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Abstract. A systematic study is made, for an arbitrary �nite relational language
with at least one symbol of arity at least 2, of classes of nonrigid �nite structures.
The well known results that almost all �nite structures are rigid and that the class
of �nite structures has a zero-one law are, in the present context, the �rst layer in a
hierarchy of classes of �nite structures with increasingly more complex automorphism
groups. Such a hierarchy can be de�ned in more than one way. For example, the kth
level of the hierarchy can consist of all structures having at least k elements which are
moved by some automorphism. Or we can consider, for any �nite group G, all �nite
structuresM such that G is a subgroup of the group of autmorphisms ofM; in this
case the �hierarchy� is a partial order. In both cases, as well as variants of them, each
�level� satis�es a logical limit law, but not a zero-one law (unless k = 0 or G is trivial).
Moreover, the number of (labelled or unlabelled) n-element structures in one place of
the hierarchy divided by the number of n-element structures in another place always
converges to a rational number or to ∞ as n → ∞. All instances of the respective
result are proved by an essentially uniform argument.

Keywords: �nite model theory, limit law, zero-one law, random structure, automor-
phism group.
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1. Introduction

In a sequence of articles [7, 9, 10, 12, 18] it has been shown that for any �nite relational
vocabulary (also called signature), the proportion of labelled (as well as unlabelled) n-
element structures which are rigid, i.e. has no nontrivial automorphism, approaches 1
as n approaches in�nity. By the work of Glebskii et. al. [11] and Fagin [8], for any
sentence ϕ, the proportion of n-element structures (labelled or unlabelled) in which ϕ is
true approaches either 0 or 1 as n tends to in�nity. In other words, the class of �nite
structures satisfy a (labelled and unlabelled) zero-one law.

However, the asymptotic behaviour of nonrigid n-element structures appears to have
been neglected, besides work of Cameron [2, 3] in the case of unlabelled undirected
graphs. Possibly because the class of nonrigid �nite structures make up to only a �mea-
sure zero� subclass of the class of all �nite structures. Nevertheless, for any integer
k, the number of (nonisomorphic) n-element structures with at least k elements which
are moved by some automorphism grows exponentially with n; and the same holds for
the number of n-element structures whose automorphism group contains some speci�ed
group. (This follows from the proofs in Section 2.) But more interestingly, considera-
tion of �nite structures whose automorphism group has a certain (minimum) complexity
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gives rise to an in�nitude of natural classes of �nite (nonrigid) structures with logical
limit laws (Theorem 1.2). Each such class has the property that there are more than
one but only �nitely many �convergence points�, all of which are rational; that is, there
is a �nite set A of rational numbers such that |A| > 1 and, for every sentence ϕ, the
proportion of n-element structures in the class which satisfy ϕ converges to a number in
A. Moreover, in a sense that can be made precise, there are only �nitely many (but more
than one) �limit theories� of any such class, all of which are ℵ0-categorical and simple
with SU-rank one.1 It appears like the classes of nonrigid structures considered here are
the �rst nontrivial and �naturally occuring� classes of �nite structures with such limit
law behaviour.2

Furthermore, for any two classes C and K of �nite structures that are associated
with some (minimum) complexity of the automorphism group, the number of (labelled
or unlabelled) n-element structures which belong to C divided by the number of n-
element structures which belong to K converges to a rational number or to∞ as n→∞
(Theorem 1.1 and Remark 5.17).

In general, this study gives fairly complete answers, for any �nite relational vocabulary
with at least one relation symbol with arity at least 2 and for labelled as well as unlabelled
structures, to questions initiated by Cameron long ago (in particular Theorems 1 and 2
in [2]), but also to other natural variations of his questions and to the problem of whether
logical limit laws hold for classes of structures de�ned in terms of the complexity of their
automorphism group.

A more detailed study, for any m ∈ N, of the typical autmorphism groups of �nite
structures such that at least m elements are moved by some automorphism is carried
out in [16]. Roughly speaking, [16] shows that almost all �nite structures with some
minimum complexity of their automorphism group have as simple automorphism group
as the minimum complexity allows.

Before stating the main results we introduce some basic terminology, notation and as-
sumptions that will be used throughout. We �x a �nite vocabulary, also called signature,
{R1, . . . , Rρ} of (only) relation symbols where Ri has arity ri. Let r = max{r1, . . . , rρ}
and we call r the maximal arity. We always assume that r ≥ 2, although this assumption
is sometimes repeated. By a structure, we mean a structure for the above vocabulary,
that is, a tupleM = (M,RM1 , . . . , RMρ ) whereM is a set, called the universe ofM, and,

for each i = 1, . . . , ρ, RMi ⊆ M ri . The relation RMi is called the interpretation of Ri in
M. For every positive integer n let [n] = {1, . . . , n} and let Sn be the set of all structures
with universe [n] and let S =

⋃∞
n=1 Sn. For every structureM, let Aut(M) denote the

group of automorphisms ofM. (For basic model theory, see [17, 19] for example.)
For groups G and H, G ∼= H means that they are isomorphic (as abstract groups)

and G ≤ H means that G is isomorphic to a subgroup of H. For structures M and
N , M ∼= N means that they are isomorphic. Let N, N+, Q and R denote the sets of
nonnegative integers, positive integers, rational and real numbers, respectively.

1For any �nite relational language with at least one symbol of arity at least 2 and integer l ≥ 2, the
class of all �nite structures and the class of all (strongly) l-colourable �nite structures [14, 15] have a
zero-one law with a �limit/almost sure� theory which is ℵ0-categorical and simple with SU-rank 1. The
class of all �nite partial orders has a zero-one law [4] with a limit theory which is probably ℵ0-categorical
(because the �height� of a �nite partial order is almost always 3 [13]), although we have not checked this.

2A trivial example can constructed by adding a new unary relation symbol R to a vocabulary with
some relation symbol of arity at least 2 and letting the interpretation of R be a singleton set in half of
all n-element structures in the initial vocabulary and the empty set in the other half.
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Theorem 1.1. For any two �nite groups G and H, each one of the following limits
exists in Q ∪ {∞}:

lim
n→∞

∣∣{M ∈ Sn : H ≤ Aut(M)}
∣∣∣∣{M ∈ Sn : G ≤ Aut(M)}
∣∣ , lim

n→∞

∣∣{M ∈ Sn : H ∼= Aut(M)}
∣∣∣∣{M ∈ Sn : G ∼= Aut(M)}
∣∣ and

lim
n→∞

∣∣{M ∈ Sn : G ∼= Aut(M)}
∣∣∣∣{M ∈ Sn : G ≤ Aut(M)}
∣∣ .

Before stating the remaining main results, we introduce some more notation which will
be used throughout the article. For a set A, |A| denotes its cardinality and Sym(A)
denotes the group of all permutations of A. If f1, . . . , fk ∈ Sym(A) then 〈f1, . . . , fk〉
denotes the subgroup of Sym(A) generated by f1, . . . , fk,

Spt(f1, . . . , fk) = {a ∈ A : g(a) 6= a for some g ∈ 〈f1, . . . , fk〉}

and spt(f1, . . . , fk) = |Spt(f1, . . . , fk)|. We call Spt(f1, . . . , fk) the support of the se-
quence f1, . . . , fk. For a �nite structureM we let

spt(M) = max{spt(f) : f ∈ Aut(M)},
Spt∗(M) = {a ∈M : a ∈ Spt(f) for some f ∈ Aut(M)}, and

spt∗(M) =
∣∣Spt∗(M)

∣∣.
The set Spt∗(M) is called the support of M. Note that we always have spt(M) ≤
spt∗(M). Throughout, we use the following notation for p, p′ ∈ N:

Sn(spt = p) = {M ∈ Sn : spt(M) = p},
Sn(spt ≥ p) = {M ∈ Sn : spt(M) ≥ p},
Sn(spt ≤ p) = {M ∈ Sn : spt(M) ≤ p},
Sn(spt∗ = p) = {M ∈ Sn : spt∗(M) = p},
Sn(spt∗ ≥ p) = {M ∈ Sn : spt∗(M) ≥ p},
Sn(spt∗ ≤ p) = {M ∈ Sn : spt∗(M) ≤ p},

Sn(p ≤ spt∗ ≤ p′) = {M ∈ Sn : p ≤ spt∗(M) ≤ p′}.

Whenever S′n ⊆ Sn is de�ned for n ∈ N+ we let S′ =
⋃∞
n=1 S

′
n. The expression almost

allM∈ S′ has property P means that

lim
n→∞

∣∣{M ∈ S′n : M has P}
∣∣∣∣S′n∣∣ = 1.

Suppose that S′n ⊆ Sn for all n ∈ N+. We say that S′ =
⋃
n∈N+ S′n has a limit law if for

every �rst-order sentence ϕ over the vocabulary, the proportion ofM∈ S′n which satisfy
ϕ converges as n→∞. If the limit converges to 0 or 1 for every �rst-order sentence ϕ,
then we say that S′ has a zero-one law.

Theorem 1.2. (i) For every �nite group G, {M ∈ S : G ∼= Aut(M)} and
{M ∈ S : G ≤ Aut(M)} have a limit law.
(ii) For every integer m ≥ 2, S(spt∗ = m), S(spt ≥ m) and S(spt∗ ≥ m) have a limit
law.
(iii) In each case of the previous parts there is a �nite set A ⊆ Q such that, for every
�rst-order sentence ϕ, the proportion of structures of the kind considered converges to
some a ∈ A as n→∞.

