries have played an important role
in the study of in�nite models and one may ask to what extent the notion of pregeome-
try can be combined with the study of asymptotic properties of �nite structures. In [8]
a framework for studying asymptotic properties of �nite structures with an underlying
pregeometry was presented. Here we work within that framework, but since we only
consider (strongly) l-colourable structures some notions from [8] become simpler here.
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We now give rough explanations of the notions that will be involved and the main
results. Precise de�nitions are given in Section 2. We �x an integer l ≥ 2. Lpre denotes a
�rst-order language and for every n ∈ N, Gn is an Lpre-structure such that (Gn, clGn) is a
pregeometry (De�nition 2.1) where the closure operator clGn is de�nable by Lpre-formulas
(in a sense given by De�nition 2.3 and Assumption 2.12). We will consider the property
`polynomial k-saturation' (De�nition 2.10) of the enumerated set G = {Gn : n ∈ N}.
From Assumption 2.12 it follows that the dimension of Gn approaches in�nity as n tends
to in�nity. The language Lrel (from Assumption 2.12) includes Lpre and has, in addition,
�nitely many new relation symbols, all of arity at least 2. By Cn we denote the set of all
Lrel-structuresM such thatM�Lpre = Gn andM is l-colourable (De�nition 2.14). By
Sn we denote the set of all Lrel-structuresM such thatM�Lpre = Gn andM is strongly
l-colourable (De�nition 2.14). For every n, δCn denotes the probability measure given
by De�nition 2.17, which means, roughly speaking, that if X ⊆ Cn, then δ

C
n (X) is the

probability thatM∈ Cn belongs to X ifM generated by the following procedure: �rst
randomly assign l colours to the 1-dimensional subspaces of M , then, for every relation
symbol R that belongs to the vocabulary of Lrel but not to the vocabulary of Lpre,
choose an interpretation of R randomly from all possibilities of interpretations RM such
that the previous assignment of colours is an l-colouring of the resulting structure, and
�nally forget the colour assignment, leaving us with an Lrel-structure. The probability
measure δSn on Sn is de�ned similarly (De�nition 2.17). If ϕ is an Lrel-sentence then
δCn (ϕ) = δCn

(
{M ∈ Cn :M |= ϕ}

)
and similarly for δSn(ϕ).

Theorem 1.1. Suppose that Assumption 2.12 holds and that G = {Gn : n ∈ N} is poly-
nomially k-saturated for every k ∈ N. Then, for every Lrel-sentence ϕ, δCn (ϕ) approaches
either 0 or 1, and δSn(ϕ) approaches either 0 or 1, as n→∞.

If F is a �eld and G is the set of vectors of a vector space or of an a�ne space over F ,
or if G is the set of lines of a projective space over F , then (G, cl) where cl is the linear
closure operator, a�ne closure operator, or projective closure operator, respectively,
forms a pregeometry (see for example [10] or [9]).

Theorem 1.2. Suppose that the conditions of Assumption 2.12 hold and that for some
�nite �eld F one of the following three cases holds for every n ∈ N: Gn is an (a)
n-dimensional vector space, or (b) n-dimensional a�ne space, or (c) n-dimensional pro-
jective space, over F , and clGn is the linear, a�ne or projective closure operator on Gn,
respectively. Moreover, assume that Lpre is the generic language Lgen from Example 2.4,
with the intepretations of symbols given in that example.
(i) There is an Lrel-formula ξ(x, y) such that the δCn -probability that the following holds
forM∈ Cn approaches 1 as n→∞:

For all a, b ∈M − clM(∅),M |= ξ(a, b) if and only if every l-colouring ofM gives
a and b the same colour.

(ii) limn→∞ δ
C
n

(
{M ∈ Cn : M has a unique l-colouring}

)
= 1.

(iii) limn→∞ δ
C
n

(
{M ∈ Cn : M is not l′-colourable if l′ < l}

)
= 1.

(iv) The set {ϕ ∈ Lrel : limn→∞ δ
C
n (ϕ) = 1} forms a countably categorical theory which

can be explicitly axiomatised (as in Section 5) by Lrel-sentences of the form ∀x̄∃ȳψ(x̄, ȳ)
where ψ is quanti�er-free, mainly in terms of what we call l-colour compatible extension
axioms, which involve the formula ξ(x, y) from part (i).
(v) The statements (i)�(iv) hold if we assume that, for each n ∈ N, Gn is an n-
dimensional vector space over F , clGn is the linear closure operator on Gn and that
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Lpre is the language LF from Example 2.6, with the interpretation of symbols from that
example.

The assumptions of Theorem 1.2 imply the assumptions of Theorem 1.3, which is ex-
plained in Example 2.11. That is, when dealing with strongly l-colourable structures, the
assumptions on the underlying pregeometries can be weaker. By a subspace of a prege-
ometry we mean a closed set with respect to the given closure operator (De�nition 2.3).

Theorem 1.3. Suppose that the conditions of Assumption 2.12 hold and that G is poly-
nomially k-saturated for every k ∈ N. Also assume that for every n ∈ N, every 2-
dimensional subspace of Gn has at most l di�erent 1-dimensional subspaces.
(i) There is an Lrel-formula ξ(x, y) such that the δSn -probability that the following holds
forM∈ Sn approaches 1 as n→∞:

For all a, b ∈M − clM(∅),M |= ξ(a, b) if and only if every l-colouring ofM gives
a and b the same colour.

(ii) limn→∞ δ
S
n

(
{M ∈ Sn : M has a unique strong l-colouring}

)
= 1.

(iii) limn→∞ δ
S
n

(
{M ∈ Sn : M is not strongly l′-colourable if l′ < l}

)
= 1.

(iv) Suppose, moreover, that the formulas of Lpre which, according to Assumption 2.12,
de�ne the pregeometry G = {Gn : n ∈ N} are quanti�er-free. Then the set {ϕ ∈ Lrel :
limn→∞ δ

S
n(ϕ) = 1} forms a countably categorical theory which can be explicitly axioma-

tised (as in Section 5) by Lrel-sentences of the form ∀x̄∃ȳψ(x̄, ȳ) where ψ is quanti�er-
free, mainly in terms of what we call l-colour compatible extension axioms, which involve
the formula ξ(x, y) from part (i).

It turns out that Theorem 1.1 follows rather straightforwardly from Theorem 7.32 in
[8] when we have proved Lemma 2.21 below. However, Theorem 1.1 in itself does not
give information about which sentences have asymptotic probability 1 (or 0), or about
properties of the theory consisting of those sentences which have asymptotic probability
1. Neither does it tell us anything about typical properties of large (strongly) l-colourable
structures. In order to prove part (i) of Theorems 1.2 and 1.3, which give information of
this kind, we treat l-colourable structures and strongly l-colourable structures separately
and need to add some assumption(s). The case of strong l-colourings is the easier one and
is treated in Section 3; that is, most of the argument leading to part (i) of Theorem 1.3 is
carried out in Section 3. The main part of the proof of (i) of Theorem 1.2, dealing with
(not necessarily strong) l-colourings, is carried out in Section 4 where we use a theorem
from structural Ramsey theory by Graham, Leeb and Rothschild [5].

Once we have established part (i) of Theorems 1.2 and 1.3, which, as said above,
is done separately, parts (ii)�(iv) (and (v) of Theorem 1.2) can be proved in a uniform
way, that is, it is no longer necessary to distinguish between l-colourable structures
and strongly l-colourable structures. This is done in Section 5. It is possible to read
Section 5 directly after Section 2 and then consider the details of de�nability of colorings
in Sections 3 and 4, which are independent of each other.

The theorems above generalise the results of Section 9 of [8] to the situation when a
nontrivial pregeometry (subject to certain conditions) is present. In other words, if the
closure of a set A is always A (so every set is closed) and we let Lpre be the language
whose vocabulary contains only the identity symbol `=', and, for every n ∈ N, Gn is the
unique (under these assumtions) Lpre-structure with universe {1, . . . , n+1}, then (i)�(iv)
of Theorems 1.2 and 1.3 hold by results in Section 9 of [8]. Theorem 1.1 includes this
case, without reformulation.
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Remark 1.4. One may want to consider only Lrel-structures in which certain relation
symbols from the vocabulary of Lrel are always interpreted as irre�exive and symmetric
relations (see beginning of Section 2). Theorems 1.1 and 1.2 hold with exactly the same
proofs also in this situation. This claim uses that all results of [8] (see Remark 2.1 of
that article) hold whether or not one assumes that certain relation symbols are always
interpreted as irre�exive and symmetric relations. If a technical assumption is added,
explained in Remark 3.7, then Theorem 1.3 also holds in the context when some relation
symbols are always interpreted as irre�exive and symmetric relations.

Remark 1.5. In [8], results corresponding to Theorems 1.1�1.3, in the case of trivial pre-
geometries (i.e. when every set is closed), where proved also for the uniform probability
measure. The proof used the fact, proved in Section 10 of [8], that, when the pregeome-
tries considered are trivial, then the probability, with the uniform probability measure,
that a random (strongly) l-colourable structure with n elements has an l-colouring with
relatively even distribution of colours, approaches 1 as n → ∞. We believe that the
same is true in the context of Theorems 1.2 and 1.3 above, by proofs analogous to those
in Section 10 of [8]. But when the underlying pregeometries are no longer assumed to
be trivial, then this condition alone seems to be insu�cient for proving analogoues of
Theorems 1.1�1.3 if δCn is replaced by the uniform probability measure on Cn and δSn
is replaced by the uniform probability measure on Sn. In other words, it appears to
be a more di�cult task to transfer the results of this article to the uniform probability
measure (if possible at all) than was the case in [8].

This article ends with a small errata to [8], which makes explicit some assumptions, used
implicity in Section 8 of [8], but not stated explicitly in the places in Sections 7�8 of [8]
where they are relevant.

2 Pregeometries and (strongly) l-colourable structures

The notation used here is more or less standard; see [3, 9] for example. The formal lan-
guages considered are always �rst-order and denoted L, often with a subscript. Such L de-
notes the set of �rst-order formulas over some vocabulary, also called signature, consisting
of constant-, function- and/or relation symbols. First-order structures are denoted with
calligraphic letters A,B, . . . ,M,N , . . ., and their universes with the corresponding non-
calligraphic letters A,B, . . . ,M,N, . . .. If the vocabulary of a language L has no constant
or function symbols, then we allow an L-structure to have an empty universe. Finite se-
quences/tuples of objects, usually elements from structures or variables, are denoted with
ā, x̄, etc. By ā ∈ A we mean that every element of the sequence ā belongs to the set A,
and |A| denotes the cardinality ofA. A function f : M → N is called an embedding ofM
intoN if, for every constant symbol c, f(cM) = cN , for every function symbol g and tuple
(a1, . . . , ar) ∈ M r where r is the arity of g, gN (f(a1), . . . , f(ar)) = f(gM(a1, . . . , ar)),
and for every relation symbol R and tuple (a1, . . . , ar) ∈ M r where r is the arity of R,
M |= R(a1, . . . , ar) ⇐⇒ N |= R(f(a1), . . . , f(ar)). It follows that an isomorphism

fromM to N is the same as a surjective embedding fromM to N . Suppose that L′ is a
language whose vocabulary is included in the vocabulary of L. For any L-structureM,
by M�L′ we denote the reduct of M to L′. If M is an L-structure and A ⊆ M , then
M�A denotes the substructure ofM which is generated by the set A, that is,M�A is the
unique substructure N ofM such that A ⊆ N ⊆M and if N ′ ⊆M and A ⊆ N ′ ⊆M ,
then N ⊆ N ′. A third meaning of the symbol `�' with respect to structures is given by
De�nition 2.16. Suppose that A is a set, n ≥ 2 and R ⊆ An an n-ary relation on A. We
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call R irre�exive if (a1, . . . , an) ∈ R implies that ai 6= aj whenever i 6= j. We call R
symmetric if (a1, . . . , an) ∈ R implies that (π(a1), . . . , π(ar)) ∈ R for every permuta-
tion π of {a1, . . . , an}. For any set A, P(A) denotes the power set of A. A usual, we call
a formula existential if it has the form

∃y1, . . . , ymϕ(x1, . . . , xk, y1, . . . , ym)

where ϕ is quanti�er free.

De�nition 2.1. We say that (A, cl), with cl : P(A) → P(A) is a pregeometry (also
called matroid) if it satis�es the following for all X,Y ⊆ A:

1. (Re�exivity) X ⊆ cl(X).

2. (Monotonicity) Y ⊆ cl(X)⇒ cl(Y ) ⊆ cl(X).

3. (Exchange property) If a, b ∈ A then a ∈ cl(X ∪ {b})− cl(X)⇒ b ∈ cl(X ∪ {a}).

4. (Finite Character) cl(X) =
⋃
{cl(X0) : X0 ⊆ X and |X0| is �nite}.

If X,Y ⊆ A then we say that X is independent from Y if cl(X) ∩ cl(Y ) = cl(∅).
From the exchange property it follows that X is indepependent from Y if and only if Y
is independent from X (symmetry of independence). We will often write cl(a1, . . . , an)
instead of cl({a1, . . . , an}) and say `a is independent from b' instead of `{a} is independent
from {b} over ∅'. We say that a setX is independent if for, each a ∈ X, we have that {a}
is independent fromX−{a}. We say that a setX ⊆ A is closed (in (A, cl)) if cl(X) = X.
ForX ⊆ A, the dimension ofX is de�ned as dim(X) = inf{|Y | : Y ⊆ X and X ⊆ cl(Y )}.
For more about pregeometries the reader is refered to [9, 10] for example. We will use
the following lemma, which has probably been proved somewhere, but for the sake of
completeness we give a proof of it here.

Lemma 2.2. Let A = (A, cl) be a pregeometry. If {a, v1, ..., vm, w1, ..., wn} ⊆ A is an
independent set then cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn) = cl(a)

Proof. Suppose that {a, v1, ..., vm, w1, ..., wn} ⊆ A is an independent set. By re�exivity
a ∈ cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn) and so by monotonicity

cl(a) ⊆ cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn).

For the opposite direction we assume that x ∈ cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn) and use
induction over n to prove that x ∈ cl(a).

Base case: If n = 0 then cl(a,w1, ..., wn) = cl(a) so, as x ∈ cl(a), we are done.
Induction step: Suppose that x ∈ cl(a, v1, ..., vm)∩ cl(a,w1, ..., wn+1), so we have two

cases to consider:

either x ∈
(
cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn+1)

)
−
(
cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn)

)
,

or x ∈ cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn).

In the �rst case we get the consequence that x ∈ cl(a,w1, ..., wn+1)−cl(a,w1, ..., wn) and
hence by the exchange property we get that wn+1 ∈ cl(a,w1, ..., wn, x). We already know
that x ∈ cl(a, v1, ..., vm) and by also using the assumption that {a, v1, ..., vm, w1, ..., wn}
is independent we get that

1 +m+ n = dim(a, v1, ..., vm, w1, ..., wn) = dim(a, v1, ..., vm, w1, ..., wn, x) =
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dim(a, v1, ..., vm, w1, ..., wn, wn+1, x) = dim(a, v1, ..., vm, w1, ..., wn+1) = 1 +m+ n+ 1,

so 1 +m+ n = 1 +m+ n+ 1, a contradiction. Hence,

x ∈ cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn),

so by the induction hypothesis we get that x ∈ cl(a).
By induction we conclude that cl(a, v1, ..., vm) ∩ cl(a,w1, ..., wn) ⊆ cl(a) holds for

all n, which �nishes the proof.

We will consider �rst-order structuresM for which there is a closure operator cl on M
such that (M, cl) is a pregeometry and, for each n, the relation xn+1 ∈ cl(x1, . . . , xn)
is de�nable by a �rst-order formula without parameters. More precisely, we have the
following de�nition.

De�nition 2.3. (i) We say that an L-structure A is a pregeometry if there are L-
formulas θn(x1, . . . , xn+1), for all n ∈ N, such that if the operator clA : P(A)→ P(A) is
de�ned by (a) and (b) below, then (A, clA) is a pregeometry:

(a) For every n ∈ N, every sequence b1, . . . , bn ∈ A and every a ∈ A,

a ∈ clA(b1, . . . , bn)⇐⇒ A |= θn(b1, . . . , bn, a).

(b) For every B ⊆ A and every a ∈ A, a ∈ clA(B) if and only if a ∈ clA(b1, . . . , bn) for
some b1, . . . , bn ∈ B.

(ii) Suppose that A is a pregeometry in the sense of the above de�nition. Then, for every
B ⊆ A, dimA(B) denotes the dimension of B with respect to the closure operator clA.
In other words, dimA(B) = min{|B′| : B′ ⊆ B and clA(B′) ⊇ B}. We sometimes
abbreviate dimB(B) with dim(B). A closed subset of A is also called a subspace of A.
A substructure B ⊆ A is called closed if its universe B is closed in (A, clA).
(iii) Suppose that G is a set of L-structures. We say that G is a pregeometry if there
are L-formulas θn(x1, . . . , xn+1), for all n ∈ N, such that for each A ∈ G, (A, clA) is a
pregeometry if clA is de�ned by (a) and (b).

It may happen that for an L-structure A there are L-formulas θn and θ′n, for n ∈ N,
such that the sequence θn, n ∈ N, de�nes a di�erent pregeometry on A (according to
De�nition 2.3 (i)) than does the sequence θ′n, n ∈ N. When we use these notions it will,
however, be clear that we �x a sequence of formulas θn, n ∈ N, and the pregeometry
that they de�ne on each structure from a given set, which will be denoted G.

Example 2.4. (Generic example) Every pregeometry (A, cl) can be viewed as a �rst-
order structure A in the following way. For every n ∈ N, let Pn be an (n+1)-ary relation
symbol and let the vocabulary of Lgen be {Pn : n ∈ N}. For every n ∈ N and every
(a1, . . . , an+1) ∈ An+1, let (a1, . . . , an+1) ∈ (Pn)A if and only if an+1 ∈ cl(a1, . . . , an).
Then A is a pregeometry in the sense of De�nition 2.3 (i) and cl = clA. It follows that
every set of pregeometries G, viewed as Lgen-structures is a pregeometry in the sense of
De�nition 2.3 (iii).

Example 2.5. (Trivial pregeometries) If A is a set and cl(B) = B for every B ⊆ A,
then (A, cl) is a pregeometry, called a trivial preometry. Let L∅ be the language
with vocabulary ∅, so L∅ can only express whether elements are identical or not. If,
for n > 0, θn(x1, . . . , xn+1) denotes a formula which expresses that �xn+1 is identical to
one of x1, . . . , xn�, and θ0(x1) is some formula which can never be satis�ed, then every
L∅-structure is a pregeometry in the sense of De�nition 2.3 (i). Moreover, every set G
of L∅-structures is a pregeometry in the sense of De�nition 2.3 (iii).
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Example 2.6. (Vector spaces over a �nite �eld) Let F be a �eld. Let LF be the
language with vocabulary {0,+}∪{f : f ∈ F}, where 0 is a constant symbol, + a binary
function symbol and each f ∈ F represents a unary function symbol. Every vector space
over F can be viewed as an LF -structure by interpreting 0 as the zero vector, + as vector
addition and each f ∈ F as scalar multiplication by f . Now add the assumption that
F is �nite. If, for every n ∈ N, θn(x1, . . . , xn+1) is an LF -formula that expresses that
�xn+1 belongs to the linear span of x1, . . . , xn�, then every F -vector space V, viewed as
an LF -structure, is a pregeometry accordning to De�nition 2.3 (i). In particular, every
set G of vector spaces over a �nite �eld F , viewed as LF -structures, is a pregeometry
according to De�nition 2.3 (iii).

De�nition 2.7. We say that the pregeometryG = {Gn : n ∈ N} is uniformly bounded

if there is a function f : N → N such that for every n ∈ N and every X ⊆ Gn,∣∣clGn(X)
∣∣ ≤ f( dimGn(X)

)
.

Example 2.8. (Vector space pregeometries) LetG = {Gn : n ∈ N} is a pregeometry.
Suppose that, for every n ∈ N, (Gn, clG) is isomorphic (as a pregeometry) with (Vn, clVn)
where each Vn is a vector space of dimension n over a (�xed) �nite �eld F and clVn is
linear span in Vn. Then G = {Gn : n ∈ N} is uniformly bounded. We get the same
conclusion if, instead, each Vn is a projective space over F with dimension n, or if each
Vn is an a�ne space over F with dimension n.

Example 2.9. (Sub-pregeometries of Rn) Let cln denote the linear closure operator
in Rn. It is straightforward to verify that whenever Xn ⊆ Rn and cl′n is de�ned by
cl′n(A) = cln(A) ∩ Xn for every A ⊆ Xn, then (Xn, cl′n) is a pregeometry. For every
positive integer n choose �nite Xn ⊆ Rn and, for all n ∈ N, let Gn = (Xn+1, cl′n+1). Let
Lgen be the language from Example 2.4. Then each Gn can be viewed as a �rst-order
structure in the way explained in that example. It follows that G = {Gn : n ∈ N} is a
pregeometry in the sense of De�nition 2.3 (iii). Suppose that, in addition, the choice of
each Xn is made in such a way that for every k > 0 there is mk such that if n > 0 and
a1, . . . , ak ∈ Xn, then |cl(a1, . . . , ak) ∩Xn| ≤ mk. Then G is uniformly bounded.

De�nition 2.10. Let k ∈ N. We say that the pregeometry G = {Gn : n ∈ N} is
polynomially k-saturated if there are a sequence of natural numbers (λn : n ∈ N) with
limn→∞ λn =∞ and a polynomial P (x) such that for every n ∈ N:

(1) λn ≤ |Gn| ≤ P (λn), and

(2) whenever A is a closed substructure of Gn and there are G and B ⊃ A such that
A and B are closed substructures of G, G is isomorphic with some member of G
and dimG(A) + 1 = dimG(B) ≤ k, then there are closed substructures Bi ⊆M, for
i = 1, . . . , λn, such that Bi ∩Bj = A if i 6= j, and each Bi is isomorphic with B via
an isomorphism that �xes A pointwise.

Example 2.11. (i) Let L∅ be the �empty� language from Example 2.5. It is straight-
forward to verify that if for every n ∈ N, Gn is the unique L∅-structure with universe
{1, . . . , n+ 1}, then G is polynomially k-saturated for every k ∈ N.
(ii) Let F be a �nite �eld and let L = Lgen as in Example 2.4 or L = LF as in Exam-
ple 2.6. For n ∈ N let Vn be a vector space over F of dimension n. Each Vn gives rise
to a pregeometry (Vn, cln) where cln is linear span, and each Vn can be viewed as an
L-structure, call it Gn, as in any one of the mentioned examples (depending on whether
we take L = Lgen or L = LF ). Then the pregeometry G = {Gn : n ∈ N} is polynomially
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k-saturated for every k ∈ N. This is explained in some more detail in [8] and the proofs
in Section 3.2 of [2] translate to the present context.
(iii) Let F be a �nite �eld. If Gn, for n ∈ N, is instead the pregeometry obtained from
a projective space over F with dimension n, viewed as an Lgen-structure as in Exam-
ple 2.4, then G = {Gn : n ∈ N} is polynomially k-saturated for every k ∈ N. The
same holds if `projective space' is replaced with `a�ne space'. These facts are proved
are proved in a slightly di�erent context Section 3.2 of [2], but the proofs there translate
straightforwardly to the present context.

Assumption 2.12. We now �x some notation and assumptions for the rest of the paper.

(1) Let l ≥ 2 be an integer, P1, . . . , Pl unary relation symbols and let Vcol = {P1, . . . , Pl}.
The symbols Pi represent colours. Let Vrel be a �nite nonempty set of relation
symbols all of which have arity at least 2. Let ρ be the maximal arity among the
relation symbols in Vrel.

(2) Let Lpre be a language with vocabulary Vpre, which is disjoint from both Vcol and
Vrel. Suppose that G = {Gn : n ∈ N} is a set of �nite Lpre-structures where Gn is
the universe of Gn and G is a pregeometry in the sense of De�nition 2.3 (iii). Also,
assume that the Lpre-formulas θn(x1, . . . , xn+1), n ∈ N, de�ne the pregeometry
according to De�nition 2.3.

(3) Let Lcol be the language with vocabulary Vpre ∪Vcol, let Lrel be the language with
vocuabulary Vpre∪Vrel and let L be the language with vocabulary Vpre∪Vcol∪Vrel.

(4) G is uniformly bounded and, for every n ∈ N, if A ⊆ Gn is closed (with respect to
clGn) then A is the universe of a substructure of Gn (or equivalently, A contains all
interpretations of constant symbols and is closed under interpretations of function
symbols, if such occur in the language).

(5) For every n ∈ N, if A is a closed substructure of Gn and a1, . . . , an+1 ∈ A, then
an+1 ∈ clGn(a1, . . . , an) ⇐⇒ A |= θn(a1, . . . , an+1). In other words, the restriction
of clGn to A is de�nable in A by the same formulas θn.

(6) For every n ∈ N, if A is a closed substructure of Gn, then there is m such that
A ∼= Gm. Also assume that limn→∞ dim(Gn) = ∞ and, for every n ∈ N, Gn�
clGn(∅) ∼= G0.

(7) For every n ∈ N, there is a �characteristic� quanti�er-free Lpre-formula
χGn(x1, . . . , xmn) of Gn, where mn = |Gn|, such that if A is an Lpre-structure
in which the formulas θn de�ne a pregeometry (according to De�nition 2.3) and
A |= χGn(a1, . . . , as) for some enumeration a1, . . . , as of A, then A ∼= Gn.

Remark 2.13. (i) If θn is quanti�er free for every n ∈ N, then (5) holds. Note that in
all examples above, it is possible to let θn be quanti�er free for every n ∈ N, either by
using using the �generic� language Lgen from Example 2.4, or by using some of the other
languages mentioned in the examples.
(ii) Observe that by (5), if A is a closed substructure of Gn then the formulas θn de�ne a
pregeometry (A, clA), according to De�nition 2.3, and for all X ⊆ A, clA(X) = clGn(X).
By (5)�(6), for every k ∈ N, there are only �nitely many Lpre-structures A, up to
isomorphism, such that for some n, A ⊆ Gn and dimGn(A) ≤ k.
(iii) Condition (7) obviously holds if the vocabulary Vpre is �nite. But we want to be
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able to consider languages with in�nite vocabularies, such as the langauge Lgen from
Example 2.4. If we take Lpre = Lgen with the same interpretations as in Example 2.4
and (1)�(6) hold, then also (7) holds.

De�nition 2.14. (i) We say that an L-structure N is l-coloured if there is an L-
structure M such that M ∼= N , M�Lpre = Gn for some n ∈ N and M satis�es the
following four conditions:

(1) For all a ∈ M ,M |= P1(a) ∨ ... ∨ Pl(a) if and only if a /∈ clGn(∅), in other words,
an element has a colour if and only if it does not belong to the closure of ∅.

(2) If R ∈ Vrel has arity m ≥ 2 and a1, . . . , am ∈ clGn(∅), thenM |= ¬R(a1, . . . , am).

(3) For all i, j ∈ {1, ..., l} such that i 6= j and all a, b ∈M−clGn(∅) such that a ∈ clGn(b)
we have thatM |= ¬(Pi(a) ∧ Pj(b)), i.e. dependent elements not belonging to the
closure of ∅ have the same colour.

(4) If R ∈ Vrel has arity m ≥ 2 and M |= R(a1, ..., am) then there are b, c ∈
clGn(a1, ..., am)− clGn(∅) such that for every k ∈ {1, ..., l} we haveM |= ¬(Pk(b)∧
Pk(c)).

(ii) We say thatN is strongly l-coloured if there is an L-structureM such thatM∼= N ,
M�Lpre = Gn for some n ∈ N andM satis�es (1)�(4) above and (5) below:

(5) IfR ∈ Vrel has aritym ≥ 2 andM |= R(a1, ..., am), then for all b, c ∈ clGn(a1, ..., am)−
cl(∅) that are linearly independent (b /∈ clGn(c)) and every k ∈ {1, ..., l}, M |=
¬(Pk(b) ∧ Pk(c)).

(iii) An Lrel-structure is called (strongly) l-colourable if it can be expanded to an
L-structure that is (strongly) l-coloured.
(iv) For n ∈ N, let Kn denote the set of all l-coloured structures M such that M�
Lpre = Gn and let SKn denote the set of all strongly l-coloured structuresM such that
M�Lpre = Gn. Similarly, let Cn and Sn denote the set of l-colourable, respectively,
strongly l-colourable structuresM such thatM�Lpre = Gn. Finally, let K =

⋃
n∈NKn,

SK =
⋃
n∈N SKn C =

⋃
n∈NCn and S =

⋃
n∈N Sn

It follows that if M is (strongly) l-colourable (or l-coloured) and all a1, . . . , ar ∈ M
belong to the same 0- or 1-dimensional subspace, thenM 6|= R(a1, . . . , ar).

Remark 2.15. (i) If we say thatM is (strongly) l-coloured then it is presupposed that
N is an is an L-structure. If we say thatM is (strongly) l-colourable then it is presup-
posed thatM is an Lrel-structure.
(ii) From De�nition 2.14 it follows that if M is (strongly) l-coloured or (strongly) l-
colourable, then the formulas θn(x1, . . . , xn+1) from Assumption 2.12 de�ne a pregeom-
etry on M according to De�nition 2.3. We always have this pregeometry in mind when
speaking of the pregeometry of an (strongly) l-coloured or (strongly) l-colourable struc-
ture.
(iii) From the de�nition of (strongly) l-coloured and (strongly) l-colourable structures
and Assumption 2.12 it follows that if M is a (strongly) l-coloured, or (strongly) l-
colourable, structure, and A is a closed substructure ofM, then clA(X) = clM(X) for
every X ⊆ A. For this reason we will usually omit the subscripts `A' and `M' and
just write `cl'. Also note that from Assumption 2.12 it follows that there is a unique
(strongly) l-coloured/colourable structure of dimension 0.
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De�nition 2.16. Suppose thatM is an L-structure. Let d ∈ N. The d-dimensional

reduct of M, denoted M�d, is the unique L-structure satisfying the following three
conditions:

(1) M�d has the same universe asM.