However, in each case of Theorem 1.2 we do not we have a zero-one law, if G is nontrivial,
as explained in Remark 6.9.
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Theorem 1.3. Theorems 1.1 and 1.2. also hold in the unlabelled case, that is, if we
only count structures up to isomorphism.

Remark 1.4. (Asymptotic estimates) The results, in particular Propositions 4.4
and 5.9 and Lemmas 4.2, 4.3, 5.3 and 5.8 give, in principle, a method of �nding, for any
�nite group G, an asymptotic formula of the number ofM∈ Sn such that G ≤ Aut(M).
The same is true if `≤' is replaced by `∼=' or if we instead consider, for some arbitrary
�xed integer m ≥ 2,

∣∣Sn(spt ≥ m)
∣∣, ∣∣Sn(spt∗ ≥ m)

∣∣ or ∣∣Sn(spt∗ = m)
∣∣ as n→∞.

Remark 1.5. (Irre�exive and symmetric relations) (i) Suppose that every relation
symbol is always interpreted as an irre�exive relation, that is, ifM |= Ri(a1, . . . , ari) then
aj 6= aj′ whenever j 6= j′. Then Theorems 1.1 � 1.3 remain true, but some modi�cations
have to be made in some proofs and in some technical results of the article.

(ii) Suppose that every relation symbol is always interpreted as an irre�exive and
symmetric relation, where the later means that if M |= Ri(a1, . . . , ari) then M |=
Ri(aπ(1), . . . , aπ(ri)) for every permutation π of [ri]. Again Theorems 1.1 � 1.3 remain
true, with minor modi�cations in some proofs and technical results.

Here follows an outline of the article. We deal with labelled structures until the last
section, where we show why the main results also hold for unlabelled structures. In
Section 2 we show that for every m ∈ N there is a number t, depending only on m
and the vocabulary, such that almost all M ∈ S(spt ≥ m) have no automorphism the
support of which contains more than t elements. In Section 3 we show, by a Ramsey type
argument, that if M is �nite and for every f ∈ Aut(M), spt(f) ≤ t, then there are at
most tt+2 elements a ∈M such that g(a) 6= a for some g ∈ Aut(M). More brie�y, with
the notation after Theorem 1.1: if spt(M) ≤ t then spt∗(M) ≤ tt+2. A consequence of
these results is that for everym ∈ N there is T ∈ N such that almost allM∈ S(spt ≥ m)
have the property that at most T elements are moved by some automorphism. (In the
case of unlabelled undirected graphs this was proved, in a di�erent way, by Cameron
[2].)

Section 4 considers asymptotic estimates that are needed later. In this section, a
structure A ∈ S and subgroup H of Aut(A) is given and an asymptotic estimate is
proved for the number ofM ∈ Sn such that spt∗(M) = |A| and there is an embedding
f : A →M such that Hf = {fσf−1 : σ ∈ H} is a subgroup of the group {g�Spt∗(M) :
g ∈ Aut(M)}. The set of such structures is denoted Sn(A, H). Sets of this sort are the
�building blocks� of other sets of structures considered here, in the sense that almost all
structures of any set of structures in the main theorems belong to a �nite union of sets
of the form

⋃∞
n=1 Sn(A, H). In Section 5 we use the results from previous sections and

in particular the asymptotic estimate of Sn(A, H) to prove Theorem 1.1, in the form of
Propositions 5.10, 5.15 and 5.16.

Theorem 1.2, about logical limit laws, is proved in Section 6. Again, the set Sn(A, H)
plays a central role. In fact, the main task is to prove that S(A, H) has a zero-one law.
This and Proposition 5.9 implies Theorem 1.2. The �nal Section 7 shows why all main
results also hold for unlabelled structures. This is summarised in Theorem 7.7 which
implies Theorem 1.3.

Terminology and notation 1.6. We use the calligraphic letters A,B, C,M,N to de-
note structures and the corresponding noncalligraphic letters A,B,C,M,N to denote
their universes. Usually the universe will be [n] = {1, . . . , n} for some n ∈ N+. We
sometimes write ā to denote a �nite tuple (a1, . . . , an), and if ā = (a1, . . . , an) and
b̄ = (b1, . . . , bm), then we let āb̄ = (a1, . . . , an, b1, . . . , bm). If M is a structure and
A ⊆M , thenM�A denotes the substructure ofM with universe A.

Let H and H ′ be permutation groups on sets Ω and Ω′, respectively. A bijection
f : Ω → Ω′ is called an isomorphism from H to H ′ as permutation groups if H ′ =
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{fhf−1 : h ∈ H}. We say that H and H ′ are isomorphic as permutation groups if such
f exists, and this clearly implies that they are isomorphic as abstract groups. We let
H ∼=P H

′ mean that H and H ′ are isomorphic as permutation groups. If f : A→ B is a
function and X ⊆ A, then f�X denotes the restriction of f to X. If H is a permutation
group on Ω and X ⊆ Ω is the union of some of the orbits of H on Ω, then we de�ne
H�X = {h�X : h ∈ H} which is a permutation group on X, and we call H�X the
restriction of H to X.

If f is a permutation of Ω then a ∈ Ω is called a �xed point of f if f(a) = a. If H is a
group of permutations of Ω then a ∈ Ω is called a �xed point of H if a is a �xed point of
every h ∈ H. For a structure A, a ∈ A is called a �xed point of A if a is a �xed point of
Aut(A). For any nonempty set Ω, Sym(Ω) denotes the symmetric group of Ω, i.e. the
group of all permuations of Ω, and Symn = Sym([n]).

If G is a group and g1, . . . , gn ∈ G then 〈g1, . . . , gn〉 denotes the subgroup of G gen-
erated by g1, . . . , gn. For a permutation group G on a set Ω we let Orb(G) be the set
of orbits of G on Ω and orb(G) =

∣∣Orb(G)
∣∣. Such G also acts on Ωm, the set of or-

dered m-tuples of elements from Ω, by the action g(a1, . . . , am) =
(
g(a1), . . . , g(am)

)
for every g ∈ G and (a1, . . . , am) ∈ Ωm. When refering to �the orbits of G on Ωm�
we mean the orbits with respect to this action, unless something else is said. We let
Orbm(G) be the set of orbits of G on Ωm and orbm(G) =

∣∣Orbm(G)
∣∣. For π1, . . . , πk ∈

Symn we let Orb(π1, . . . , πk) = Orb(〈π1, . . . , πk〉), orb(π1, . . . , πk) = orb(〈π1, . . . , πk〉),
Orbm(π1, . . . , πk) = Orbm(〈π1, . . . , πk〉) and orbm(π1, . . . , πk) = orbm(〈π1, . . . , πk〉). For
unexplained notions such as `action, orbit' etc., see for example [5].

We will also use the terminology and notation that was introduced between Theo-
rems 1.1 � 1.3 as well as the following notation: if f1, . . . , fk are permutations of [n],
then

Sn(f1, . . . , fk) = {M ∈ Sn : f1, . . . , fk ∈ Aut(M)}.
By f(n) ∼ g(n) (as n → ∞) we mean that f(n)/g(n) → 1 as n → ∞. It will be
convenient to use the notation exp2(x) = 2x.

2. Upper bounds of the support of automorphisms

The main result of this section, Proposition 2.3, is that for any m ∈ N there is t ∈ N
such that the proportion of M ∈ Sn(spt ≥ m) such that spt(M) ≤ t approaches 1 as
n→∞. We also derive a couple of corollaries of this which are important for the rest of
the article. The following elementary result, often called Burnside's lemma or theorem3,
will be used. Proofs are found in [1, 5], for example.

Proposition 2.1. If G is a group of permutations of a �nite set M then

orb(G) =
1

|G|
∑
g∈G

∣∣{a ∈M : g(a) = a}
∣∣

Recall that [n] = {1, . . . , n} and by [n]r we denote the set of ordered r-tuples of elements
from [n].

Lemma 2.2. Suppose that d, n ∈ N+, π1, . . . , πs ∈ Symn and spt(π1, . . . , πs) = p. Then

nd + (p!− 1)(n− p)d

p!
≤ orbd

(
π1, . . . , πs

)
≤ nd − pnd−1

2
.

Proof. Suppose that d, n ∈ N+, π1, . . . , πs ∈ Symn and spt(π1, . . . , πs) = p. For each
π ∈ Symn let π̃ ∈ Sym([n]d) be de�ned by π̃(x1, . . . , xd) = (π(x1), . . . , π(xd)). We

consider the subgroup G = 〈π1, . . . , πs〉 of Symn and the subgroup G̃ = 〈π̃1, . . . , π̃s〉

3But was actually proved earlier by Cauchy and Frobenius, according to [5]
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of Sym([n]d). Note that orb(G̃) = orbd(G) = orbd
(
π1, . . . , πs

)
. Also observe that, by

the assumption that spt(G) = spt(π1, . . . , πs) = p, every g ∈ G has at least n − p �xed

points. Therefore every g ∈ G̃ has at least (n−p)d �xed points. In particular, the identity
permutation has nd �xed points. Therefore we get, by also using Proposition 2.1,

orbd(π1, . . . , πs) = orb(G̃) =
1∣∣G̃∣∣ ∑

g̃∈G̃

∣∣{ā ∈ [n]d : g̃(ā) = ā}
∣∣

≥
(
∣∣G̃∣∣− 1)(n− p)d + nd∣∣G̃∣∣ = (n− p)d +

nd − (n− p)d∣∣G̃∣∣
≥ (n− p)d +

nd − (n− p)d

p!
=

nd + (p!− 1)(n− p)d

p!