(2) Every symbol in Vpre has the same interpretation inM�d as inM.

(3) For each relation symbol R ∈ Vcol ∪ Vrel and tuple ā ∈ M of the corresponding
arity,

ā ∈ RM�d ⇔ dimM(ā) ≤ d and ā ∈ RM.

Let Kn�d = {M�d :M∈ Kn} and SKn�d = {M�d :M∈ SKn}.

Notice that if M is a (strongly) l-colourable structure and d is an integer such that
no relation symbol in Vrel has higher arity than d, then M�d = M. We also have
Kn�0 = {Gn} = SKn�0 for every n. By the uniform probability measure on a
�nite set X we mean the probability measure which gives every member of X the same
probability 1/|X|. Recall from Assumption 2.12 that ρ is the highest arity that occurs
among the relation symbols of Vrel, so ρ ≥ 2.

De�nition 2.17. (i) For every n ∈ N and every integer 0 ≤ r ≤ ρ we de�ne a probability
measure Pn,r on Kn�r by induction on r as follows. Pn,0 is the uniform probability
measure on Kn�0. For each 1 ≤ r ≤ ρ andM∈ Kn�r we de�ne

Pn,r(M) =
1

|{M′ ∈ Kn�r :M′ � r − 1 =M�r − 1}|
· Pn,r−1(M�r − 1).

(ii) We then de�ne δKn = Pn,ρ which we call the dimension conditional measure on

Kn = Kn�ρ.
(iii) The dimension conditional measure on SKn, denoted δSKn , is de�ned in the
same way, by replacing Kn with SKn in part (i) and then letting δSKn = Pn,ρ.

Example 2.18. Let Lpre = LF as in Example 2.6 and let F = Z2. Suppose that l = 2,
so Vcol = {P1, P2}, and suppose that Vrel = {R} where R is binary. Let G2 = Z2 × Z2,
that is, G2 is a 2-dimensional vector space over Z2. From the assumptions that have been
made it follows that K2 is the set of all 2-coloured structures M such that M�Lpre =
G2 = Z2 × Z2. We have |K2| = 26, so ifM ∈ K2 is the structure in which all non-zero
vectors have colour P1 and consequently RM = ∅, then with the uniform probability
measure the probability ofM is 1/26.

If we want to calculate δK2 (M), where M is still the same structure, we �rst need
to calculate P2,0(M�0) which equals 1, because P2,0 is the uniform probability on K2�0
which contains exactly one structure, namely G2 =M�0. When we consider P2,1(M�1)
we look at structures in K2�1, that is, G2 with colours added. Since |K2�1| = 8 and the
0-dimensional reduct of every member of K2�1 is G2 it follows that

P2,1(M�1) =
1

|{M′ ∈ K2 � 1 :M′ � 0 =M � 0}|
· P2,0(M�0) =

1

8
· 1 =

1

8
.

The last step, to calculate δK2 (M) = P2,2(M) is easy, since the only structure in K2�2 =
K2 which has the same colouring asM isM itself. Hence

δK2 (M) = P2,2(M) =
1

|{M′ ∈ K2 � 2 :M′ � 1 =M � 1}|
· P2,1(M�1) =

1

1
· 1

8
=

1

8
.
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Remark 2.19. We de�ned δKn and δSKn as we did in De�nition 2.17 because we are
going to use results from [8]. But in the present (more specialised) context, δKn can be
more simply characterised as follows. For everyM∈ Kn we have

δKn (M) =
1∣∣Kn�1

∣∣ · ∣∣{M′ ∈ Kn :M′�1 =M�1}
∣∣ ,

and similarly for δSKn . This is not di�cult to prove, by the use of the de�nitions of
l-coloured, and strongly l-coloured, structures. Note that any given colouring of an
l-coloured structureM∈ Kn has probability 1/|Kn�1| with this measure.

De�nition 2.20. LetM be an (strongly) l-coloured structure.
(i) Suppose that B is an (strongly) l-coloured structure and thatA is a closed substructure
of B, soA is also (strongly) l-coloured. We say thatM has the B/A-extension property

if whenever A′ is a closed substructure of M and σA : A′ → A is an isomorphism,
then there are a closed substructure B′ of M such that A′ ⊂ B′ and an isomorphism
σB : B′ → B which extends σA.
(ii) Let k ∈ N. We say M has the k-extension property if it has the B/A-extension
property whenever B is an (strongly) l-coloured structure, A is a closed substructure of
B and dimM(B) ≤ k.

When saying that two l-coloured structures A and A′ agree on Lpre and on closed

proper substructures we mean thatA�Lpre = A′�Lpre (so in particular, clA = clA′) and
whenever U is a closed substructure of A and dimA(U) < dimA(A), then A�U = A′�U .

Lemma 2.21. WheneverM is (strongly) l-coloured, A is a closed substructure ofM and
A′ is an (strongly) l-coloured structure which agrees with A on Lpre and on closed proper
substructures, then there is an (strongly) l-coloured structure N such that N �Lpre =M�
Lpre, N �A = A′ and if U is a closed substructure of N , dimN (U) ≤ dimN (A′) and
U 6= A′, then N �U =M�U .

Proof. We only prove the lemma in the case of l-coloured structures. The proof for
strongly l-coloured structures is a straightforward modi�cation. Suppose that M is l-
coloured, that A is a closed substructure of M, and therefore l-coloured. Also assume
that A′ is l-coloured and agrees with A on Lpre and on closed proper substructures.
Observe that by these assumptions and Assumption 2.12, for every X ⊆ A we have
clM(X) = clA(X) = clA′(X) and dimM(X) = dimA(X) = dimA′(X), so we can omit
the subscripts. The proof splits into three cases.

First suppose that dim(A) = 0. By parts (1) and (2) of the de�nition of l-coloured
structure we have A = A′ so if N =M then the conclusion of the lemma is satis�ed.

Now suppose that dim(A) = 1, so A is a one dimensional structure and therefore all
a ∈ A − cl(∅) have the same colour in A, say i (that is, A |= Pi(a)). Similarly, A′ is a
one dimensional structure so all a ∈ A′− cl(∅) have the same colour in A′, say j. Let N
be the structure which satis�es the following conditions:

• N �Lpre =M�Lpre, so in particular N = M .

• For every R ∈ Vrel, RN = ∅.

• For every a ∈M −A and every m ∈ {1, . . . , l},
N |= Pm(a) ⇐⇒ M |= Pm(a).

• For every a ∈ A− cl(∅), N |= Pj(a).
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Then N is l-coloured, for trivial reasons, and has the required properties which is easily
checked.

Finally suppose that dim(A) = k + 1 where k ≥ 1. De�ne N as follows:

• N �k =M�k, so in particular N �Lpre =M�Lpre.

• Whenever U is a closed subset of M = N , dim(U) = k + 1 and U 6= A, then
N �U =M�U .

• N �A = A′.

• Whenever ā ∈M , dim(ā) > k + 1 and R ∈ Vrel, then ā /∈ RN .

It remains to prove that N is l-coloured. Since N �k =M�k, where k ≥ 1, it follows that
N �Lcol =M�Lcol and hence conditions (1)�(3) in the de�nition of l-coloured structure
are satis�ed.

Now we consider condition (4). Suppose that N |= R(ā) where R ∈ Vrel. We need to
show that there are b, c ∈ cl(ā) − cl(∅) such that b and c have di�erent colours. By the
last part of the de�nition of N we may assume that dim(ā) ≤ k+ 1. If dim(ā) ≤ k then,
by the �rst part of the de�nition of N , and the assumption thatM is l-coloured it follows
that b, c ∈ cl(ā)− cl(∅) with di�erent colours exist. Now suppose that dim(ā) = k+ 1. If
cl(ā) 6= A, then, by the second part of the de�nition of N and the assumption thatM
is l-coloured, there are b, c ∈ cl(ā) − cl(∅) with di�erent colours. Finally suppose that
cl(ā) = A. By the third part of the de�nition of N , N �A = A′, so A′ |= R(ā) and since
A′ is l-colored there are b, c ∈ cl(ā) − cl(∅) with di�erent colours in A′, and hence (by
the third part of the de�nition of N again) they have di�erent colours in N .

In the terminology of [8] (De�nition 7.20), Lemma 2.21 says that, for every k ∈ N, K
and SK accept k-substitutions over Lpre. Therefore, Assumption 2.12 and Theorems 7.31
and 7.32 in [8] imply the following:

Theorem 2.22. Suppose that, for every k ∈ N, G is polynomially k-saturated.
(i) For every k ∈ N,

lim
n→∞

δKn
(
{M ∈ Kn :M has the k-extension property}

)
= 1 and

lim
n→∞

δSKn
(
{M ∈ SKn :M has the k-extension property}

)
= 1.

(ii) For every L-sentence ϕ, δKn
(
{M ∈ Kn : M |= ϕ}

)
approaches either 0 or 1, and

δSKn
(
{M ∈ SKn :M |= ϕ}

)
approaches either 0 or 1, as n tends to in�nity.

Now we have a zero-one law for (strongly) l-coloured structures, with the dimension
conditional probability measure. Next, we look att (strongly) l-colourable structures,
with a probability measure that is derived from the dimension conditional measure

De�nition 2.23. For each n and all X ⊆ Cn and Y ⊆ Sn let

δCn (X) = δKn
(
{M ∈ Kn :M�Lrel ∈ X}

)
, and

δSn(X) = δSKn
(
{M ∈ SKn :M�Lrel ∈ X}

)
.

Intuitively, for X ⊆ Cn, we can think of δCn (X) as the probability that M ∈ Cn will
belong to X ifM is generated by the following procedure: start with Gn and randomly
add colours to the 1-dimensional subspaces of Gn, then add R-relations for each R ∈ Vrel
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in such a way that the colouring conditions (1)�(4) of De�nition 2.14 are respected but
apart from this in a random fashion, and �nally, forget about the speci�c colouring,
that is, consider the reduct to Lrel. The probability measure δSn can be interpreted
analogously. The corollary below states tells that a zero-one law holds for (strongly) l-
colourable structures when probability measure δCn (δSn) is used, in other words, it states
the same thing as Theorem 1.1.

Corollary 2.24. Suppose that, for every k ∈ N, G is polynomially k-saturated. For
every Lrel-sentence ϕ, δ

C
n

(
{M ∈ Cn :M |= ϕ}

)
approaches either 0 or 1, and δSn

(
{M ∈

Sn :M |= ϕ}
)
approaches either 0 or 1, as n tends to in�nity.

Proof. Let ϕ be an Lrel-sentence, so in particular it is an L-sentence. Then

δCn
(
{M ∈ Cn :M |= ϕ}

)
= δKn

(
{M ∈ Kn :M�Lrel |= ϕ}

)
(by the de�nition of δCn )

= δKn
(
{M ∈ Kn :M |= ϕ}

)
(sinceM |= ϕ ⇔M�Lrel |= ϕ).

Since ϕ is also an L-sentence, Theorem 2.22 implies that δCn
(
{M ∈ Cn : M |= ϕ}

)
approaches either 0 or 1 as n→∞. The proof that δSn

(
{M ∈ Sn :M |= ϕ}

)
approaches

either 0 or 1 as n→∞ is exactly the same; just replace Cn by Sn and Kn by SKn. �

However, neither the theorem nor its proof gives information about for which Lrel-
sentences ϕ we have limn→∞ δ

C
n

(
{M ∈ Cn : M |= ϕ}

)
= 1, nor do we get information

about structural properties of (strongly) l-colourable structures. The remaining sections
deal with these issues. In hindsight it seems silly that the second author of this article
did not notice, in [8], this easy way of proving the zero-one law of (strongly) l-colourable
structures with trivial pregeometry, when the measures δCn (or δSn) are used. But in [8]
emphasis was put on extension axioms, which may explain why the above �short cut� to
Corollary 2.24 in the case when the underlying pregeomeries are trivial was not noticed.

It will sometimes be convenient to think of l-colourings as functions that assign
colours to elements, as done in combinatorics, so we introduce the following terminology.

De�nition 2.25. Let A be an Lrel-structure and let γ : A − cl(∅) → {1, ..., l}. Let B
be a closed subset of A. We say that B is γ-monochromatic if for all a, b ∈ B − cl(∅),
γ(a) = γ(b). If B is not γ-monochromatic then it is called γ-multichromatic. If
γ(a) 6= γ(b) whenever a ∈ B and b ∈ B are independent, then we call B strongly

γ-multichromatic. If there is no risk of confusion we may just say monochromatic,
multichromatic or strongly multichromatic. We say that γ is a (strong) l-colouring of
A if the following conditions hold:

1. For every a ∈ A− cl(∅), cl(a) is γ-monochromatic.

2. If R ∈ Vrel and A |= R(ā) then cl(ā) is (strongly) γ-multichromatic.

Observe that an Lrel-structure A is (strongly) l-colourable, according to De�nition 2.14,
if and only if there is an (strong) l-colouring γ : A − cl(∅) → {1, . . . , l} of A. We will
often want to describe the isomorphism type of some particular structure with a sentence,
which motivates the following de�nition.

De�nition 2.26. Let A be an (strongly) l-colourable structure and let A = {a1, . . . , am}
By a characteristic formula of A, with respect to the given enumeration of A, we
mean a quanti�er-free Lrel-formula χA(x1, . . . , xm) such that if M is an Lrel-structure
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such that the formulas θn de�ne a pregeometry (M, clM) andM |= χA(b1, . . . , bm), then
the map ai 7→ bi, for i = 1, . . . ,m, is an embedding of A into M. Similarly we de�ne
a characteristic formula of an (strongly) l-coloured structure. Note that such formulas
exist because of the de�nition of (strongly) l-colourable (or l-coloured) structures and
Assumption 2.12 (7) (see also Remark 2.13 (iii)).

3 De�nability of strong l-colourings

In this section we study strongly l-coloured structures, where l ≥ 2 (as always). If a
and b are elements of a strongly l-coloured structure and M |= Pi(a) ∧ Pi(b) for some
i ∈ {1, . . . , l}, then we say that a and b have the same colour. The main result of this
section, which is essential for the proof of Theorem 1.3, which is �nished in Section 5, is
the following: there are k0 ∈ N and an Lrel-sentence ξ(x, y) such that

• ifM is strongly l-coloured, a, b ∈ M − cl(∅) andM |= ξ(a, b), then a and b have
the same colour, and

• ifM is strongly l-coloured and has the k0-extension property and a, b ∈M − cl(∅),
thenM |= ξ(a, b) if and only if a and b have the same colour.