On the other hand we also have that

orb(G) ≤ (n− p) +
p

2
= n− p

2

which implies that

orbd
(
π1, . . . , πs

)
= orb(G̃) ≤ orb(G) · nd−1 ≤ nd − pnd−1

2
,

because if (a1, . . . , ad) and (b1, . . . , bd) belong to the same orbit of G̃, then a1 and b1
belong to the same orbit of G. �

Recall that r ≥ 2 is the maximal arity among relation symbols in the vocabulary.

Proposition 2.3. Suppose that m, t ∈ N, f1, . . . , fs ∈ Symn and spt(f1, . . . , fs) = m.
For all su�ciently large n the following holds, where k is the number of r-ary relation
symbols and the bound O( ) depends only on m, t and the vocabulary:∣∣Sn(spt ≥ t)

∣∣∣∣Sn(f1, . . . , fs)
∣∣ ≤ exp2

(
k

(
2(m!− 1)rm − (t− 1)m!

)
nr−1

2(m!)
± O

(
nr−2

))
.

Hence, if t > 2r(m!− 1)m/m! + 1 then the quotient approaches 0 as n→∞.

Proof. For each i = 1, . . . , r, let ki be the number of i-ary relation symbols. Suppose
that m, t ∈ N, f1, . . . , fs ∈ Symn and spt(f1, . . . , fs) = m. Observe that for every i
and every i-ary relation symbol R we have: if ā, b̄ ∈ [n]i belong to the same orbit of
〈f1, . . . , fs〉 and M ∈ Sn(f1, . . . , fs), then M |= R(ā) if and only if M |= R(b̄). Since
this is the only restriction on members of Sn(f1, . . . , fs) we get

(2.1)
∣∣Sn(f1, . . . , fs)

∣∣ = exp2

(
r∑
i=1

kiorbi
(
f1, . . . , fs

))
.

For every π ∈ Symn with spt(π) ≥ t we have Sn(π) ⊆ Sn(spt ≥ t) and therefore

(2.2)
∣∣Sn(spt ≥ t)

∣∣ ≤ ∑
π∈Symn

spt(π)≥t

|Sn(π)| =
∑

π∈Symn

spt(π)≥t

exp2

(
r∑
i=1

kiorbi(π)

)
.

By �rst applying Lemma 2.2 on f1, . . . , fs and then on an arbitrary π ∈ Symn we get,
for each i = 1, . . . , r,

(2.3)
ni + (m!− 1)(n−m)i

m!
≤ orbi

(
f1, . . . , fs

)
, and
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(2.4) orbi(π) ≤ ni − ni−1spt(π)

2
for every π ∈ Symn.

A straightforward computation4 shows that for all su�ciently large n

n∑
j=t

exp2

(
j log2 n − j

r∑
i=1

ki
ni−1

2

)
(2.5)

≤ exp2

(
− kr

(t− 1)nr−1

2
± O

(
nr−2 + log2 n

))
,

where the bound O( ) depends only on the vocabulary. Notice that the number of

π ∈ Symn with spt(π) = j is

(
n

j

)
j! ≤ nj . By also using (2.1)�(2.5) we now get

∣∣Sn(spt ≥ t)
∣∣∣∣Sn(f1, . . . , fs)
∣∣ ≤ ∑

π∈Symn

spt(π)≥t

exp2

(
r∑
i=1

kiorbi(π) −
r∑
i=1

kiorbi(f1, . . . , fs)

)

≤
∑

π∈Symn

spt(π)≥t

exp2

(
r∑
i=1

ki

[
ni − ni−1spt(π)

2

]
−

r∑
i=1

ki
ni + (m!− 1)(n−m)i

m!

)

≤
n∑
j=t

nj exp2

(
r∑
i=1

ki

[
ni − jni−1

2

]
−

r∑
i=1

ki
ni + (m!− 1)(n−m)i

m!

)

= exp2

(
r∑
i=1

ki

[
ni − ni + (m!− 1)(n−m)i

m!

]) n∑
j=t

exp2

(
j log2 n− j

r∑
i=1

ki
ni−1

2

)

≤ exp2

(
k1

(m!− 1)m

m!
+

r∑
i=2

ki
(m!− 1)imni−1 ±O

(
ni−2

)
m!

)
·

exp2

(
− kr

(t− 1)nr−1

2
± O

(
nr−2 + log2 n

))

= exp2

(
kr

(
2(m!− 1)rm − (t− 1)m!

)
nr−1

2(m!)
± O

(
nr−2 + log2 n

))
.

�

Remark 2.4. Suppose that we require that a relation symbol Ri of arity ri ≥ 2 is always
interpreted as an irre�exive and symmetric relation. Then we need to use a modi�cation
of Lemma 2.2 where, for π1, . . . , πs ∈ Symn, we consider the orbits of G = 〈π1, . . . , πs〉
on the set of ri-subsets of [n] by the action g({a1, . . . , ari}) = {g(a1), . . . , g(as)} for every
g ∈ G and ri-subset {a1, . . . , ari} ⊆ [n]. By slightly modifying the proof of Lemma 2.2
one gets that if q is the number of orbits of G by its action on the set of ri-subsets of
[n], then (

n
d

)
− (p!− 1)

(
n−p
d

)
p!

≤ q ≤ n

(
n

d

)
− p

2

(
n

d− 1

)
.

By using this when estimating (the appropriate analogues of) orbi(π) and orbi(f1, . . . , fs)
in the proof of Proposition 2.3 for each i-ary relation symbol (where i ≥ 2) that is always
interpreted as an irre�exive and symmetric relation, one gets a similar upper bound, by

4Set a = exp2

(
log2 n −

∑r
i=1 ki

ni−1

2

)
and we have

∑n
j=t a

j ≤ at/(1−a) ≤ at−1 if n is large enough.
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a bit more involved computations. Similar adaptations work if we require that some
relation symbols are always interpreted as irre�exive, but not necessarily symmetric,
relations.

Corollary 2.5. Let m ∈ N. If t > 2r(m!− 1)m/m! + 1 then

lim
n→∞

∣∣Sn(spt ≥ t)
∣∣∣∣Sn(spt ≥ m)
∣∣ = lim

n→∞

∣∣Sn(spt ≥ t)
∣∣∣∣Sn(spt∗ ≥ m)
∣∣ = 0.

Proof. This follows immediately from Proposition 2.3, because if f ∈ Symn and
spt(f) = m, then Sn(f) ⊆ Sn(spt ≥ m) ⊆ Sn(spt∗ ≥ m). �

Corollary 2.6. Suppose that G is a �nite group which is isomorphic to a group of
permutations of [m]. If t = 2r(m!− 1)m/m! + 1 then

lim
n→∞

∣∣{M ∈ Sn : G ≤ Aut(M) and spt(M) ≤ t)}
∣∣∣∣{M ∈ Sn : G ≤ Aut(M)}

∣∣ = 1.

Proof. Let H = {h1, . . . , hs} be a permutation group on [m] such that H ∼= G. Let
t = 2r(m!− 1)m/m! + 1. Extend each hi to a permutation h′i of [n] by letting h′i(j) = j
for every j > m and h′i(j) = hi(j) for every j ≤ m. Observe that for every M ∈
Sn(h′1, . . . , h

′
s), G ≤ Aut(M). From Proposition 2.3 we get∣∣{M∈ Sn : G ≤ Aut(M) and spt(M) > t

}∣∣∣∣{M∈ Sn : G ≤ Aut(M)
}∣∣ ≤

∣∣Sn(spt > t)
∣∣∣∣Sn(h′1, . . . , h
′
s)
∣∣ → 0,

as n→∞. �

3. Upper bounds of the support of structures

In this section we prove that for every t ∈ N there is T ∈ N, depending only on t, such
that for every �nite structureM, if spt(M) ≤ t then spt∗(M) ≤ T . In other words, if
no automorphism ofM moves more than t elements, then not more than T elements of
M are moved by some automorphism. This is stated by Proposition 3.5. Corollaries 3.7
and 3.8 will be used in later sections.

De�nition 3.1. LetM∈ S and X ⊆M .
(i) For f ∈ Aut(M) let d(f,X) = |Spt(f)−X|.
(ii) We call f ∈ Aut(M) maximal if for all g ∈ Aut(M), if Spt(f) ⊆ Spt(g) then
Spt(f) = Spt(g).
(iii) Let Aut∗(M) = {f ∈ Aut(M) : f is maximal}.
(iv) For M ∈ S, a sequence f0, . . . , fn ⊆ Aut∗(M) is called a special sequence of auto-
morphisms ofM if it satis�es the two following condition:

For each k = 0, . . . , n− 1,

d
(
fk+1,Spt(f0, . . . , fk)

)
= max

g∈Aut∗(M)
d
(
g,Spt(f0, . . . , fk)

)
.

Notation 3.2. Whenever a special sequence of automorphisms f0, . . . , fn ∈ Aut∗(M),
k ≤ n and g ∈ Aut(M) are given, then we may use the abbreviation

dk(g) = d
(
g,Spt(f0, . . . , fk)

)
.

The following lemma states some basic facts about special sequences of automorphisms.

Lemma 3.3. Let M ∈ S and let f0, . . . , fn ∈ Aut∗(M) be a special sequence of auto-
morphisms. Then

(1) for all 0 ≤ k ≤ n and all g ∈ Aut(M), dk(g) ≥ dk+1(g),
(2) if k + 1 ≤ p ≤ n then dk(fk+1) ≥ dk(fp) and
(3) if 0 ≤ k < n and dk(fk+1) = 0 then for all g ∈ Aut∗(M), Spt(g) ⊆ Spt(f1, . . . , fk).
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Proof. Let M ∈ S and let f0, . . . , fn ∈ Aut∗(M) be a special sequence of automor-
phisms.

(1) Suppose that g ∈ Aut(M). As Spt(f0, . . . , fk) ⊆ Spt(f0, . . . , fk+1) we get∣∣Spt(g) \ Spt(f0, . . . , fk)
∣∣ ≥ ∣∣Spt(g) \ Spt(f0, . . . , fk+1)

∣∣,
that is, dk(g) ≥ dk+1(g).

(2) Suppose that k + 1 ≤ p ≤ n. Since
dk(fk+1) = max

g∈Aut∗(M)
dk(g)

we get dk(fk+1) ≥ dk(fp).
(3) If 0 ≤ k < n and dk(fk+1) = 0, then maxg∈Aut∗(M) dk(g) = 0, so Spt(g) ⊆

Spt(f1, . . . , fk) for every g ∈ Aut∗(M). �

Now to a less obvious claim:

Lemma 3.4. Let M ∈ S. Suppose that f0, . . . , fn ∈ Aut∗(M) is a special sequence
and 1 ≤ k < p. If dk(fp) > 0 then there is x ∈ Spt(fk) \ Spt(f0, . . . , fk−1) such that
x /∈ Spt(fp)

Proof. Let M ∈ S, let f0, . . . , fn ∈ Aut∗(M) be a special sequence and suppose
that 1 ≤ k < p and dk(fp) > 0. We use the abbreviations Spt(k) = Spt(fk) and
Spt(0, . . . , k) = Spt(f0, . . . , fk). Let

X = Spt(k) \ Spt(0, . . . , k − 1).

For a contradiction, we assume that X ⊆ Spt(p). Since dk(fp) > 0 we know that there
is an element a ∈ Spt(p) such that a /∈ Spt(0, . . . , k). Then Lemma 3.3 (1) together with
dk(fp) > 0 gives us that dk−1(fp) > 0. By Lemma 3.3 (2) we get dk−1(fk) > 0, which
implies that X 6= ∅. Also notice that a /∈ X, by the choice of a. From the de�nition of
X and the assumption that X ⊆ Spt(p) it follows that X ⊆ Spt(p) \ Spt(0, . . . , k − 1).
By the choice of a we have a ∈ Spt(p) \ Spt(0, . . . , k − 1), so we get

X ∪ {a} ⊆ Spt(p) \ Spt(0, . . . , k − 1),

and recall that a /∈ X. Hence we get

dk−1(k) =
∣∣Spt(k)− Spt(0, . . . , k − 1)

∣∣ = |X|
<
∣∣X ∪ {a}∣∣ ≤ ∣∣Spt(p) \ Spt(0, . . . , k − 1)

∣∣ = dk−1(p),

i.e. dk−1(k) < dk−1(p) which contradicts Lemma 3.3 (2). �

The next proposition tells that, for each k ≥ 2, S(spt ≤ k) ⊆ S
(
spt∗ ≤ kk+2

)
.

Proposition 3.5. For every integer k ≥ 2 and every M ∈ S(spt ≤ k) we have
spt∗(M) ≤ kk+2.

Proof. Fix any integer k ≥ 2. For i = 0, . . . , k, let li = kk−i+1. Note that l0 = kk+1

and li = kli+1 for each i. Suppose that M ∈ S(spt ≤ k) and, for a contradiction, that
spt∗(M) > kk+2.

By de�nition, any f0 ∈ Aut∗(M) is a special sequence of length 1. Now let f0, . . . , fn ∈
Aut∗(M) be any special sequence and suppose that n < l0. By the assumption that
M ∈ S(spt ≤ k) we have

∣∣Spt(f0, . . . , fn)
∣∣ ≤ kl0 = kk+2. From the assumption that

spt∗(M) > kk+2 it now follows that there is g ∈ Aut(M) such that dn(g) =
∣∣Spt(g) \

Spt(f0, . . . , fn)
∣∣ > 0. Hence there is also a maximal f ∈ Aut∗(M) such that dn(f) > 0.

If we choose fn+1 ∈ Aut∗(M) so that dn(fn+1) = maxg∈Aut∗(M) dn(g), then f0, . . . , fn+1

is a special sequence. This proves that there is a special sequence f0, . . . , fl0 ∈ Aut∗(M)
such that dp(fp+1) > 0 for every p = 0, . . . , l0 − 1. We �x this special sequence for
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the rest of the proof and use the abbreviations Spt(p) = Spt(fp) and Spt(0, . . . , p) =
Spt(f0, . . . , fp).

We will prove that there are a subsequence (of distinct numbers) t1, . . . , tk+1 of the
sequence 0, . . . , l0 and elements bi ∈ Spt(fti), for i = 1, . . . , k+ 1, such that bi /∈ Spt(ftj )
if j 6= i; so i 6= j implies bi 6= bj . Then b1, . . . , bk+1 ∈ Spt(ft1 ◦ ...◦ftk+1

), where of course
the composition ft1 ◦ ...◦ftk+1

belongs to Aut(M). This contradicts the assumption that
M∈ S(spt ≤ k).

We will inductively de�ne sequences ti0, . . . , t
i
li
, for i = 0, . . . , k + 1, of indices from

which we can extract a sequence t1, . . . , tk+1 as above. Let t0j = j for j = 0, . . . , l0 =

kk+1. For each p = 2, . . . , l0, there is, by Lemma 3.4, ap ∈ Spt(1) \ Spt(0) such that
ap /∈ Spt(p). As |Spt(1)| ≤ k there are b1 ∈ Spt(1)\Spt(0) and a subsequence of distinct
numbers t11, . . . , t

1
l1
of the sequence 2, . . . , l0 such that, for all p = t11, . . . , t

1
l1
, ap = b1. Let

t1 = t10 = 1.
Now suppose that m ≤ k and that, for i = 1, . . . ,m, ti0, . . . , t

i
li
is a subsequence (of

distinct numbers) of ti−1
0 , . . . , ti−1

li−1
, bi ∈ Spt(ti0) \ Spt(0, . . . , ti0 − 1) and bi /∈ Spt(p)

for all p = ti1, . . . , t
i
li
. By Lemma 3.4, there is for each p = tm2 , . . . , t

m
lm

an element

ap ∈ Spt(tm1 ) \ Spt(0, . . . , tm1 − 1) such that ap /∈ Spt(p). Since
∣∣Spt(tm1 )

∣∣ ≤ k there

are bm+1 ∈ Spt(tm1 ) and a subsequence tm+1
1 , . . . , tm+1

lm+1
of tm2 , . . . , t

m
lm

such that, for all

p = tm+1
1 , . . . , tm+1

lm+1
, ap = bm+1. Let tm+1 = tm+1

0 = tm1 . When ti0, . . . , t
i
li
are de�ned for

every i = 0, . . . , k + 1 and bi for every i = 1, . . . , k + 1, then, as already indicated, we
take ti = ti0 for i = 1, . . . , k + 1. �

Remark 3.6. Notice that the proofs up to now of this section do not need the assumption
that we have considered a structureM and its automorphisms. We could, more generally,
have considered a set M and a group of permutations H of M . If we do this, we get
the following version of Proposition 3.5: If k ≥ 2 is an integer and H is a group of
permutations of a set M such that spt(h) ≤ k for every h ∈ H, then∣∣{a ∈M : h(a) 6= a for some h ∈ H}

∣∣ ≤ kk+2.

Corollary 3.7. Let m ∈ N. If k = 2r(m!− 1)m/m! + 1 and T = kk+2 then

lim
n→∞

∣∣Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T )
∣∣∣∣Sn(spt ≥ m)

∣∣ =

lim
n→∞

∣∣Sn(spt∗ ≥ m) ∩ Sn(spt∗ ≤ T )
∣∣∣∣Sn(spt∗ ≥ m)

∣∣ = 1.

Proof. Let k = 2r(m!− 1)m/m! + 1 and T = kk+2. By Corollary 2.5,∣∣Sn(spt ≥ m)
∣∣ =

(
1 + o(1)

)∣∣Sn(m ≤ spt ≤ k)
∣∣

and by Proposition 3.5,∣∣Sn(m ≤ spt ≤ k)
∣∣ =

∣∣Sn(m ≤ spt ≤ k) ∩ Sn(spt∗ ≤ T )
∣∣,

so we get
∣∣Sn(spt ≥ m)

∣∣ =
(
1 + o(1)

)∣∣Sn(m ≤ spt ≤ k) ∩ Sn(spt∗ ≤ T )
∣∣. The other

limit is proved in the same way. �

Corollary 3.8. Suppose that G is a �nite group which is isomorphic to a group of
permutations of [m] where m ∈ N+. Then there is T ∈ N, depending only on G and the
vocabulary, such that

lim
n→∞

∣∣{M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T}
∣∣∣∣{M ∈ Sn : G ≤ Aut(M)}

∣∣ = 1.
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Proof. By Corollary 2.6 we know that if k = 2r(m!− 1)m/m! + 1 then

lim
n→∞

∣∣{M ∈ Sn : G ≤ Aut(M) and spt(M) ≤ k)}
∣∣∣∣{M ∈ Sn : G ≤ Aut(M)}

∣∣ = 1.