The de�nition of strongly l-colourable structures implies that ifM is strongly l-colourable,
R ∈ Vrel is an r-ary relation symbol (so r ≥ 2), M |= R(a1, . . . , ar) and b, c ∈
cl(a1, . . . , ar) − cl(∅) are independent, then a and b must have di�erent colours. It
follows that if a1, . . . , ar ∈ M and the number of 1-dimensional subspaces (i.e. closed
subsets) of cl(a1, . . . , ar) is larger than l, thenM 6|= R(a1, . . . , ar).

Example 3.1. Suppose that F = Z2 is the 2-element �eld and, for every n ∈ N, Gn
is an n-dimensional vector space over F , as in Example 2.6. Let l = 2. For every 2-
dimensional subspace V of Gn (n ≥ 2), the number of 1-dimensional subspaces of V is
22−1 = 3 > l. So, with these assumptions, ifM is strongly 2-coloured then RM = ∅ for
every R ∈ Vrel. But if, instead, l > 2 then it is possible that RM 6= ∅ for every R ∈ Vrel.

Since strongly l-coloured structures in which R is interpreted as the empty set for every
R ∈ Vrel are not so interesting, the above example motivates the following de�nition
and assumption. Observe that by Assumption 2.12 (6), if n ∈ N and G′ is a closed
substructure of Gn, then G′ ∼= Gm for some m ∈ N.

De�nition 3.2. (i) If A is a closed subset of Gn, for some n, then let D(A) be the
number of 1-dimensional subspaces of A.
(ii) For every d ∈ N, let t(d) be the maximum of D(A) where A is a subspace of Gn for
some n and dimGn(A) ≤ d.
(iii) Let t = max{d ∈ N : t(d) ≤ l}.

Note that if dimGn(A) > l then D(A) > l, so t ≤ l. In Example 3.1 we have t(0) =
0, t(1) = 1, t(2) = 3 and t(3) = 8, so if l = 2 then t = 1. If, in the same example,
l ∈ {3, . . . , 7}, then t = 2; if l = 8, then t = 3, and so on. In order that the arguments
that follow work out we assume that t ≥ 2. This is equivalent with the condition, in
Theorem 1.3, that for every n ∈ N, every 2-dimensional subspace of Gn has at most l
di�erent 1-dimensional subspaces.

Let the relation symbols of Vrel be R1, ..., Rτ with arities r1, ..., rτ ≥ 2. Without loss
of generality we assume that r1 is the smallest among these arities. By Assumption 2.12
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there are Lpre-formulas θ0 and θ1 such that if M is strongly l-coloured (or strongly l-
colourable), then M |= θ0(a) ⇐⇒ a ∈ cl(∅), and M |= θ1(a, b) ⇐⇒ b ∈ cl(a). Since
Lpre ⊆ Lrel, this justi�es the use of notation like `x ∈ cl(y)' when specifying Lrel-
formulas.

The idea of the formula ξ(x, y) de�ned below is that whenever a and b do not belong
to the closure of ∅ and ξ(a, b) holds, then a and b must have the same colour (and the
converse implication holds if the structure that a and b come from has the k-extension
property for large enough k). This is achieved by saying that if a and b are independent
then there are c2, . . . cl such that every pair of distinct elements from {a, c2, . . . , cl}
is independent and belongs to an R1-relationship, thus forcing them to have di�erent
colours. The same is said about pairs of distinct elements from {b, c2, . . . , cl}, thus
forcing the elements of every such pair to have di�erent colours. As c2, . . . , cl use up
l− 1 colours and there are only l colours, this forces a and b to have the same colour. In

the following de�nition we will use notation like
l
∃
i=1

r1
∃
j=1

xi,j which is the same as saying

∃x1,1 . . . x1,r∃x2,1 . . . x2,r∃xl,1 . . . xl,r1 . Moreover, we use triples (•, •, •) to index di�erent
variables z(•,•,•).

De�nition 3.3. Let ξ(x, y) denote the following Lrel-formula:

x ∈ cl(y) ∨ y ∈ cl(x) ∨ ∃y2, ..., yl
l
∃
i=2

r1−2
∃
j=1

z(x,i,j)
l
∃
i=2

r1−2
∃
j=1

z(y,i,j)
l
∃
k=2

k−1
∃
i=2

r1−2
∃
j=1

z(k,i,j)[
l∧

i=2

(
R1(x, yi, z(x,i,1), ..., z(x,i,r1−2)) ∧ yi /∈ cl(x) ∧ R1(y, yi, z(y,i,1), ..., z(y,i,r1−2))

∧ yi /∈ cl(y)
)
∧

i−1∧
j=2

(
R1(yi, yj , z(i,j,1), ..., z(i,j,r1−2)) ∧ yi /∈ cl(yj)

)]
.

The variables z(k,i,j), z(x,i,j) and z(y,i,j) have the function of ��llers� to get the the right
length, r1, of the tuples. In the case r1 = 2 they are not needed and ξ will look like this:

x ∈ cl(y) ∨ y ∈ cl(x) ∨

∃y2, ..., yl

[
l∧

i=2

(
R1(x, yi) ∧ yi /∈ cl(x) ∧ R1(y, yi) ∧ yi /∈ cl(y)

)
∧

i−1∧
j=2

(
R1(yi, yj) ∧ yi /∈ cl(yj)

)]
.

Lemma 3.4. IfM is strongly l-coloured, a, b ∈M − cl(∅) andM |= ξ(a, b) then a and
b have the same colour inM, i.e. for some i = 1, ..., l we haveM |= Pi(a) ∧ Pi(b).

Proof. Let M be strongly l-coloured. We assume that M |= ξ(a, b) and a, b /∈ cl(∅).
If a ∈ cl(b) then we obviously are done by the de�nition of a colouring, hence as-
sume that a and b are independent. Each yi that witness the truth of ξ(a, b) must
have a di�erent colour from a since they are independent and included in a tuple
(a, yi, z(a,i,1), ..., z(a,i,r1−2)) ∈ RM1 . In the same way each yi must have di�erent colour
from b. In the same way as for a and b, looking at the de�nition of ξ, we get that yi
and yj must have di�erent colour in M if i 6= j. Hence we can conclude that all the
elements a, y2, ..., yl have di�erent colours and all the elements b, y2, ..., yl have di�erent
colours. But sinceM is coloured by only l di�erent colours this implies, by the pigeon
hole principle, that a and b must have the same colour.
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For the rest of this section, let

k0 = t(l + 1)l.

We will now prove that ifM is strongly l-colourable with the k0-extension property and
a, b ∈ M − cl(∅) have the same colour in M, then M |= ξ(a, b). This will be done by
de�ning a structure B which has the same relations as described by ξ, and showing that
this structure is strongly l-colourable. Then we show that if a and b have the same colour
in a structure with the k0-extension property, then they are included in a copy of B in
such a way that, by construction of B, ξ(a, b) holds.

Lemma 3.5. Let M be strongly l-coloured and assume that M has the k0-extension
property. If a, b ∈ M − cl(∅) and M |= Pi(a) ∧ Pi(b) for some i ∈ {1, ..., l}, then
M |= ξ(a, b).

Proof. If we would not be interested in being able to easily adapt the follwing argument
to the context where R1 is always interpreted as an irre�exive and symmetric relation,
then some parts of the argument could be simpli�ed (see Remark 3.7). Without loss of
generality we may assume thatM |= P1(a) ∧ P1(b) where a, b ∈ M − cl(∅). If a ∈ cl(b)
then M |= ξ(a, b) by de�nition, hence assume that a /∈ cl(b). Let A = M � cl(a, b)
and choose elements v2, ..., vl ∈ M and elements u(a,i,j), u(b,i,j), u(k,i,j) ∈ M for each
2 ≤ i ≤ l, 1 ≤ j ≤ t − 2 and 2 ≤ k ≤ l − 1, k 6= i such that the set S containing
exactly the elements a, b, v2, . . . , vl and u(a,i,j), u(b,i,j), u(k,i,j), for i, j, k as indicated
above, is an independent set. Such a choice of elements from M is possible because
we assume thatM has the k0-extension property where k0 = t(l + 1)l.1 Let B0 be the
substructure ofM�Lpre with universe cl(S), or equivalently, B0 =

(
M�cl(S)

)
�Lpre. Note

that A�Lpre ⊆ B0. De�ne B to be the L-structure which is created by expanding B0 to
an L-structure in the following way. We know already that A � Lpre ⊆ B � Lpre, so for
each i ∈ {1, ..., ρ}, every Ri ∈ V − Vpre, and every ā ∈ Ari , we let ā ∈ RBi ⇔ ā ∈ RAi ,
and for each j ∈ {1, ..., l} and a ∈ A we let a ∈ PBj ⇔ a ∈ PAj . In this way we obviously
get that A ⊆ B as L-structures, no matter how we de�ne, in B, interpretations on tuples
whose range are not included in A. For every relation symbol Ri ∈ Vrel − {R1} and
c̄ ∈ Bri −Ari let B 6|= R(c̄). For each i ∈ {2, ..., l} and i < j ≤ l �x arbitrary elements

w(a,i,1), ..., w(a,i,r1−2) ∈ cl(a, vi, u(a,i,1), ..., u(a,i,t−2)),

w(b,i,1), ..., w(b,i,r1−2) ∈ cl(b, vi, u(b,i,1), ..., u(b,i,t−2)) and

w(j,i,1), ..., w(j,i,r1−2) ∈ cl(vj , vi, u(j,i,1), ..., u(j,i,t−2)).

De�ne RB1 on Br1 −Ar1 in such a way that, for each 2 ≤ i ≤ l,

B |= R1(a, vi, w(a,i,1), ..., w(a,i,r1−2)) ∧ R1(b, vi, w(b,i,1), ..., w(b,i,r1−2))

l∧
k=i+1

R1(vk, vi, w(k,i,1), ..., w(k,i,r1−2)),

and such that RB1 holds for no other tuples than those indicated in the argument above.

1By Assumption 2.12 there is Gn with dimension k0 and hence there is a strongly l-coloured structure

B with dimension k0. By Assumption 2.12 and the de�nition of strongly l-coloured structures it follows

that B�clB(∅) ∼= M�clM(∅) and since, letting A = B�clB(∅), M has the B/A-extension property it

follows thatM contains an isomorphic copy B′ of B and B′ contains an independent set of cardinality

k0.
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In order to complete the de�nition of B as an L-structure we need to de�ne the
interpretations PB1 , . . . , P

B
l on elements in B − A. When saying that a 1-dimensional

subspace (closed subset) Q gets the colour i we mean that for all a ∈ Q− cl(∅), a ∈ PBi .
Now we de�ne an l-colouring, in B, on B−A according to the following �ve steps, where
we recall that cl(a) and cl(b) have colour 1 since, by assumption,M |= P1(a) ∧ P1(b):

(1) For i = 2, . . . , l, cl(vi) get the colour i.

(2) By the de�nition of t and the assumption that t ≥ 2 it is, for every i = 2, . . . , l,
possible to colour all 1-dimensional subspaces of cl(a, vi, u(a,i,1), ..., u(a,i,t−2)) which
have not yet been assigned colours with the colours 1, . . . , l in such a way that (1)
and (2) hold and any two di�erent 1-dimensional subspaces of this space get dif-
ferent colours.

(3) As in (3) it is possible, for every i = 1, . . . , l, to colour all 1-dimensional sub-
spaces of cl(b, vi, u(b,i,1), ..., u(b,i,t−2)) which have not yet been assigned colours with
the colours 1, . . . , l in such a way that (1) and (2) hold and any two di�erent
1-dimensional subspaces of this space get di�erent colours.

(4) As in (3) and (4) it is possible, for every i = 1, . . . , l, to colour all 1-dimensional
subspaces of cl(vj , vi, u(j,i,1), ..., u(j,i,t−2)) with the colours 1, . . . , l in such a way
that (1) and (2) hold and any two di�erent 1-dimensional subspaces of this space
get di�erent colours.

(5) For every 1-dimensional subspace Q ⊆ B that has not yet been assigned a colour,
give Q the colour 1.

Claim. The L-structure B is a strongly l-coloured structure.

Proof of claim. By the last part of the de�nition of the colouring of B and since A ⊆ B
where A is a substructure of M, we know that each element has attained at least one
colour, so colouring condition (1) of De�nition 2.14 is satis�ed. The second colouring
condition is also satis�ed because A ⊆ B and A ⊆ M. If we apply Lemma 2.2 we get
the following, for all i, j, k under consideration,

cl(vk, vi, u(k,i,1), ..., u(k,i,t−2)) ∩ cl(b, vi, u(b,i,1), ..., u(b,i,t−2)) = cl(vi) if k 6= i,

cl(b, vi, u(b,i,1), ..., u(b,i,t−2)) ∩ cl(a, vi, u(a,i,1), ..., u(a,i,t−2)) = cl(vi),

cl(a, vi, u(a,i,1), ..., u(a,i,t−2)) ∩ cl(a, vj , u(a,j,1), ..., u(a,j,t−2)) = cl(a) if i 6= j,

cl(b, vi, u(b,i,1), ..., u(b,i,t−2)) ∩ cl(b, vj , u(b,j,1), ..., u(b,j,t−2)) = cl(b) if i 6= j,

cl(a, vi, u(a,i,1), ..., u(a,i,t−2)) ∩ cl(vk, vi, u(k,i,1), ..., u(k,i,t−2)) = cl(vi) if i 6= k and

cl(vk, vi, u(k,i,1), ..., u(k,i,t−2)) ∩ cl(vj , vi, u(j,i,1), ..., u(j,i,t−2)) = cl(vi) if k 6= j.

This shows that the steps (1)�(6) did not give more than one colour to any element of B,
and, from the construction it is also clear that dependent elements that do not belong
to the closure of ∅ have obtained the same colour. The colouring restricted to A ⊆ B
does, since A ⊆M andM is an l-coloured structure, satisfy all the colouring conditions.
Hence the third colouring condition is satis�ed for B. If B |= Rp(ā) for some Rp ∈ Vrel,
then either ā ⊂ Arp in which case the colouring conditions (4) and (5) are satis�ed since
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A ⊆M is l-coloured, or Rp = R1 and ā is identical to one of the following tuples

(a, vi, w(a,i,1), ..., w(a,i,r1−2)),

(b, vi, w(b,i,1), ..., w(b,i,r1−2)), or

(vk, vi, w(k,i,1), ..., w(k,i,r1−2)),

for some i, k. By the choice of these tuples and the steps (1)�(6) above, it follows that
whenever a, b ∈ cl(ā) − cl(∅) and a is independent from b, then a and b have di�erent
colours. Hence colour conditions (4) and (5) are satis�ed and we have proved that B is
strongly l-coloured.

Continuing the proof of Lemma 3.5. By the claim, B is a strongly l-coloured L-structure
and, by the de�nition of B, A is a closed substructure of B. Since B = cl(S) we
know that dim(B) ≤ t(l + 1)l = k0. As M has the k0-extension property and A is a
closed substructure ofM, there are a closed substructure B′ ⊆M and an isomorphism
f : B′ → B with which extends the identity function on A, so A ⊆ B′. From the de�nition
of B we get thatM |= ξ(a, b).