Let T = kk+2. As Proposition 3.5 says that Sn(spt ≤ k) ⊆ Sn(spt∗ ≤ T ) we are done.
�

4. Asymptotic estimates of the number of structures with bounded

support

By Corollary 3.7, for arbitrary �xed m ∈ N and all large enough n, an overwhelming
part of the members of Sn(spt ≥ m) belong Sn(spt∗ ≤ T ) for some T depending only
on m and the vocabulary. We will show that an overwhelming part of the members of,
for example, Sn(spt ≥ m) for large enough n, belong to a �nite union of sets of the
form Sn(A, H), de�ned below, where the structure A and permutation group H depend
only on the vocabulary and m. In order to understand the asymptotic behaviour of
Sn(spt ≥ m) we will therefore, in this section, �nd asymptotic estimates of

∣∣Sn(A, H)
∣∣

as n → ∞. As will become clear in the sequel, the sets of the form Sn(A, H) are
the �atomic� pieces of our analysis, and questions about, for example, Sn(spt ≥ m) or
{M ∈ Sn : G ≤ Aut(M)}, for a �xed G, will be reduced to analysing quotients of the

form
∣∣Sn(A′, H ′)

∣∣/∣∣Sn(A, H)
∣∣ as n→∞.

Recall that if H is a group of permutations of Ω and X ⊆ Ω is the union of some of
the orbits of H on Ω, then H�X = {h�X : h ∈ H} which is a permutation group on
X. For every structureM, Spt∗(M) is the union of all nonsingleton orbits of Aut(M)
on M , so it always makes sense to speak about Aut(M)�Spt∗(M) and we always have
Aut(M)�Spt∗(M) ∼= Aut(M).

De�nition 4.1. Let A ∈ S be such that Aut(A) has no �xed point. Suppose that H is
a subgroup of Aut(A) such that H has no �xed point. For each integer n > 0, Sn(A, H)
is the set of M ∈ Sn such that there is an embedding f : A → M such that Spt∗(M)
is the image of f and Hf = {fσf−1 : σ ∈ H} is a subgroup of Aut(M)�Spt∗(M). Note
that Hf

∼=P H. Let S(A, H) =
⋃
n∈N+ Sn(A, H).

Lemma 4.2. Let m ≥ 2 be an integer. There are A1, . . . ,Al ∈ Sm without any �xed
point and, for each i = 1, . . . , l, subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai) without any �xed
point such that

S(spt∗ = m) =

l⋃
i=1

li⋃
j=1

S(Ai, Hi,j).

Proof. Let A1, . . . ,Al enumerate all structures of Sm that do not have any �xed point.
Suppose thatM ∈ S(spt∗ = m). ThenM�Spt∗(M) ∼= Ai for some i. If K = Aut(M)�
Spt∗(M), f : Ai → M�Spt∗(M) is an isomorphism and H = {f−1σf : σ ∈ K}, then
H is a subgroup of Aut(Ai) without any �xed point. From the de�nition of S(Ai, H)
it follows that M ∈ S(Ai, H). Hence every M ∈ S(spt∗ = m) belongs to S(Ai, H) for
some i and some subgroup H ⊆ Aut(Ai). Conversely, for every i = 1, . . . , l and every
subgroup H ⊆ Aut(Ai) we have S(Ai, H) ⊆ S(spt∗ = m), since spt∗(M) = m for every
M∈ S(Ai, H). �

Lemma 4.3. (i) Let m ≥ 2 be an integer. There are �nitely many A1, . . . ,Al ∈ S
without any �xed point and, for each i = 1, . . . , l, subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai)
without any �xed point such that∣∣Sn(spt∗ ≥ m)

∣∣ ∼ ∣∣∣∣∣
l⋃

i=1

li⋃
j=1

Sn(Ai, Hi,j)

∣∣∣∣∣ as n→∞.
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(ii) Part (ii) holds if `spt∗ ≥ m' is replaced by `spt ≥ m'.
(iii) Let G be a nontrivial �nite group. There are �nitely many A1, . . . ,Al ∈ S without
any �xed point and, for each i = 1, . . . , l, subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai) without
any �xed point such that G ≤ Hi,j for all i and j and∣∣{M ∈ Sn : G ≤ Aut(M)}

∣∣ ∼ ∣∣∣∣∣
l⋃

i=1

li⋃
j=1

Sn(Ai, Hi,j)

∣∣∣∣∣ as n→∞.

Proof. (i) By Corollary 3.7, there is an integer T such that∣∣Sn(spt∗ ≥ m)
∣∣ ∼ ∣∣Sn(m ≤ spt∗ ≤ T )

∣∣ as n→∞.

Since Sn(m ≤ spt∗ ≤ T ) =
⋃T
i=m Sn(spt∗ = m), part (i) follows from Lemma 4.2.

(ii) By Corollary 3.7, there is T such that∣∣Sn(spt ≥ m)
∣∣ ∼ ∣∣Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T )

∣∣ as n→∞.
As everyM∈ Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T ) belongs to Sn(spt∗ = p) for somem ≤ p ≤ T ,
we get (ii) from Lemma 4.2.

(iii) By Corollary 3.8, there is an integer T such that∣∣{M ∈ Sn : G ≤ Aut(M)}
∣∣ ∼ ∣∣{M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T}

∣∣
as n → ∞. Since every M ∈ {M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T} belongs to
Sn(spt∗ = p) for some p ≤ T , we also get part (iii) from Lemma 4.2 and its proof, which
shows that we only need to consider Ai and Hi,j such that G ≤ Hi,j . �

As suggested by the previous lemma, an essential step towards the main results is to
asymptotically estimate

∣∣Sn(A, H)
∣∣ for any A ∈ S without a �xed point and any sub-

group H ⊆ Aut(A) without a �xed point.

Proposition 4.4. Suppose that A ∈ S has no �xed point. Let H be a subgroup of
Aut(A) such that H has no �xed point. Let p = |A|, for every i = 1, . . . , r − 1 let qi
be the number of orbits of H on Ai and, for every i = 1, . . . r, let ki be the number of
relation symbols with arity i. There is an integer c(A, H) > 0, depending only on A, H
and the vocabulary, such that∣∣Sn(A, H)

∣∣ ∼ c(A, H)

(
n

p

)
exp2

(
r∑
i=1

ki(n− p)i +

r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
.

As will be explained below, Proposition 4.4 is a consequence of Lemma 4.6 which in turn
follows from Lemmas 4.9�4.12.

Assumption 4.5. For the rest of this section we assume the following, although the
assumptions may be restated:

Suppose that A ∈ S has no �xed point.
Let H be a subgroup of Aut(A) such that H has no �xed point.

Also let

p = |A|,
for every i = 1, . . . , r − 1 let qi be the number of orbits of H on Ai and,
for every i = 1, . . . r, let ki be the number of relation symbols with arity i.

We consider the number of ways in which the relation symbols can be interpreted on [n]
so that the resulting structure belongs to Sn(A, H). Let cA be the number of structures
in Sp that are isomorphic to A. First, it is clear that we can choose the set X ⊆ [n] which
is going to be the support of the structure in

(
n
p

)
ways, since we want that |X| = p = |A|.

Then we can choose interpretations of the relation symbols on X in cA ways so that the
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resulting substructure with universe X, call it AX , is isomorphic to A. Now suppose
that X ⊆ [n] of cardinality p and AX ∼= A with universe X are �xed. Let

(4.1) Sn(AX , H) =
{
M∈ Sn(A, H) :M�Spt∗(M) = AX

}
.

Note that the condition M�Spt∗(M) = AX means that M�Spt∗(M) is identical with
AX . Also observe that if X,X ′ ⊆ [n] and X 6= X ′ then Sn(AX , H) and Sn(AX′ , H) are
disjoint. Moverover, if both A′X and AX have universe X and are isomorphic with A,
but A′X 6= AX , then Sn(AX , H) and Sn(A′X , H) are disjoint. Therefore Proposition 4.4
follows from the following:

Lemma 4.6. Suppose that X ⊆ [n] and |X| = |A| = p. There is an integer d(A, H) > 0,
depending only on A, H and the vocabulary, such that∣∣Sn(AX , H)

∣∣ ∼ d(A, H) exp2

(
r∑
i=1

ki(n− p)i +
r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
.

Lemma 4.6 follows from Lemmas 4.9�4.12, as we will show after proving them. We begin
with some preparatory work. Until Lemma 4.6 has been proved we �x X ⊆ [n] such that
|X| = |A| = p and AX ∼= A with universe X. For every isomorphism f : A → AX , let

Hf = {fσf−1 : σ ∈ H},

so Hf is a subgroup of Aut(AX) and Hf
∼=P H.

Suppose thatM ∈ Sn(AX , H). By the de�nition of Sn(AX , H),M�Spt∗(M) = AX
and there is an isomorphism f : A → AX such that Hf is a subgroup of Aut(M)�
Spt∗(M). For each t = 1, . . . , r − 1, the orbits of Hf on Xt forms a partition, denoted
Πt, of X

t. Since Spt∗(M) = X the following holds forM:

(a) Whenever 2 ≤ j ≤ r, R ∈ {R1, . . . , Rρ} is a j-ary relation symbol, 1 ≤ i <
j, (a1, . . . , ai) ∈ Xi and (a′1, . . . , a

′
i) ∈ Xi belong to the same part of Πi and

(ai+1, . . . , aj) = (a′i+1, . . . , a
′
j) ∈

(
[n] \ X

)j−i
, then, for every π ∈ Symj , either

both of

(aπ(1), . . . , aπ(j)) and (a′π(1), . . . , a
′
π(j)),

or none of them, belong to the interpretation of R.

De�nition 4.7. If, for every t = 1, . . . , r− 1, Πt is a partition of Xt such that (a) holds
(forM), then we say thatM respects (the sequence of partitions) Π1, . . . ,Πr−1.

In other words, ifM∈ Sn(AX , H) thenM�Spt∗(M) = AX and, for each t = 1, . . . , r−
1, there is a partition Πt of Xt such that M respects (Π1, . . . ,Πr−1) and for some
isomorphism f : A → AX , Πt is the set of orbits of Hf on Xt for t = 1, . . . , r − 1.
Conversely, ifM∈ Sn is such thatM�Spt∗(M) = AX and, for each t = 1, . . . , r−1, there
is a partition Πt of X

t such thatM respects (Π1, . . . ,Πr−1) and for some isomorphism
f : A → AX , Πt is the set of orbits of Hf on Xt for t = 1, . . . , r − 1, then Hf is a
subgroup ofM�Spt∗(M) and thereforeM∈ Sn(AX , H).

De�nition 4.8. A sequence Π1, . . . ,Πr−1 is called a sequence of (AX , H)-partitions if
the following holds:

(b) there is an isomorphism f : A → AX such that, for each t = 1, . . . , r − 1, Πt is
the set of orbits of Hf on Xt.

For every sequence of (AX , H)-partitions Π1, . . . ,Πr−1 we de�ne

Sn(AX ,Π1, . . . ,Πr−1) =(4.2) {
M∈ Sn :M�X = AX , Spt∗(M) = X andM respects Π1, . . . ,Πr−1}
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and

Tn(AX ,Π1, . . . ,Πr−1) =(4.3) {
M∈ Sn : M�X = AX andM respects Π1, . . . ,Πr−1}.

If Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions andM∈ Tn(AX ,Π1, . . . ,Πr−1) then
there is an isomorphism f : A → AX such that, for i = 1, . . . , r−1, Πi is the set of orbits
of Hf on Xi and, by Assumption 4.5, every orbit of Hf on X has at least two members;
hence X ⊆ Spt∗(M). Consequently,

Sn(AX ,Π1, . . . ,Πr−1) ⊆ Tn(AX ,Π1, . . . ,Πr−1)

From the argument before the de�nition of Sn(AX ,Π1, . . . ,Πr−1) it follows that

(4.4) Sn(AX , H) =
⋃

Π1,...,Πr−1

Sn(AX ,Π1, . . . ,Πr−1),

where the union ranges over all sequences Π1, . . . ,Πr−1 of (AX , H)-partitions. The
next step in the proof of Lemma 4.6 is to estimate

∣∣Sn(AX ,Π1, . . . ,Πr−1)
∣∣. Then we

deal with the slightly problematic issue that even if Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are

di�erent sequences of (AX , H)-partitions it may be the case that S(AX ,Π1, . . . ,Πr−1)
and S(AX ,Π′1, . . . ,Π′r−1) have nonempty intersection. However, as we will show, their
intersection will always be negligibly small, which implies that we can add the asymptotic
estimates of the cardinalities of all Sn(AX ,Π1, . . . ,Πr−1) to get an asymptotic estimate
of the cardinality of Sn(AX , H). Recall that for i = 1, . . . , r, ki is the number of i-ary
relation symbols. Also, p = |A| = |X| and, for i = 1, . . . , r− 1, qi is the number of orbits
of H on Ai.

Lemma 4.9. If Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions, then∣∣Tn(AX ,Π1, . . . ,Πr−1)
∣∣ = exp2

(
r∑
i=1

ki(n− p)i +
r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
.

Moreover, there is ε : N → R, depending only on A, H and the vocabulary, such that
limn→∞ ε(n) = 0 and for all large enough n the proportion ofM∈ Tn(AX ,Π1, . . . ,Πr−1)
such thatM /∈ Sn(AX ,Π1, . . . ,Πr−1) is at most ε(n).

Proof. Suppose that Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions, so there is an
isomorphism f : A → AX such that, for each t = 1, . . . , r − 1, Πt is the set of orbits
of Hf on Xt. Since Hf

∼=P H it follows that Πt partitions X
t into qt parts, for every

t = 1, . . . , r − 1. Let

γ(n) = exp2

(
r∑
i=1

ki(n− p)i +

r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
.

First we will prove that
∣∣Tn(AX ,Π1, . . . ,Πr−1)

∣∣ = γ(n). As observed before Lemma 4.9,

Sn(AX ,Π1, . . . ,Πr−1) ⊆ Tn(AX ,Π1, . . . ,Πr−1)

and X ⊆ Spt∗(M) for every M ∈ Tn(AX ,Π1, . . . ,Πr−1). Then we show that the
proportion of M ∈ Tn(AX ,Π1, . . . ,Πr−1) such that X is a proper subset of Spt∗(M)
approaches 0 as n → ∞. Moreover, we will get a bound ε(n) as in the lemma. For the
rest of the proof of this lemma we use the abbreviation

Tn = Tn(AX ,Π1, . . . ,Πr−1).

To determine
∣∣Tn

∣∣ we consider the number of ways in which the relation symbols can be
interpreted on [n] so that the resulting structureM has the properties thatM�X = AX
andM respects Π1, . . . ,Πr−1, that is, (a) holds forM. Since the substructure onX must
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be AX , there is only one choice for the interpretations on tuples all of which coordinates
belong to X.

Now we consider in how many ways the relation symbols can be interpreted on tuples
that intersect both X and [n] \X so that resulting structure respects Π1, . . . ,Πr−1; so
in this stage we only consider relation symbols of arity at least 2. Let R ∈ {R1, . . . , Rρ}
be a relation symbol of arity j ≥ 2 and let 1 ≤ i ≤ j − 1. We consider the number of
ways in which R can be interpreted on j-tuples ā ∈ [n]j with exactly i coordinates of ā
from X in such a way that the resulting structure respects Π1, . . . ,Πr−1.

Suppose that

a1, . . . , ai, a
′
1, . . . , a

′
i ∈ X and bi+1, . . . , bj ∈ [n] \X

and that the i-tuples (a1, . . . , ai) and (a′1, . . . , a
′
i) belong to the same part of Πi. Since

we want (a) to be satis�ed we have the choice of letting both j-tuples

(a1, . . . , ai, bi+1, . . . , bj) and (a′1, . . . , a
′
i, bi+1, . . . , bj),

or none of them, belong to the interpretation of R (and this independently of other
choices). We considered the case when a1, . . . , ai and a′1, . . . , a

′
i occured in the �rst i

positions of the respective j-tuple, but the same is clearly true if a1, . . . , ai and a
′
1, . . . , a

′
i

take other positions in the respective j-tuples, but still so that al preceeds al′ if l < l′

and al takes position t if and only if a′l takes position t.
5 There are

(
j
i

)
ways in which

i positions in an j-tuple can be chosen. Therefore the number of ways to choose the
interpretation of R on j-tuples with exactly i coordinates in X in such a way that (a) is
satis�ed is

exp2

((
j

i

)
qi(n− p)j−i

)
,

where we recall that qi is the number of parts of the partition Πi of X
i.6 If i′ 6= i

and 1 ≤ i′ ≤ j − 1 then the corresponding number of choices for j-tuples with exactly i′

coordinates in X is independent from the previously made choices. Therefore the number
of ways in which R can be interpreted on tuples that intersect both X and [n] \X is

exp2

( j−1∑
i=1

(
j

i

)
qi(n− p)j−i

)
.

The same argument can be carried out for every relation symbol R of arity at least
2. The number of choices for each such R is independent of previously made choices.
Therefore the number of ways in which all relation symbols with arity at least 2 can be
interpreted on tuples that intersect both X and [n]\X in such a way that (a) is satis�ed
is

(4.5) exp2

( r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
.

Finally we consider interpretations on tuples ā such that none of the coordinates of ā

belongs to X. If R has arity i, then there are 2(n−p)i ways in which to interpret R on
tuples ā ∈ ([n] \X)i, independently of other choices. As there are ki relation symbols of

5We consider only the given order of a1, . . . , ai and a′1, . . . , a
′
i because, in general, an i-tuple obtained

by reordering a1, . . . , ai need not belong to the same part of Πi as (a1, . . . , ai).
6If we assume that R is always interpreted as an irre�exive and symmetric relation, then the corre-

sponding number is exp2(q′i
(
n−p
j−i

)
) where q′i is the number of orbits of the action ofH on {B ⊆ A : |B| = i}

given by h({b1, . . . , bi}) = {h(b1), . . . , h(bi)} for every h ∈ H and i-subset {b1, . . . , bi} of A.
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arity i, the number of ways to interpret all relation symbols on [n] \X is

(4.6) exp2

( r∑
i=1

ki(n− p)i
)
,

Suppose that a structure M has been constructed by making the choices described
above. Then, by construction,M�X = AX andM respects Π1, . . . ,Πr−1. By assump-
tion, H has no �xed point which implies that every part of the partition Π1 of X has
at least two members. Since M respects Π1, . . . ,Πr−1 and Π1, . . . ,Πr−1 is a sequence
of (AX , H)-partitions it follows that X ⊆ Spt∗(M). It is also clear that every mem-
ber of Tn can be obtained in exactly one way by making choices as described by the
construction. Hence, by multiplying (4.6) and (4.5), we see that

∣∣Tn

∣∣ = γ(n).
It remains to prove that for all large enough n,

(4.7)

∣∣{M∈ Tn : Spt∗(M) 6= X
}∣∣∣∣Tn

∣∣ ≤ ε(n),

where limn→∞ ε(n) = 0 and ε depends only on A, H and the vocabulary. After de�ning
Tn = Tn(AX ,Π1, . . . ,Πr−1), see (4.3), we observed that ifM∈ Tn then X ⊆ Spt∗(M).
Since Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions, there is an isomorphism f : A →
AX such that, for each t = 1, . . . , r− 1, Πt is the set of orbits of Hf = {fσf−1 : σ ∈ H}
on Xt. Let Hf = {h1, . . . , hs} and extend every hi ∈ Hf to h′i ∈ Symn by h′i(x) =
hi(x) if x ∈ X and h′i(x) = x if x ∈ [n] \ X. Then Spt(h′1, . . . , h

′
s) = X and hence

spt(h′1, . . . , h
′
s) = |X| = |A| = p.