Using Lemmas 3.4 and 3.5 we directly get the following:

Corollary 3.6. If M is a strongly l-coloured structure with the k0-extension property
and a, b ∈M − cl(∅) then

M |= ξ(a, b) ⇐⇒ M |= Pi(a) ∧ Pi(b) for some i ∈ {1, ..., l}.

Remark 3.7. Suppose that we only consider L-structures in which R1 (a symbol of Vrel
with minimal arity) is interpreted as an irre�exive and symmetric relation. Then, for ev-
ery i = 2, . . . , l, the elements a, vi, w(a,i,1), ..., w(a,i,r1−2) from the proof of Lemma 3.5 must
be di�erent from each other, where w(a,i,1), ..., w(a,i,r1−2) ∈ clM(a, vi, u(a,i,1), ..., u(a,i,t−2)),
and similarly for the sequences b, vi, w(b,i,1), ..., w(b,i,r1−2) and vk, vi, w(k,i,1), ..., w(k,i,r1−2).
Since a, b, v2, . . . , vl are di�erent, by construction, this can be achieved if, for every n,
every closed t-dimensional subset of Gn has cardinality at least r1, where r1 is the ar-
ity of R1. Moreover, in the construction of B we must enlarge RB1 so that whenever
B |= R1(c1, . . . , cr) then B |= R1(cπ(c1), . . . , cπ(cr)) for every permutation π of {1, . . . , r}.
These changes do not a�ect the way in which B is coloured in steps (1)�(6).

4 De�nability of l-colourings

Recall Assumptions 2.12. In this section we assume throughout that for some �nite �eld
F one of the following three cases hold for every n ∈ N: (a) Gn is an n-dimensional
vector space over F and clGn is the linear closure operator, or (b) Gn is an n-dimensional
a�ne space over F and clGn is the a�ne closure operator, or (c) Gn is an n-dimensional
projective space over F and clGn is the projective closure operator. Moreover, we assume
that the language Lpre with which clGn is de�ned, according to De�nition 2.3, is either
Lgen from Example 2.4 with the same interpretations of symbols as explained in that
example, or, provided we are in case (a) above, we have Lpre = LF where LF is like in
Example 2.6 with the same interpretations of symbols as explained there.

The assumption about the language Lpre guarantees that there is no other structure
on Gn than that which is needed for de�ning the pregeometry. Therefore the following
result, essentially of basic linear algebra, applies in the present context.
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Lemma 4.1. Let n,m ∈ N. If {a1, . . . , ak} ⊆ Gn and {b1, . . . , bk} ⊆ Gm are independent
sets, then there is an Lpre-isomorphism from clGn(a1, . . . , ak) to clGm(b1, . . . , bk) which
maps ai to bi for all i = 1, . . . , k.

In this section we will prove the same kind of result for l-colourable structures with
underlying pregeometry Gn for some n as we did for strongly l-colourable structures in
Section 3 (where the assumptions on Gn made here were not needed). More precisely,
we will show that there are k0 ∈ N and an Lrel-sentence ξ(x, y) such that

• ifM is l-coloured, a, b ∈ M − cl(∅) andM |= ξ(a, b), then a and b have the same
colour, and

• if M is l-coloured and has the k0-extension property and a, b ∈ M − cl(∅), then
M |= ξ(a, b) if and only if a and b have the same colour.

We will de�ne a certain l-colourable Lrel-structure B which will be used to de�ne the
sought after formula ξ(x, y). In order to de�ne such B we will use a theorem from
structural Ramsey theory about colourings of vector spaces, projective spaces and a�ne
spaces over a �nite �eld.

De�nition 4.2. Suppose that (V, cl) is a pregeometry.
(i) We call a function c : V − cl(∅) → {1, . . . , l} an l-colouring of (V, cl) if whenever
a, b ∈ V − cl(∅) and a ∈ cl(b), then c(a) = c(b).
(ii) Suppose that c : V − cl(∅) → {1, . . . , l} is an l-colouring of (V, cl) and that W is a
subspace (i.e. a closed subset) of V . If all a ∈ W − cl(∅) are assigned the same colour
by c, then we call W c-monochromatic. If, in addition, there is no closed U ⊆ V such
that W is a proper subset of U , then we call W maximal c-monochromatic.

The following theorem was proved by Graham, Leeb and Rothschild [5] and can also
be found (in perhaps more accessible form) in [6] (Theorem 9 and Corollary 10 of Sec-
tion 2.4). Recall that we have �xed a �nite vector space F .

Theorem 4.3. [5] For all d, l ∈ N there is a number N(d, l) ∈ N such that if n ≥ N(d, l),
and the pregeometry (V, cl) is isomorphic with an n-dimensional vector space, projective
space, or a�ne space over F and c is an l-colouring of (V, cl), then there exists at least
one c-monochromatic subspace of (V, cl) with dimension at least d.

Let n = N(2, l) for N(d, l) in the above theorem, let V = Gn and let c be an l-colouring
of V. By our choice of n and Theorem 4.3 there exists at least one c-monochromatic
subspace of V of dimension at least two and hence there also exists at least one maximal
c-monochromatic subspace of V of dimension two. Let W c

1 , ...,W
c
t(c) enumerate all the

maximal c-monochromatic subspaces of V of dimension at least two, where t(c) depends
on the l-colouring c. (This `t(c)' has nothing to do with the `t(d)' used in the previous
section.) Let C be the set of all l-colourings of V. For each c ∈ C, choose a basis

{d1, ..., dec} ⊆
⋃t(c)
i=1Wi for the closure of

⋃t(c)
i=1Wi, so in particular,

⋃t(c)
i=1Wi has dimen-

sion ec. Then let e = min{ec : c ∈ C}. Choose c0 ∈ C such that ec0 = e and for every
other l-colouring c ∈ C with ec = e we have that t(c) ≤ t(c0). For this colouring c0, let
m = t(c0) and let W1 = W c0

1 , ...,Wm = W c0
m .

Assume that the relation symbol R ∈ Vrel has minimal arity r among the relation
symbols in Vrel, so r ≥ 2. Let B be the expansion of V = Gn to the language Lrel de�ned
by, for each relation symbol Q ∈ Vrel − {R}, letting QB = ∅ and de�ning RB in the
following way:
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• If v1, v2, ..., vr ∈ Wi for some i ∈ {1, ...,m} or if cl(v1, ..., vr) = cl(vj) for some
j ∈ {1, . . . , r}, then B |= ¬R(v1, ..., vr).

• If {v1, ..., vr} 6⊆ Wi for all i = 1, ...,m and clVV(v1, ..., vr) 6= cl(vj) for all j =
1, . . . , r, then B |= R(v1, ..., vr).

Notice that the second case holds if and only if the �rst case does not hold, so B is
unambiguously de�ned. Let b1, b2 ∈ W1 be independent (notice that they exist because
of the choice of W1) and let A = B � cl({b1, b2}). Observe that since A ⊆ W1 it follows
that for every Q ∈ Vrel, QA = ∅ Let B = {b1, b2, . . . , bβ} and let χB(x1, . . . , xβ) be the
characteristic formula of B with respect to the ordering b1, b2, . . . , bβ of B. So for every
Lrel-structure M we have M |= χB(a1, . . . , aβ) if and only if the map bi 7→ ai is an
embedding of B intoM.

De�nition 4.4. Let ξ0(x, y) denote the Lrel-formula

∃z3, ..., zβχB(x, y, z3, ..., zβ).

We will use ξ0(x, y) to de�ne the formula ξ(x, y) with the properties that we are looking
for, explained in the beginning of this section. Before de�ning ξ(x, y) we need to assure
that ξ0(x, y) has certain properties which are given by Lemmas 4.5�4.9. Notice that, by
construction, B�Lpre = V so B and V have the same universe B = V and clB is the same
as clV (which is why we skip the subscripts of `cl').

Lemma 4.5. The function c0 : B − cl(∅)→ {1, . . . , l} is an l-colouring of B (according
to De�nition 2.25). Consequently there exists an l-coloured structure B0 such that B0�
Lrel = B and for every b ∈ B − cl(∅) and every i ∈ {1, . . . , l}, B0 |= Pi(b) if and only if
c0(b) = i.

Proof. We de�ne a L-structure B0 by putting colour on B through the l-colouring c0. In
other words, we let B0 be the expansion of B to L such that for every b ∈ B − cl(∅),
B0 |= Pc0(b)∧

∧
j 6=c0(b) ¬Pj(b). Then B0 � Lrel ∼= B so we just need to prove the following:

Claim. B0 is l-coloured.

We need to check that (1)�(4) of De�nition 2.14 are satis�ed. Conditions (1) and (3) are
satis�ed since c0 is an l-colouring of the underlying pregeometry V of B. Let R ∈ Vrel be
as in the de�nition of B. Let Q ∈ Vrel. If Q 6= R then, by de�nition of B and B0, QB0 = ∅
so (2) and (4) are satis�ed for such Q. Now we consider the case Q = R. Suppose that
B0 |= R(a1, . . . , ar). By the de�nition of B and B0 we have

• {a1, . . . , ar} 6⊆Wi for all i = 1, . . . ,m, and

• cl(v1, ..., vr) 6= cl(vj) for all j = 1, . . . , r.

In particular, {a1, . . . , ar} 6⊆ cl(∅) so (2) is satis�ed. As cl(v1, ..., vr) 6= cl(vj) for all
j = 1, . . . , r, it follows that clV(a1, . . . , ar) has dimension at least 2. If cl(a1, . . . , ar)
would be c0-monochromatic then it would be included in a maximal c0-monochromatic
subspace and, by the �rst point above, this would contradict the assumption (in the
construction of B) thatW1, . . . ,Wm enumerate all maximal c0-monochromatic subspaces
of V of dimension at least 2. Hence cl(a1, . . . , ar) is not monochromatic, so (4) is satis�ed.
Now the claim, and hence the lemma, is proved.

The structure B0 from the previous lemma will be used further on. Recall the de�nition
of the Lrel-formula ξ0(x, y) (De�nition 4.4).
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Lemma 4.6. IfM is an l-coloured structure, v, w ∈M − cl(∅) andM |= ξ0(v, w) then
v and w have the same colour, i.e. M |= Pi(v) ∧ Pi(w) for some i ∈ {1, ..., l}.

Proof. Suppose thatM is an l-coloured structure. Observe that if B′ is a substructure
of M�Lrel, then M induces a function c : B′ − cl(∅) → {1, . . . , l} by letting, for every
b′ ∈ B′ − cl(∅), c(b′) = i if and only if M |= Pi(b

′). We call such a function c an
l-colouring of B′ although, strictly speaking, we can only be sure that it is a colouring
of B′ (in the sense of De�nition 2.25) if B′ is a closed substructure of M. Recall the
de�nition of B before De�nition 4.4 and that c0 is, by Lemma 4.5, an l-colouring of B.
The lemma will be proved with the help of the following claim.

Claim. Any isomorphism f (if such exists) from the Lrel-structure B to a substructure
B′ ⊆ M�Lrel induces a bijection between the maximal c0-monochromatic subspaces of
B and the maximal c-monochromatic subspaces of B′, where c is the l-colouring of B′
induced byM�Lrel.

Proof of the claim. Suppose that f is an isomorphism from B to a substructure B′ of
M�Lrel. Assume that c is the l-colouring of B′ induced by M�Lrel, that is, for all b ∈
B′−cl(∅) and i ∈ {1, . . . , l},M |= Pi(b) if and only if c(b) = i. LetW1, ...,Wm enumerate,
without repetition, the maximal c0-monochromatic subspaces with dimension at least 2
of V, and hence of B, which where chosen when B was de�ned and let b1, b2 ∈W1 be the
two independent elements which where chosen in the paragraph before De�nition 4.4.
Let W ′1, ...,W

′
p enumerate, without repetition, the maximal c-monochromatic subspaces

of B′�Lpre of dimension at least 2. By Theorem 4.3 this sequence is non-empty. We must
show that p = m and that there is a permutation π of {1, . . . ,m} such thatW ′i = f(Wπ(i))
for all i = 1, . . . ,m.

Let i ∈ {1, . . . , p}. Let v′1 ∈ W ′i be arbitrary and, as the dimension of W ′i is at least
2, we can choose v′2, . . . , v

′
r ∈W ′i such that cl(v′1, . . . , v

′
r) 6= cl(v′j) for all j = 1, . . . , r. We

know that W ′i is monochromatic, hence we must have that B′ |= ¬R(v′1, ..., v
′
r). Choose

v1, . . . , vr ∈ B such that f(vj) = v′j for j = 1, . . . , r. Since f is an isomorphism we have
that B |= ¬R(v1, ..., vr) and cl(v1, . . . , vr) 6= cl(vj) for all j = 1, . . . , r. By the de�nition
of B, this implies that v1, ..., vr ∈Wπ(i) for some π(i) ∈ {1, ...,m} (as otherwise we would
have B |= R(v1, . . . , vr), contradicting what we have concluded so far).

We have already proved that for each i ∈ {1, ..., p} there is π(i) ∈ {1, ...,m} so that
W ′i ⊆ f(Wπ(i)). As f is an isomorphism, and therefore preserves dimension of sets, it
follows that

dim
( p⋃
i=1

W ′i

)
≤ dim

( m⋃
i=1

Wi

)
.

Observe that the l-colouring c of B′ induces an l-colouring cf of B by letting cf (b) = i
if and only if c(f(b)) = i, for every b ∈ B − cl(∅) and every i ∈ {1, . . . , l}. Therefore,
f−1(W ′1), . . . , f

−1(W ′p) is an enumeration of maximal cf -monochromatic subspaces of V.
It follows that if the above inequality would be strict, then dim

(⋃m
i=1Wi

)
would not be

minimal among all possible choices of l-colourings of V and corresponding enumeration
of maximal monochromatic subspaces, and this would contradict the choice of c0. Hence
we conclude that

dim
( p⋃
i=1

W ′i

)
= dim

( m⋃
i=1

Wi

)
.

Recall that we have showed that for every i ∈ {1, . . . , p} there is π(i) ∈ {1, . . . ,m}
such that W ′i ⊆ f(Wπ(i)). Suppose, for a contradiction, that this map π : {1, . . . , p} →
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{1, . . . ,m} is not surjective. Then, as f preserves the dimension of sets,
⋃p
i=1 f(Wπ(i)) has

strictly smaller dimension than
⋃m
i=1Wi. Since

⋃p
i=1W

′
i ⊆

⋃p
i=1 f(Wπ(i)) it follows that⋃p

i=1W
′
i has strictly smaller dimension than

⋃m
i=1Wi which contradicts what we have

already proved. Therefore we conclude that π : {1, . . . , p} → {1, . . . ,m} is surjective,
from which it follows that p ≥ m.

Recall the notation `t(c)' used in the de�nition of B. By the choice of the colouring
c0 of V (and of B) we have p = t(cf ) ≤ t(c0) = m. As also p ≥ m we get p = m and
since π is surjective (and p �nite) it must be bijective.

Now we continue with the proof of Lemma 4.6. Assume that M |= ξ0(v, w). Then
there is a B′ ⊆ M with B′ = {v, w, b′3, ..., b′β} and M |= χB(v, w, b′3, ..., b

′
β). Recall the

choice of maximal c0-monochromatic subspaces W1, . . . ,Wm ⊆ V = B and independent
b1, b2 ∈ W1 in the construction of B before De�nition 4.4. As χB is the characteristic
formula of B with respect to an enumeration of B starting with b1, b2, . . ., there is an
isomorphism f : B → B′ such that f(b1) = v and f(b2) = w, where b1, b2 ∈ W1. By
the claim we have that f(W1) is a monochromatic subset of B′, with respect to the l-
colouring c induced by M, and since v, w ∈ f(W1) it follows that v and w must have
the same colour inM.

Remember, from before De�nition 4.4, that A = B�cl(b1, b2), where b1 and b2 are inde-
pendent elements of W1. Let

k0 = max
(

dim(B), 3
)

Lemma 4.7. LetM be an l-coloured structure with the k0-extension property, suppose
that v, w ∈M and that A′ is a substructure ofM with universe cl(v, w). If all elements
in A′ − cl(∅) have the same colour and there is an isomorphism f0 : A′�Lrel → A such
that f0(v) = b1 and f0(w) = b2 thenM |= ξ0(v, w).

Proof. Let M, v, w ∈ M − cl(∅) and A′ satisfy the assumptions of the lemma, from
which it follows in particular that A′ is a closed substructure of M. Suppose that
f0 : A′�Lrel → A is an isomorphism such that f0(v) = b1 and f0(w) = b2. Let B0 be the
L-expansion of B from Lemma 4.5 and let A0 = B0�A, so A0 is a closed substructure of
B0. Since, by assumption, all elements of A′−cl(∅) have the same colour we get QA

′
= ∅

for all Q ∈ Vrel. By the de�nition of B0, all elements of A0 − cl(∅) = cl(b1, b2) − cl(∅)
have the same colour, so QA0 = ∅ for all Q ∈ Vrel. Let i be the colour of all elements in
A′− cl(∅). By permuting the colours if necessary we get an l-coloured structure B′0 such
that if A′0 = B′0�A, then A′0�Lrel = A0�Lrel and f0 is an L-isomorphism from A′ to A′0.
Since M satis�es the k0-extension property and dim(B′0) = k0, there is an embedding
f : B′0 →M which extends f−10 . Let B′ be the Lrel-reduct ofM�im(f), so B ∼= B′. Since
f is an L-isomorphism (where Lrel ⊆ L) which extends f−10 we have that v, w ∈ B′ and
B′ can be enumerated in such a way v, w, b′3, ..., b

′
β thatM |= χB(v, w, b′3, ..., b

′
β). Hence

M |= ξ0(v, w).

Lemma 4.8. Assume thatM is an l-coloured structure with the k0-extension property.
If v, w ∈M are independent, and have the same colour, then there exists u ∈M−cl(v, w)
such that the following holds:

Let Av,u = M � cl(v, u) and let Aw,u = M � cl(w, u). Then Av,u and Aw,u are
monochromatic and there exist isomorphisms fv,u : Av,u � Lrel → A and fw,u :
Aw,u � Lrel → A such that fv,u(v) = b1, fv,u(u) = b2, fw,u(w) = b1 and fw,u(u) =
b2.
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Proof. Suppose that M is l-coloured with the k0-extension property and assume that
v, w ∈M are independent from each other and have the same colour, say 1, without loss
of generality. Let S be any l-coloured structure with dimension 3 and let S ′ = clS(∅).
By the de�nition of l-coloured structures and Assumption 2.12, S ′ is isomorphic with
M�clM(∅). Since k0 ≥ 3 andM has the k0-extension property it follows thatM has a
closed substructure which is isomorphic with S. Therefore dim(M) ≥ 3 and hence there
is u0 ∈ M such that {v, w, u0} is an independent set. Let C = cl(v, w) and C = M�C.
We will now construct an l-coloured structure D and show that C is contained within an
isomorphic copy D′ of D. The conclusions of the lemma will then follow easily because
of the de�nition of D.

Let D have universe D = cl(v, w, u0). Interpret the symbols in Vpre so that D�Lpre
is the substructure of M�Lpre with universe D. Interpret the symbols of Vcol ∪ Vrel so
that D�C =M�C. For all d ∈ D − C let D |= P1(d) and D 6|= Pi(d) if i 6= 1. For every
Q ∈ Vrel, of arity q say, and every d̄ ∈ Dq − Cq, let D 6|= Q(d̄). From the de�nition it is
clear that D is l-coloured.

Now we show that if Q ∈ Vrel and d̄ ∈ cl(v, u0), then D 6|= Q(d̄). Suppose for a
contradiction that Q ∈ Vrel, d̄ ∈ cl(v, u0) and D |= Q(d̄). By de�nition of D we have
d̄ ∈ C and, by Lemma 2.2, C ∩ cl(v, u0) = cl(v), so d̄ ∈ cl(v) ⊆ C. By the de�nition of D
we getM |= Q(d̄), which contradicts thatM is l-coloured (as all members of d̄ belong
to the same 1-dimensional subspace). By a similar proof (replace v by w) it follows that
if Q ∈ Vrel and d̄ ∈ cl(w, u0), then D 6|= Q(d̄).

Now let Av,u0 be the substructure of D with universe Av,u0 = cl(v, u0). From the
de�nition of D it follows that all elements of Av,u0 have colour 1. Recall the de�ni-
tion of the Lrel-structure A with universe A = cl(b1, b2) before De�nition 4.4. As v
is independent from u0, it follows from Lemma 4.1 that there is an Lpre-isomorphism
fv,u0 : Av,u0�Lpre → A�Lpre such that fv,u0(v) = b1 and fw,u0(u0) = b2. From the
de�nition of A we have QA = ∅ for every Q ∈ Vrel. Since Av,u0 has universe cl(v, u0) it
follows from what we proved above and the de�nition of Av,u0 that QAv,u0 = ∅ for every
Q ∈ Vrel Therefore, f is also an Lrel-isomorphism from Av,u0�Lrel to A. In the same way
we can show that if Aw,u0 be the substructure of D with universe Aw,u0 = cl(w, u0), then
all elements of Aw,u0 have colour 1 and there is an isomorphism fw,u0 : Aw,u0�Lrel → A
such that fw,u0(w) = b1 and fw,u0(u0) = b2.

Because of what has been proved above it now su�ces to show that there are a
substructure D′ ⊆ M such that C ⊆ D′ and an isomorphism f : D → D′ such that f is
the identity on C. Then u = f(u0) has the desired property. Since dim(D) = 3 ≤ k0 and
M has the k0-extension property it follows that, in particular,M has the D/C-extension
property. Therefore such D′ and f exist.

Now we put together the previous two lemmas to get the following.

Lemma 4.9. Assume thatM is l-coloured with the k0-extension property. If v, w ∈M
are independent and have the same colour then there exists u ∈ M − cl(v, w) such that
M |= ξ0(v, u) ∧ ξ0(w, u).

Proof. By Lemma 4.8, there is u ∈M−cl(v, w) and monochromatic structuresAv,u,Aw,u ⊆
M with Av,u = cl(v, u) and Aw,u = cl(w, u), isomorphisms fv,u : Av,u � Lrel → A and
fw,u : Aw,u � Lrel → A with fv,u(v) = fw,u(w) = a and fv,u(u) = fw,u(u) = b. So by
Lemma 4.7 and fv,u we get M |= ξ0(v, u) and then, using fw,u and by Lemma 4.7, we
getM |= ξ0(w, u). HenceM |= ξ0(v, u) ∧ ξ0(w, u).
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We can �nally de�ne the desired Lrel-formula ξ(x, y) and prove, in Corollary 4.12, that
it has the property of telling whether elements have the same colour or not.

De�nition 4.10. Let ξ(x, y) be the Lrel-formula

x ∈ cl(y) ∨ ∃z(ξ0(x, z) ∧ ξ0(y, z)).

Observe that since ξ0(x, y) is an existential formula, that is, ξ0(x, y) has the form
∃z̄ψ(x, y, z̄) where ψ is quanti�er free, it follows, from the assumptions in the begin-
ning of this section, that ξ(x, y) is logically equivalent to an existential formula. This
will be used in Section 5.

Corollary 4.11. If M is l-coloured, v, w ∈ M − cl(∅), v /∈ cl(w) and M |= ξ(v, w),
then v and w have the same colour, i.e. M |= Pi(v) ∧ Pi(w) for some i ∈ {1, ..., l}.

Proof. If M is l-coloured, v, w ∈ M − cl(∅), v /∈ cl(w) and M |= ξ(v, w), then M |=
ξ0(v, u) ∧ ξ0(w, u) for some u ∈ M . By Lemma 4.6, v has the same colour as u and u
has the same colour as w. Hence, v and w have the same colour.

Corollary 4.12. LetM be l-coloured with the k0-extension property. If v, w ∈M−cl(∅)
then

M |= ξ(v, w) ⇐⇒ v and w have the same colour.

Proof. Suppose that v, w ∈ M − cl(∅) have the same colour. If v and w are dependent
then v ∈ cl(w) soM |= ξ(v, w). Assume that v /∈ cl(w). By Lemma 4.9, there is u ∈M
such thatM |= ξ0(v, u) ∧ ξ0(w, u), so by the de�nition of ξ we get thatM |= ξ(v, w).
The opposite direction is proved like Corollary 4.11

5 Almost sure properties and an axiomatisation of the limit
theory

In this section we show that if an Lrel-formula ξ(x, y) exists which de�nes the l-colouring
of an (strongly) l-coloured structure in the sense of (1) and (2) of Theorem 5.1 below, then
we can draw some conclusions about the asymptotic structure of (strongly) l-colurable
structures and, if ξ(x, y) is existential then we get an explicit axiomatisation of the set of
sentences with limit probability 1. Theorem 5.1 together with the results in Sections 2�4
imply the main results stated in Section 1.

We recall the notation from De�nitions 2.14, 2.17 and 2.23. So in particular, Kn

denotes the set of l-coloured structuresM such thatM�Lpre = Gn and δKn denotes the
dimension conditional measure on Kn. Cn denotes the set of l-colourable structures
M such thatM�Lpre = Gn and δCn is the probability measure on Cn derived from δKn .
Similarly, SKn denotes the set of strongly l-coloured structuresM such thatM�Lpre =
Gn and δSKn denotes the dimension conditional measure on SKn. Sn denotes the set of
strongly l-colourable structures M such that M�Lpre = Gn and δSn is the probability
measure on Sn derived from δSKn

n . For any Lrel-sentence ϕ, let

δCn (ϕ) = δCn
(
{M ∈ Cn :M |= ϕ}

)
,

and similarly for δSn(ϕ). In this section we will prove the following result.
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Theorem 5.1. Suppose that the conditions of Assumption 2.12 hold, that G = {Gn :
n ∈ N} is polynomially k-saturated for every k ∈ N and that there exists an Lrel-formula
ξ(x, y) and natural number k0 with the following properties.

(1) IfM is an l-coloured structure, a, b ∈M − clM(∅) andM |= ξ(a, b), then a and b
have the same colour (i.e. M |= Pi(a) ∧ Pi(b) for some i ∈ {1, . . . , l}).

(2) If M is an l-coloured structure that has the k0-extension property and a, b ∈ M −
clM(∅), thenM |= ξ(a, b) if and only if a and b have the same colour.

Then the following hold:

(i) The δCn -probability that the following holds forM∈ Cn approaches 1 as n→∞:

For all a, b ∈M − clM(∅),M |= ξ(a, b) if and only if every l-colouring ofM
gives a and b the same colour.

(ii) limn→∞ δ
C
n

(
{M ∈ Cn : M has a unique l-colouring}

)
= 1.

(iii) limn→∞ δ
C
n

(
{M ∈ Cn : M is not l′-colourable if l′ < l}

)
= 1.

(iv) Suppose, in addition, that ξ(x, y) is an existential formula. Then the set of Lrel-
sentences ϕ such that limn→∞ δ

C
n (ϕ) = 1 forms a countably categorical theory which

can be given an explicit axiomatization where every axiom is logically equivalent to
a sentence of the form ∀x̄∃ȳψ(x̄, ȳ) where ψ is quanti�er-free.

If the assumptions hold for strongly l-coloured structures, then (i)�(iv) hold if every
occurence of C is replaced by S.

Observe that in Sections 3 and 4 we have proved, under the assumptions of Theorems 1.3
and 1.2, respectively, that there are a number k0 and an Lrel-formula ξ(x, y) such that (1)
and (2) of Theorem 5.1 are satis�ed. Moreover, if all Lpre-formulas θn which de�ne
the pregeometry are quanti�er free, then the formula ξ(x, y) obtained in Section 3 and
in Section 4 is logically equivalent to an existential formula. Therefore Theorems 1.3
and 1.2 follow from Theorem 5.1 and the results in Sections 3 and 4. So it remains to
prove Theorem 5.1.

Proof of Theorem 5.1

The proof is exactly the same in the case of l-colourable structures as in the case
of strongly l-colourable structures. Therefore we will speak only of `l-colourable (or
coloured) structures' and use the notations Kn, Cn, δ

K
n and δCn . (If we replace the men-

tioned terminology and notation with `strongly l-colourable (or coloured) structures',
SKn, Sn, δ

SK
n and δSn , then we have a proof for strongly l-colourable structures.) The

general idea of the proof is to �rst de�ne an Lrel-theory TC such that for every ϕ ∈ TC,
limn→∞ δ

C
n (ϕ) = 1. Then it will follow from compactness that TC is consistent. The next

step is to prove that TC is complete, which will be done by proving that it is countably
categorical and applying Vaught's theorem. When these steps have been carried out it
follows easily, since (by compactness) TC |= ϕ implies ∆ |= ϕ for some �nite ∆ ⊆ TC,
that for every Lrel-sentence ϕ, either limn→∞ δ

C
n (ϕ) = 0 or limn→∞ δ

C
n (ϕ) = 1.

We assume that the conditions of Assumption 2.12 hold and that G = {Gn : n ∈ N}
is polynomially k-saturated for every k ∈ N. Let k0 be a natural number and ξ(x, y) an
Lrel-formula such that
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(1) If M is an l-coloured structure, a, b ∈ M − cl(∅) and M |= ξ(a, b), then a and b
have the same colour (i.e. M |= Pi(a) ∧ Pi(b) for some i ∈ {1, . . . , l}).

(2) If M is an l-coloured structure that has the k0-extension property and a, b ∈
M − cl(∅), thenM |= ξ(a, b) if and only if a and b have the same colour.

Without loss of generality we may assume that k0 ≥ 1.

Lemma 5.2. Suppose thatM is an l-coloured structure that has the k0-extension prop-
erty. Then the following hold:

(i) For every i ∈ {1, . . . , l} there is a ∈M with colour i (i.e. M |= Pi(a)).

(ii) The formula ξ(x, y) de�nes an equivalence relation on M − cl(∅) such that for all
a, b ∈M − cl(∅) we haveM |= ξ(a, b) if and only if a and b have the same colour.