If M ∈ Sn, then M belongs to Sn(h′1, . . . , h
′
s) if and only if the following condition

holds: for every t = 1, . . . , r and every t-ary relation symbol R, if ā and b̄ are two t-tuples
from the same orbit of 〈h′1, . . . , h′s〉 on [n]t (which here denotes the set of ordered t-tuples
of elements from [n]), then eitherM |= R(ā) ∧R(b̄) orM |= ¬R(ā) ∧ ¬R(b̄). As X is a
union of orbits of 〈h′1, . . . , h′s〉 it follows that if we de�ne

Sn(h′1, . . . , h
′
s,AX) =

{
M∈ Sn(h′1, . . . , h

′
s) :M�X = AX},

then there is a constant 0 < c ≤ 1, depending only on A, H and the vocabulary, such
that

(4.8)
∣∣Sn(h′1, . . . , h

′
s,AX)

∣∣ = c
∣∣Sn(h′1, . . . , h

′
s)
∣∣.

From the de�nition of h′1, . . . , h
′
s it follows that

(4.9) Sn(h′1, . . . , h
′
s,AX) ⊆ Tn.

By (4.8), (4.9) and Propositions 2.3 and 3.5, there are λ, p0 > 0, depending only on A,
H and the vocabulary, such that for all su�ciently large n,∣∣Sn(spt∗ > p0)

∣∣∣∣Tn

∣∣ ≤
∣∣Sn(spt∗ > p0)

∣∣
c
∣∣Sn(h′1, . . . , h

′
s)
∣∣ ≤ 2−λn

r−1
.

Hence, for all large enough n, the proportion ofM ∈ Tn such that spt∗(M) ≤ p0 is at

least 1− 2−λn
r−1

.
Fix any a ∈ [n] \X and a′ ∈ [n] such that a 6= a′. From the de�nition of Tn it is clear

that for every sequence of distinct (r− 1)-tuples b̄1, . . . , b̄κ ∈
(
[n] \ (X ∪{a, a′})

)r−1
, the

proportion ofM∈ Tn that satis�es the following is 2−κ:

(4.10) for every i = 1, . . . , κ, M |= R(a, b̄i) ⇐⇒M |= R(a′, b̄i).

Observe that if M ∈ Tn, spt∗(M) ≤ p0 and g(a) = a′ for some g ∈ Aut(M), then

there is a sequence of distinct (r − 1)-tuples b̄1, . . . , b̄κ ∈
(
[n] \ (X ∪ {a, a′})

)r−1
such

that κ = 2(n−p0−2)r−1
and (4.10) is satis�ed. Hence the proportion ofM∈ Tn such that

spt∗(M) ≤ p0 and g(a) = a′ for some g ∈ Aut(M) is at most 2−(n−p0−2)r−1
. As the
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proportion of M ∈ Tn such that spt∗(M) ≤ p0 is at least 1 − 2−λn
r−1

, it follows that
that the proportion ofM ∈ Tn with an automorphism g such that g(a) = a′ is at most

2−(n−p0−2)r−1
+ 2−λn

r−1
. It follows that the proportion ofM ∈ Tn which have distinct

elements a ∈ [n] \X and a′ ∈ [n] and an automorphism g such that g(a) = a′ is at most

n2
(

2−(n−p0−2)r−1
+2−λn

r−1
)
. This immediately implies (4.7), so the proof of Lemma 4.9

is �nished. �

Remark 4.10. If we assume that all relation symbols are always interpreted as irre�exive
and symmetric relations then we get

∣∣Tn(AX ,Π1, . . . ,Πr−1)
∣∣ = exp2

(
r∑
i=1

ki

(
n− p
i

)
+

r∑
j=2

j−1∑
i=1

kjq
′
i

(
n− p
j − i

))
,

where q′i is the number of orbits of the action of H on {B ⊆ A : |B| = i} given by
h({b1, . . . , bi}) = {h(b1), . . . , h(bi)} for every h ∈ H and i-subset {b1, . . . , bi} of A. Under
the same assumptions we still have

∣∣Sn(AX ,Π1, . . . ,Πr−1)
∣∣ ∼ ∣∣Tn(AX ,Π1, . . . ,Πr−1)

∣∣
by the same argument as above (and a modi�cation of Proposition 2.3).

Lemma 4.11. Suppose that Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions. For each
1 ≤ i < r, the proportion ofM∈ Sn(AX ,Π1, . . . ,Πr−1) with the following property is at
most ε(n) where ε(n) → 0 as n → 0 and the function ε depends only on A, H and the
vocabulary:

(†) There are an r-ary relation symbol R, di�erent parts P, P ′ ∈ Πi, ā = (a1, . . . , ai) ∈
P and ā′ = (a′1, . . . , a

′
i) ∈ P ′ such that for every b̄ = (bi+1, . . . , br) ∈ ([n] \X)r−i,

M |= R(ā, b̄) ⇐⇒ M |= R(ā′, b̄).

Proof. By Lemma 4.9 it su�ces to prove that the proportion ofM∈ Tn(AX ,Π1, . . . ,Πr−1)
with property (†) is at most ε(n) where ε(n)→ 0 as n→ 0 and ε depends only on A, H
and the vocabulary. Suppose thatM ∈ Tn(AX ,Π1, . . . ,Πt) and (†) holds, so there are
di�erent parts P, P ′ ∈ Πi, ā = (a1, . . . , ai) ∈ P and ā′ = (a′1, . . . , a

′
i) ∈ P ′ such that for

every b̄ = (bi+1, . . . , br) ∈ ([n] \X)r−i,

M |= R(ā, b̄) ⇐⇒ M |= R(ā′, b̄).

Fix these tuples ā and ā′. The number of ways in which we can interpret R, in suchM,

on tuples of the form āb̄ and ā′b̄ where b̄ ∈ ([n] \ X)r−i is 2(n−p)r−i
, independently of

how R is interpreted on other tuples and independently of how other relation symbols
are interpreted.

On the other hand, forM∈ Tn(AX ,Π1, . . . ,Πr−1) without property (†), the number
of ways in which R can be interpreted on tuples of the form āb̄ and ā′b̄ where b̄ ∈
([n] \ X)r−i is 4(n−p)r−i

, independently of how R is interpreted on other tuples and
independently of how other relation symbols are interpreted. Therefore the proportion of

M∈ Tn(AX ,Π1, . . . ,Πr−1) with property (†) is at most 2(n−p)r−i
/

4(n−p)r−i ≤ 2−(n−p).

�

Lemma 4.12. If Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are two di�erent sequences of (AX , H)-

partitions, then∣∣Sn(AX ,Π1, . . . ,Πr−1) ∩ Sn(AX ,Π′1, . . . ,Π′r−1)
∣∣∣∣Sn(AX ,Π1, . . . ,Πr−1) ∪ Sn(AX ,Π′1, . . . ,Π′r−1)
∣∣ ≤ ε(n).

where ε(n)→ 0 as n→ 0 and the function ε depends only on A, H and the vocabulary.
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Proof. Suppose that Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 are di�erent sequences of (AX , H)-

partitions and that

M ∈ Sn(AX ,Π1, . . . ,Πr−1) ∩ Sn(AX ,Π′1, . . . ,Π′r−1).

Then for some 1 ≤ i < r, there are ā, ā′ ∈ Xi such that ā and ā′ are in the same part of
the partition Π′i but in di�erent parts of the partition Πi, or vice versa. In the �rst case,
M has property (†) from Lemma 4.11 (for every r-ary relation symbol R) when seen as
a member of Sn(X,Π1, . . . ,Πr−1). In the second case, M has property (†) when seen
as a member of Sn(X,Π′1, . . . ,Π

′
r−1). Therefore, using Lemma 4.11, the quotient of the

lemma is at most 2ε(n) where ε(n) → 0 as n → 0 and the function ε depends only on
A, H and the vocabulary.. �

Proof of Lemma 4.6. Let

γ(n) = exp2

(
r∑
i=1

ki(n− p)i +
r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
and let d(A, H) be the number of di�erent sequences Π1, . . . ,Πr−1 of (AX , H)-partitions.
Hence, d(A, H) is �nite and depends only on A, H and the vocabulary. We prove that∣∣Sn(AX , H)

∣∣ ∼ d(A, H)γ(n). From (4.4) it follows that

(4.11)
∣∣Sn(AX , H)

∣∣ ≤ d(A, H)γ(n).