(iii) The set M − cl(∅) is partitioned into exactly l (nonempty) equivalence classes by
the equivalence relation de�ned by ξ(x, y).

Proof. Suppose thatM is an l-coloured structure that has the k0-extension property.
(i) For every l-coloured N and 1-dimensional closed substructure A ⊆ N , all a ∈

A − cl(∅) have the same colour, say j. If we change the colour of all a ∈ A − cl(∅) to
i, say, then the resulting structures is still l-coloured. As we assume that M has the
k0-extension property (and dim(A) = 1 ≤ k0) it follows (since A�clA(∅) ∼= M�clM(∅))
thatM has a substructure that is isomorphic with A and therefore some element ofM
has colour i (where i is an arbitrary colour).

(ii) Follows directly from (2).
(iii) By part (i), for every i ∈ {1, . . . , l}, there is some a ∈ M − cl(∅) with colour

i. Hence, it follows from part (ii) that M − cl(∅) is partitioned into exactly l di�erent
equivalence classes by the relation de�ned by ξ(x, y). �

The next lemma proves part (i) of Theorem 5.1.

Lemma 5.3. With δCn -probability approaching 1 as n→∞ a structureM∈ Cn has the
following property:

For all a, b ∈ M − cl(∅) we have M |= ξ(a, b) if and only if every l-colouring
of M gives a and b the same colour. (In other words, whenever M′ ∈ Kn and
M′�Lrel =M, then for all a, b ∈M − cl(∅),M |= ξ(a, b) ⇐⇒ M′ |= Pi(a)∧Pi(b)
for some i.)

Proof. For every n ∈ N, let

XK
n =

{
M∈ Kn :M has the k0-extension property

}
, and

XC
n =

{
M∈ Cn :M = N �Lrel for some N ∈ XK

n

}
.

By the de�nition of δCn we have

δCn
(
XC
n ) = δKn

(
M∈ Kn :M�Lrel ∈ XC

n }
)

= δKn
(
{M ∈ Kn :M�Lrel = N �Lrel for some N ∈ XK

n }
)
≥ δKn

(
XK
n

)
.

By Theorem 2.22 we have limn→∞ δ
K
n

(
XK
n

)
= 1 and hence limn→∞ δ

C
n

(
XC
n

)
= 1. There-

fore it su�ces to prove that ifM∈ XC
n then
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(∗) for every M′ ∈ Kn such that M′�Lrel = M and all a, b ∈ M − cl(∅), we have
M |= ξ(a, b) if and only ifM′ |= Pi(a) ∧ Pi(b) for some i ∈ {1, . . . , l}.

So suppose thatM∈ XC
n ,M′ ∈ Kn andM′�Lrel =M. AsM∈ XC

n there is N ∈ XK
n

such that N �Lrel = M. By de�nition of XK
n , N has the k0-extension property, so by

Lemma 5.2, ξ(x, y) de�nes, in N , an equivalence relation on N − cl(∅) with exactly l
equivalence classes. Since ξ(x, y) ∈ Lrel and N �Lrel =M it follows that ξ(x, y) de�nes,
inM, an equivalence relation on M − cl(∅) with exactly l equivalence classes.

Note that if a, b ∈M−cl(∅) andM |= ξ(a, b), then, by (1), we haveM′ |= Pi(a)∧Pi(b)
for some i. It follows that the equivalence relation de�ned by ξ(x, y) onM −cl(∅) re�nes
the equivalence relation induced onM−cl(∅) by the colouring ofM′. Since both equiva-
lence relations have exactly l equivalence classes it follows that they are the same relation.
In other words, for all a, b ∈ M − cl(∅), M |= ξ(a, b) if and only ifM′ |= Pi(a) ∧ Pi(b)
for some i. Hence we have proved (∗) and the proof of the lemma is �nished. �

Observe that Lemma 5.3 immediately implies the following which proves part (ii) of
Theorem 5.1:

Corollary 5.4. δCn
(
{M ∈ Cn : M has a unique l-colouring}

)
= 1

The next corollary proves part (iii) of Theorem 5.1. It implies that there exists an l-
colourable structure which cannot be l′-coloured if l′ < l. This may seem obvious, but if
the reader tries to explicitly construct such a structure it may become apparent that it
is, on the level of generality considered here, not a trivial problem.

Corollary 5.5. If 1 ≤ l′ < l, then

lim
n→∞

δCn
(
{M ∈ Cn :M is not l′-colourable}

)
= 1.

Proof. Let 1 ≤ l′ < l. Note that every l′-colouring of a structure (using only the colours
1, . . . , l′) is also an l-colouring. Suppose thatM∈ Cn has an l′-colouring, that is, there
is M′ ∈ Kn such that M′�Lrel = M and (Pi)

M′
= ∅ for all i = (l′ + 1), . . . , l. If n is

su�ciently large then M also has an l-colouring in which all colours 1, . . . , l are used,
that is, there isM′′ ∈ Kn such thatM′′�Lrel =M and (Pi)

M′′ 6= ∅ for all i = 1, . . . , l.
Clearly the two colourings ofM are not permutations of each other, that is, there is no
permutation π of {1, . . . , l} such that for every i ∈ {1, . . . , l} and every a ∈M − cl(∅) we
haveM′ |= Pi(a) if and only ifM′′ |= Pπ(i)(a). Hence, for large enough n, ifM ∈ Cn

has a unique l-colouring and l′ < l, thenM is not l′-colourable. Therefore Corollary 5.5
follows from Corollary 5.4.

Now it remains to prove part (iv) of Theorem 5.1. So for the rest of this section we add the
assumption that ξ(x, y) is an existential formula. We will give an explicit axiomatisation
of the set of Lrel-sentences with asymptotic probability 1 and show that the given axioms
form a countably categorical theory. The axiomatisation of the limit theory{

ϕ ∈ Lrel : lim
n→∞

δCn (ϕ) = 1
}

will be denoted TC and will consist of four disjoint parts, denoted Tξ, Tpre, Tiso and Text.
Note that since we know, by Corollary 2.24, that Cn satis�es a zero-one law when the
measure δCn is used, it follows that the limit theory is consistent (by compactness) and
complete. We will show that whenever ϕ ∈ TC, then limn→∞ δ

C
n (ϕ) = 1 and that TC is
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countably categorical, hence complete. It will then follow that, for every Lrel-sentence
ϕ, TC |= ϕ if and only if limn→∞ δ

C
n (ϕ) = 1. The part of the axiomatisation TC which

we denote Tξ consists of only one sentence ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are de�ned below.
Recall that, by Assumption 2.12, in every l-coloured, or l-colourable, structure, the

property �x belongs to the closure of ∅� is de�ned by the formula θ0(x) and the property
�y belongs to the closure of {x}� is de�ned by the formula θ1(x, y).

De�nition 5.6. (i) Let U be an l-colourable structure which is not l′-colourable if l′ < l,
and let p = |U |. Such U exists by Corollary 5.5
(ii) Let ϕ1 be an Lrel-sentence which expresses that ξ(x, y) de�nes an equivalence relation
on the set of elements not satisfying θ0(x).
(iii) Let ϕ2 be the following Lrel-sentence:

∃x1, . . . , xp

(
χU (x1, . . . , xp) ∧

∨
I⊆{1,...,p}

|I|=l

[∧
i∈I
¬θ0(xi) ∧

∧
i,j∈I
i6=j

¬ξ(xi, xj) ∧ ∀y
(
θ0(y) ∨

∨
i∈I

ξ(y, xi)

)])
,

where χU (x1, . . . , xp) is the characteristic formula of U for some enumeration of U .

Lemma 5.7. limn→∞ δ
C
n (ϕ1 ∧ ϕ2) = 1.

Proof. Let U+ be an l-coloured structure such that U+�Lrel = U . By Assumption 2.12 (6)
and the de�nition of l-coloured structures there is a unique, up to isomorphism, l-coloured
structure of dimension 0. So if V = clU+(∅) then every l-coloured structure has a sub-
structure which is isomorphic to V. It follows that if M is an l-coloured structure
which has the U+/V-extension property, then M has a substructure which is isomor-
phic to U+ and therefore M�Lrel has a substructure which is isomorphic to U . Let
k = max(k0,dim(U+)). Note that, by (1), (2) and Lemma 5.2, every l-coloured struc-
tureM with the k-extension property has the following properties:

• M has a substructure which is isomorphic with U+.

• ξ(x, y) de�nes an equivalence relation onM−cl(∅) such that, for all a, b ∈M−cl(∅),
M |= ξ(a, b) if and only if a and b have the same colour.

We will now prove that ifM is l-coloured and has the k-extension property, thenM |=
ϕ1 ∧ ϕ2.

So suppose that M is l-coloured and has the k-extension property. Then, as men-
tioned above,M has a substructure which is isomorphic to U+ and ξ de�nes an equiva-
lence relation onM−cl(∅), soM |= ϕ1. It remains to show thatM |= ϕ2. For notational
simplicity we assume U+ ⊆M. Let U = {a1, . . . , ap} be an enumeration of U such that
M |= χU (a1, . . . , ap). As at least l di�erent colours are needed to colour U , there are
ai1 , . . . , ail ∈ U − cl(∅) such that if j 6= j′ then aij has a di�erent colour than aij′ , so
M |= ¬ξ(aij , aij′ ). Let I = {i1, . . . , il}. Since there are only l colours and all ai1 , . . . , ail
have di�erent colours, it follows that every b ∈M − cl(∅) must have the same colour as
some aij which impliesM |= ξ(b, aij ). HenceM |= ϕ2.

We have proved that ifM is l-coloured and has the k-extension property, thenM |=
ϕ1 ∧ ϕ2. Consequently,

δKn
(
{M ∈ Kn :M has the k-extension property}

)
≤ δKn (ϕ1 ∧ ϕ2),
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so by Theorem 2.22, limn→∞ δ
K
n (ϕ1 ∧ ϕ2) = 1. Since ϕ1 ∧ ϕ2 is an Lrel-sentence we

have M |= ϕ1 ∧ ϕ2 if and only if M�Lrel |= ϕ1 ∧ ϕ2, for every l-coloured structure
M. By the de�nition of δCn we get δKn (ϕ1 ∧ ϕ2) = δCn (ϕ1 ∧ ϕ2) for every n and hence
limn→∞ δ

C
n (ϕ1 ∧ ϕ2) = 1.

Recall De�nition 2.25 about l-colourings viewed as functions. The next step is to de�ne,
given an l-colourable structure A and l-colouring γ : A − cl(∅) → {1, . . . , l}, a formula
which describes which elements have the same colour (with respect to γ).

De�nition 5.8. Suppose that A is an l-colourable Lrel-structure with universe A =
{a1, . . . , aα} and that γ : A−cl(∅)→ {1, . . . , l} is an l-colouring ofA. Then ζγ(x1, . . . , xα)
denotes the formula∧

1≤i≤α
ai∈cl(∅)

θ0(xi) ∧
∧

1≤i,j≤α
ai,aj /∈cl(∅)
γ(ai)=γ(aj)

ξ(xi, xj) ∧
∧

1≤i,j≤α
ai,aj /∈cl(∅)
γ(ai)6=γ(aj)

¬ξ(xi, xj).

Remark 5.9. Notice that if γ : A − cl(∅) and γ′ : A − cl(∅) are such that for all
a, b ∈ A − cl(∅), γ(a) = γ(b) ⇐⇒ γ′(a) = γ′(b), then ζγ = ζγ′ . This is because ξ only
discerns which elements have the same colour and not which colour they have. We will
use this in Lemma 5.11.

Recall De�nition 2.26 of the characteristic formula of an l-coloured or l-colourable struc-
ture, with respect to an ordering of its universe.

De�nition 5.10. (i) For every n ∈ N, let ηn(x1, . . . , xn) denote the Lpre-formula

∀y
(
θn(x1, . . . , xn, y) →

n∨
i=1

y = xi

)
,

and note that, in any l-coloured, or l-colourable, structure, η(x1, . . . , xn) expresses that
{x1, . . . , xn} is a closed set.
(ii) Suppose that B is an l-colourable Lrel-structure and that A ( B is a closed substruc-
ture of B. Let A = {a1, . . . , aα} and B = {a1, . . . , aβ}, where β > α. Moreover, suppose
that γ′ is an l-colouring of B which extends an l-colouring γ of A, so γ′�A = γ. We
call the following sentence an instance of the l-colour compatible B/A-extension
axiom:

∀x1, . . . , xα∃xα+1, . . . , xβ

([
χA(x1, . . . , xα) ∧ ζγ(x1, . . . , xα) ∧ ηα(x1, . . . , xα)

]
−→

[
χB(x1, . . . , xβ) ∧ ζγ′(x1, . . . , xβ) ∧ ηβ(x1, . . . , xβ)

])
.

There are only �nitely many l-colourings of B and therefore there are only �nitely many
instances of the l-colour compatible B/A-extension axiom. We de�ne the l-colour com-

patible B/A-extension axiom to be the conjunction of all these instances. A sentence
ϕ is called an l-colour compatible extension axiom if it is the l-colour compatible
B/A-extension axiom for some closed substructure A ⊂ B where B is l-colourable.

Observe that every l-colour compatible extension axiom is an Lrel-sentence (so none
of the symbols P1, . . . , Pl occurs in it). The next lemma shows that whenever A ⊂ B
are l-colourable structures and A is closed in B, then there is k such that if M is an
l-coloured structure and has the k-extension property, thenM satis�es the l-colour com-
patible B/A-extension axiom. As a corollary we will then get that, with δCn -probability
approaching 1 as n tends to in�nity, a randomM∈ Cn satis�es the l-colour compatible
B/A-extension axiom.
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Lemma 5.11. Assume that B is an l-colourable Lrel-structure and A ( B is a closed
substructure of B. Let k = max(k0, dim(B)). IfM is an l-coloured structure and has the
k-extension property, thenM satis�es the l-colour compatible B/A-extension axiom.

Proof. Let B be l-colourable Lrel-structures and let A is a closed substructure of B.
Assume that A = {a1, . . . , aα} and B = {a1, . . . , aβ} where β > α and let k be as in the
lemma. It is enough to prove that ifM is an l-coloured structure with the k-extension
property, thenM satis�es each instance of the l-colour compatible B/A-extension axiom.
So assume thatM is an l-coloured structure with the k-extension property and choose
an arbitrary instance of the l-colour compatible B/A-extension axiom, which uses a
colouring γ′ : B − cl(∅) → {1, . . . , l} and its restriction to a A, γ = γ′�(A − cl(∅)).
Assume that

M |= χA(a′1, . . . , a
′
α) ∧ ζγ(a′1, . . . , a

′
α) ∧ ηα(a′1, . . . , a

′
α)

for some a′1, . . . , a
′
α ∈ M . Let A′ = M � {a′1, . . . , a′α}. Then by the de�nition of χA

there is an isomorphism f : A′ � Lrel → A such that f(a′i) = ai for i = 1, . . . , α. For all
a′i ∈ {a′1, . . . , a′α} − cl(∅) and j ∈ {1, . . . , l} let

γ0(a
′
i) = j ⇐⇒ M |= Pj(a

′
i),

so γ0 is an l-colouring of A′�Lrel. By the choice of k and since M has the k-extension
property andM |= ζγ(a′1, . . . , a

′
α) it follows (using (2)) that, for all a′i, a

′
j ∈ {a′1, . . . , a′α}−

cl(∅),
γ0(a

′
i) = γ0(a

′
j) ⇐⇒ M |= ξ(a′i, a

′
j) ⇐⇒ γ(a′i) = γ(a′j).

From this it follows that (by permuting the colours assigned by γ′ if necessary) we
can �nd a l-colouring γ′1 of B such that if γ1 is the restriction of γ′1 to A, then for all
ai ∈ {a1, . . . , aα}− cl(∅) we have γ1(ai) = γ1(f(a′i)) = γ0(a

′
i) and for all a, b ∈ B− cl(∅),

γ′1(a) = γ′1(b) ⇐⇒ γ′(a) = γ′(b).

Now expand B into an L-structure B+ by adding colours to it according to γ′1, that is,
if b ∈ B − cl(∅) and γ′1(b) = i then let B+ |= Pi(b). By the de�nition of B+ it follows
that f−1 is an L-isomorphism from B+ � A onto M � {a′1, . . . , a′α}. Since M has the
k-extension property, we may extend f−1 into an embedding g : B+ → M, where the
image of g is a closed subset of M . For every i ∈ {α1, . . . , β}, let a′i = g(ai). Then

M |= χB(a′1, . . . , a
′
β) ∧ ηβ(a′1, . . . , a

′
β).

Moreover, as g is an L-embedding we have, for every j ∈ {1, . . . , l} and every a ∈
B − cl(∅), M |= Pj(g(a)) ⇐⇒ B+ |= Pj(a). By the choice of γ′1 it follows that, for all
i, j ∈ {1, . . . , β} such that a′i, a

′
j /∈ cl(∅), γ′1(a′i) = γ′1(a

′
j) ⇐⇒ γ′(ai) = γ′(aj). From the

de�nition of ζγ′ and the choice of k it follows that M |= ζγ′(a
′
1, . . . , a

′
β). The chosen

instance of the l-colour compatible B/A-extension axiom is hence satis�ed by M, and
since it was an arbitrary instance,M has to satisfy all of the instances.

Now we can prove that every l-colour compatible extension axiom will almost surely be
satis�ed in an l-colourable structure.

Corollary 5.12. For every l-colour compatible extension axiom ϕ, limn→∞ δ
C
n (ϕ) = 1.
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Proof. Let ϕ be an l-colour compatible extension axiom, so for some A ⊆ B it is the
l-colour compatible B/A-extension axiom. Let k = max(k0,dim(B)). By Lemma 5.11,
for every n, ifM∈ Kn has the k-extension property thenM |= ϕ. Hence, for every n,

δKn
(
{M ∈ Kn :M has the k-extension property}

)
≤ δKn (ϕ).

By Corollary 2.22 we get limn→∞ δ
K
n (ϕ) = 1, so it su�ces to show that δCn (ϕ) = δKn (ϕ)

for all n. But, as in the proof of Lemma 5.7, this follows from the de�nition of δCn and
the fact that ϕ is an Lrel-sentence.

The part Text of the axiomatisation TC consists, by de�nition, of all l-colour compatible
extension axioms. The axiomatisation TC also needs to express that the formulas θn,
n ∈ N, from Assumption 2.12 de�ne a pregeometry in every model of TC. This is the
purpose of the part of TC which we denote Tpre. More speci�cally, by using the formulas
from Assumption 2.12 (2), we can express, with an in�nite set Tpre, of Lpre-sentences,
properties (1)�(3) of pregeometries in De�nition 2.1 for �nite sets. In particular, since
the closure of a set A should not depend on how we order A, Tpre contains, for each
n ≥ 1 and each permutation π of {1, . . . , n}, the sentence

∀x1, . . . , xn+1

(
θn(x1, . . . , xn, xn+1

)
←→ θn(xπ(1), . . . , xπ(n), xn+1)

)
.

Lemma 5.13. LetM be an Lrel-structure such thatM |= Tpre. De�ne a closure operator
clM as follows:

(a) For every n ∈ N and all a1, . . . , an+1 ∈ M , an+1 ∈ clM(a1, . . . , an) if and only if
M |= θn(a1, . . . , an+1).

(b) For every A ⊆ M and every a ∈ M , a ∈ clM(A) if and only if there is a �nite
A′ ⊆ A such that a ∈ clM(A′).

Then (M, clM) is a pregeometry.

Proof. Suppose that M |= Tpre and let clM be de�ned by (a) and (b). From (b) it
follows that clM has the �niteness property (4) of De�nition 2.1 of a pregeometry. From
the de�nition of Tpre and (a) it follows that clM has properties (1)�(3) of De�nition 2.1
of a pregeometry. Hence, (M, clM) is a pregeometry. �

The fourth part of the aximatisation TC, denoted Tiso, will express that �every closed
�nite substructure is l-colourable�. For each n ∈ N letMn,1, . . . ,Mn,mn be an enumera-
tion of all (�nitely many) members ofCn, and recall that χMn,i denotes the characteristic
formula ofMn,i (see De�nition 2.26). Recall that for every n, all structures in Cn have
the same universe (in fact their reduct to Lpre is the same). Let s(n) be the cardinality
of (the universe of) a structure in Cn. For every n ∈ N, there is an Lrel-sentence ψn
which expresses that every closed substructure of cardinality s(n) is isomorphic to one
ofMn,1, . . . ,Mn,mn . More precisely, we let ψn be the Lrel-sentence

∀x1, . . . , xs(n)

([∧
i 6=j

xi 6= xj ∧ ∀y
(
θs(n)(x1, . . . , xs(n), y) →

s(n)∨
i=1

y = xi

)]

−→
s(n)∨
i=1

∨
π

χMn,i(xπ(1), . . . , xπ(s(n)))

)
,
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where the disjunction `
∨
π' ranges over all permutations π of {1, . . . , s(n)}. Let Tiso =

{ψn : n ∈ N}. Recall that Tξ = {ϕ1∧ϕ2}, where ϕ1 and ϕ2 were de�ned in De�nition 5.6,
that Text is the set of all l-colour compatible extension axioms and that Tpre was de�ned
in the paragraph before Lemma 5.13. Now we let

TC = Tpre ∪ Tξ ∪ Text ∪ Tiso.

Notice that TC contains only Lrel-sentences.

Lemma 5.14. TC is consistent and countably categorical, hence complete.

Proof. From the de�nitions of Tpre and Tiso it follows that every l-colourable structure
is a model of Tpre ∪Tiso. By compactness, Corollary 5.12 and Lemma 5.7, it follows that
TC is consistent.

We now prove that TC is countably categorical. Assume that M and M′ are Lrel-
structures such that M |= TC, M′ |= TC and |M | = |M ′| = ℵ0. Since M,M′ |= Tpre
it follows from Lemma 5.13 that if clM is de�ned by saying that a ∈ clM(A) if and
only if there are m and b1, . . . , bm ∈ A such thatM |= θm(b1, . . . , bm, a), then (M, clM)
is a pregeometry; and similarly for M′. By a back and forth argument we will build
partial isomorphisms between M and M′ such that each new one extends the former
ones. The union of these partial isomorphisms shows thatM ∼=M′. The main part of
the argument is to prove the following:

Claim. Let A ⊆M, A′ ⊆M′ be �nite closed substructures (so clM(∅) ⊆ A and clM′(∅) ⊆
A′) and suppose that there is an isomorphism f : A → A′ such that for all a, b ∈
A − clM(∅) we have M |= ξ(a, b) ⇐⇒ M′ |= ξ(f(a), f(b)). Then for every c ∈ M − A
(d ∈ M ′ − A′) there exist a closed subtructure B′ ⊆ M′ (B ⊆ M) and an isomorphism
g : M�clM(A ∪ {c}) → B′ (g : B → M′�clM′(A ∪ {d}) such that A′ ⊆ B′ (A ⊆ B),
g extends f and for all a, b ∈ clM(A ∪ {c}) − clM(∅) (a, b ∈ B − clM(∅)) we have
M |= ξ(a, b)⇐⇒M′ |= ξ(g(a), g(b))

Proof of the claim. Let A ⊆M, A′ ⊆M′ be �nite closed substructures and f : A → A′
an isomorphism such that for all a, b ∈ A − clM(∅) we have M |= ξ(a, b) ⇐⇒ M′ |=
ξ(f(a), f(b)). Let A = {a1, . . . , aα} and A′ = {f(a1), . . . , f(aα)}. Suppose that c ∈
M − A and let B = clM(A ∪ {c}). (The case when d ∈ M ′ − A′ is proved in the same
way.) Enumerate B as B = {b1, . . . , bβ} so that bi = ai for 1 ≤ i ≤ α. Note that we
must have β > α. Let B =M�B.

SinceM |= TC we haveM |= ϕ1 ∧ ϕ2, which implies that

(i) ξ(x, y) de�nes an equivalence relation on M − clM(∅) which we denote ∼ξ,

(ii) there is a substructure of M which is isomorphic to U (from De�nition 5.6), and
for notational simplicity we denote it by U , so U ⊆ M, and there are u1, . . . , ul ∈
U − clM(∅) such that if 1 ≤ i < j ≤ l then ui 6∼ξ uj , and

(iii) for all a ∈M − clM(∅) there is j ∈ {1, . . . , l} such that a ∼ξ uj .

It follows that the restriction of ∼ξ to (U ∪B)−clM(∅) has exactly l equivalence classes.
By assumption, ξ(x, y) is an existential formula. As U ∪B is �nite, it follows that there
is a �nite closed substructure N ⊆M such that U ∪B ⊆ N and for all a, b ∈ U ∪B we
haveM |= ξ(a, b) if and only if N |= ξ(a, b). Consequently:

for all a, b ∈ (U ∪B)− clM(∅), a ∼ξ b ⇐⇒ N |= ξ(a, b).
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Since M |= Tiso we know that N is an l-colourable structure. Let γ : N − clN (∅) →
{1, . . . , l} be an l-colouring of B. De�ne an equivalence relation ∼γ on N − clN (∅) by

a ∼γ b ⇐⇒ γ(a) = γ(b) for all a, b ∈ N − clN (∅).

Since U cannot (by its de�nition) be l′-coloured if l′ < l, it follows that ∼γ has exactly
l equivalence classes. In fact, the restriction of ∼γ to (U ∪ B) − clN (∅) has exactly l
equivalence classes.

Let a, b ∈ (U ∪ B) − clM(∅) and suppose that a ∼ξ b. Then M |= ξ(a, b) and by
the choice of N we also get N |= ξ(a, b). By (1) we must have γ(a) = γ(b), so a ∼γ b.
Hence, the restriction of ∼ξ to (U ∪B)− clM(∅) is a re�nement of the restriction of ∼γ
to (U ∪B)− clM(∅). As both equivalence relations restricted to (U ∪B)− clM(∅) have
exactly l-equivalence classes, it follows that the must coincide. In other words, for all
a, b ∈ (U ∪B)− clM(∅) we have a ∼ξ b if and only if a ∼γ b, so

(iv) for all a, b ∈ B − clM(∅), γ(a) = γ(b) ⇐⇒ M |= ξ(a, b).

Let γB = γ�B and γA = γ�A. Since χA(x1, . . . , xα) is the characteristic formula of
A we have M |= χA(a1, . . . , aα). From (iv) it follows that M |= ζγA(a1, . . . , aα) (see
De�nition 5.8). The assumptions of the claim now imply that

M′ |= χA(f(a1), . . . , f(aα)) ∧ ζγA(f(a1), . . . , f(aα)) ∧ ηα(f(a1), . . . , f(aα)).

SinceM′ |= Text it follows, in particular, thatM′ satis�es the following instance of the
l-colour compatible B/A-extension axiom:

∀x1, . . . , xα∃y1, . . . , yβ
([
χA(x1, . . . , xα) ∧ ζγA(x1, . . . , xα) ∧ ηα(x1, . . . , xα)

]
−→

[
χB(x1, . . . , xβ) ∧ ζγB (x1, . . . , xβ) ∧ ηβ(x1, . . . , xβ)

])
.

It follows that there are closed substructure B′ ⊆ M′ such that A′ ⊆ B′ and an iso-
morphism g : B → B′ which extends f with the property that for all a, b ∈ B − cl(∅) =
clM(A ∪ {c})− clM(∅),M |= ξ(a, b) if and only ifM′ |= ξ(g(a), g(b)).

Continuation of the proof of the lemma. By the claim, it now su�ces to prove that the
assumptions of the claim hold for at least one pair, A,A′, such that A ⊆M and A′ ⊆M′
are closed substructures of the respective superstructure. We claim that this holds for
A =M�clM(∅) andA′ =M′�clM′(∅). Indeed, by the de�nition of l-colourable structure,
Assumption 2.12 andM,M′ |= Tiso, it follows that with A and A′ de�ned in this way we
have A ∼= A′. Since A−clM(∅) = ∅ the preservation of ξ for a, b ∈ A−clM(∅) is trivially
satis�ed. This concludes the proof of Lemma 5.14, and hence also of Theorem 5.1.

Errata for [8]. Here we mention some missed assumptions that should be added to
some results of [8].
(i) Theorems 7.31, 7.32 and 7.34 in [8] needs part (5) from Assumption 2.12 in this
article. (This assumption could most conveniently be added to Assumption 7.10 in [8].)
This assumption is implicitly used in the proof of Lemma 8.5 in [8] and guaratees that
if A is a closed substructure of a represented structure (see De�nition 7.4 [8]) M and
B ⊆ A, then the closure of B is the same whether computed in A or inM.
(ii) Theorem 7.32 in [8] needs the following two additional assumptions (implicitly made
in the proof of that theorem):
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(a) There is, up to isomorphism, a unique represented structure (De�nition 7.4 in [8])
with dimension 0. (Note that by the de�nitions in this article, there is a unique, up
to isomorphism, (strongly) l-coloured structure with dimension 0.) This assump-
tion is needed in the proof of Lemma 8.12 in [8]. Without it, one only gets a limit
law (convergence, but not necessarily to 0 or 1), since one gets a distinct �limit
theory� for every represented isomorphism type of dimension 0.

(b) For every n ∈ N, there is a �characteristic� Lpre-formula χGn(x1, . . . , xmn) of Gn,
where mn = |Gn|, such that if A is an Lpre-structure in which the formulas θn
de�ne a pregeometry and A |= χGn(a1, . . . , as) for some enumeration a1, . . . , as of
A, then A ∼= Gn. This is (7) of Assumption 2.12 in this article (except for omitting
here the requirement that χGn is quanti�er-free), and it holds for the examples of
pregeometries (and corresponding languages) considered in [8] and in this article.
But it is not a consequence of the other assumptions made (in Assumption 7.3
and Assumption 7.10 in [8]), so it needs to be added.

These remarks a�ect only Sections 7�8 in [8], because the other sections do not consider
(nontrivial) pregemetries.
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