Let Un be the union of all intersections

Sn(AX ,Π1, . . . ,Πr−1) ∩ Sn(AX ,Π′1, . . . ,Π′r−1)

where Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1 range over all unordered pairs of di�erent sequences

of (AX , H)-partitions. If the sums below ranges over such unordered pairs, then, by
Lemma 4.12, we have∣∣Un

∣∣ ≤ ∑∣∣∣Sn(AX ,Π1, . . . ,Πr−1) ∩ Sn(AX ,Π′1, . . . ,Π′r−1)
∣∣∣

≤ ε(n)
∑(∣∣Sn(AX ,Π1, . . . ,Πr−1)

∣∣ +
∣∣Sn(AX ,Π′1, . . . ,Π′r−1)

∣∣)
∼ ε(n) ·

(
d(A, H)

2

)
· 2γ(n),

where ε(n) → 0 as n → ∞ By Lemma 4.9, Sn(AX ,Π1, . . . ,Πr−1) ∼ γ(n) for every
sequence Π1, . . . ,Πr−1 of (AX , H)-partitions. It follows that, for every such sequence,∣∣Sn(AX ,Π1, . . . ,Πr−1)

∣∣ − ∣∣Un

∣∣ ∼ γ(n).

Since Sn(AX ,Π1, . . . ,Πr−1) \ Un and Sn(AX ,Π′1, . . . ,Π′r−1) \ Un are disjoint if
Π1, . . . ,Πr−1 and Π′1, . . . ,Π

′
r−1 are di�erent sequences, it follows that∣∣Sn(AX , H)

∣∣ ≥ ∑∣∣Sn(AX ,Π1, . . . ,Πr−1) \ Un

∣∣
≥
∑(∣∣Sn(AX ,Π1, . . . ,Πr−1)

∣∣ − ∣∣Un

∣∣) ∼ d(A, H)γ(n),

where the sums range over all sequences Π1, . . . ,Πr−1 of (AX , H)-partitions. This to-
gether with (4.11) implies that

∣∣Sn(AX , H)
∣∣ ∼ d(A, H)γ(n), so Lemma 4.6 is proved �

As explained in the paragraph after the statement of Proposition 4.4, it follows from
Lemma 4.6, so now we have also proved Proposition 4.4. We can now derive two corol-
laries of this proposition. These corollaries, as well as the proposition itself will be used
in the next section. It will be convenient to use the following notation:
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De�nition 4.13. Suppose that H is a group of permutations of the set Ω. Then p(H) =
|Ω|, q(H) is the number of orbits of H on Ω and s(H) is the number of orbits of H on
Ω2.

Corollary 4.14. Suppose that r = 2, that A ∈ S has no �xed point and let H be a
subgroup of Aut(A) without any �xed point. Let p = p(H) = |A|, let q = q(H) and
for i = 1, 2 let ki be the number of relation symbols of arity i. Then there is an integer
c(A, H) > 0, depending only on A, H and the vocabulary, such that

∣∣Sn(A, H)
∣∣ ∼ c(A, H)

(
n

p

)
exp2

(
k2n

2 − 2k2(p− q)n + k1n + k2p
2 − k1p

)
.

Proof. By Proposition 4.4 with r = 2 and q = q1, there is an integer c(A, H) > 0,
depending only on A, H and the vocabulary, such that

∣∣Sn(A, H)
∣∣ ∼ c(A, H)

(
n

p

)
exp2

(
2∑
i=1

ki(n− p)i + 2k2q(n− p)

)

= c(A, H)

(
n

p

)
exp2

(
k2n

2 − 2k2(p− q)n + k1n + k2p
2 − k1p

)
.

�

Corollary 4.15. Suppose that r > 2, that A ∈ S has no �xed point and that H is a
subgroup of Aut(A) without any �xed point. Let p = p(H) = |A|, let q = q(H) and
s = s(H). Moreover, let k be the number of r-ary relation symbols, let l be the number
of (r − 1)-ary relation symbols, let m be the number of (r − 2)-ary relation symbols and
de�ne

β(x, y, z) = k

(
r

2

)
x2 − kr(r − 1)xy − l(r − 1)x + l(r − 1)y + k

(
r

2

)
z.

Then there is an integer c(A, H), depending only on A, H and the vocabulary, such that

∣∣Sn(A, H)
∣∣ ∼ c(A, H)

(
n

p

)
·

exp2

(
knr −

(
kr(p− q) − l

)
nr−1 +

(
β(p, q, s) + m

)
nr−2 + O

(
nr−3

))
.

Proof. For every i = 1, . . . r − 1, let qi be the number of orbits of H on Ai. For
every j = 1, . . . , r, let kj be the number of relation symbols of arity j. So we have
q1 = q, q2 = s, kr = k, kr−1 = l and kr−2 = m. By Proposition 4.4, there is an integer
c(A, H) > 0, depending only on A, H and the vocabulary, such that

∣∣Sn(A, H)
∣∣ ∼ c(A, H)

(
n

p

)
exp2

(
λ(n)

)
,
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where

λ(n) =
r∑
i=1

ki(n− p)i +
r∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

=

(
r−3∑
i=1

ki(n− p)i
)

+ m(n− p)r−2 + l(n− p)r−1 + k(n− p)r

+

(
r−2∑
j=2

j−1∑
i=1

kj

(
j

i

)
qi(n− p)j−i

)
+

(
r−2∑
i=1

l

(
r − 1

i

)
qi(n− p)r−1−i

)

+

r−1∑
i=1

k

(
r

i

)
(n− p)r−i

= m(n− p)r−2 + l(n− p)r−1 + k(n− p)r

+ l(r − 1)q(n− p)r−2 + krq(n− p)r−1 + k

(
r

2

)
s(n− p)r−2 + O

(
nr−3

)
= knr −

(
kr(p− q) − l

)
nr−1 +

(
β(p, q, s) + m

)
nr−2 + O

(
nr−3

)
.

�

5. Comparing different groups

In this section we use the analysis from Section 4 to prove Theorem 1.1, which collects the
statements of Propositions 5.10, 5.15 and 5.16. The main technical result of the section
is Proposition 5.9 which helps to break down more complex problems to problems about
quotients of the form Sn(A, H)

/
Sn(A′, H ′), where the meaning of Sn(A, H) was given

by De�nition 4.1. Also recall De�nition 4.13 of p(H), q(H) and s(H) for a permutation
group H. As usual, r denotes the maximal arity and in this section k denotes the
number of r-ary relation symbols and l denotes the number of (r−1)-ary relation symbols.
Parts (ii) and (iii) of the next result will not be used in this article, but they are used
in [16].

Proposition 5.1. Suppose that A,A′ ∈ S are such that neither Aut(A) nor Aut(A′) has
a �xed point. Moreover, suppose that H is a subgroup of Aut(A) without �xed any point
and that H ′ is a subgroup of Aut(A′) without any �xed point. Let p = p(H), q = q(H),
s = s(H), p′ = p(H ′), q′ = q(H ′) and s′ = s(H ′).
(i) The following limit exists in Q ∪ {∞}:

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ .

(ii) Suppose that r = 2.

(a) If p− q < p′ − q′ or if p− q = p′ − q′ and p > p′, then

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = 0.

(b) If p− q = p− q′ and p = p′ then there is a rational number a > 0, depending only
on A, A′, H, H ′ and the vocabulary, such that

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = a.

(iii) Suppose that r > 2 and let β(x, y, z) be as in Corollary 4.15. If any one of the two
conditions
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p− q < p′ − q′, or
p− q = p′ − q′ and β(p, q, s) > β(p′, q′, s′)

hold, then

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = 0.

Proof. (i) From Proposition 4.4 it follows that there are integers C,C ′ > 0 and poly-
nomials λ(x), λ′(x) with integer coe�cients, depending only on A, A′, H, H ′ and the
vocabulary, such that ∣∣Sn(A′, H ′)

∣∣∣∣Sn(A, H)
∣∣ ∼ C ′

(
n
p′

)
C
(
n
p

) exp2

(
λ′(n)− λ(n)

)
.

Depending on whether the leading term in the polynomial λ′(n) − λ(n) has positive
degree and negative coe�cient, positive degree and positive coe�cient, or is constant,

exp2

(
λ′(n)− λ(n)

)
approaches 0, ∞, or a positive real as n→∞, respectively. In the �rst case∣∣Sn(A′, H ′)

∣∣/∣∣Sn(A, H)
∣∣

approaches 0. In the second case it approaches ∞. In the third case, when λ′(n)− λ(n)
is constant, we get the conclusion by considering whether p > p′, p = p′ or p < p′.

(ii) Suppose that r = 2. Then Corollary 4.14 says that for some positive integers C
and C ′, depending only on A, A′, H, H ′ and the vocabulary, we have∣∣Sn(A′, H ′)

∣∣∣∣Sn(A, H)
∣∣ ∼ C ′

(
n
p′

)
C
(
n
p

) exp2

(
2k
[
(p− q)− (p′ − q′)

]
n + k

[
(p′)2 − (p)2

]
+ l[p− p′]

)
.

From this we immediately get claims (a) and (b).
(iii) Suppose that r > 2. Then Corollary 4.15 implies that for some positive integers

C and C ′, depending only on A, A′, H, H ′ and the vocabulary, we have∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ ∼ C ′

(
n
p′

)
C
(
n
p

) exp2

(
kr
[
(p− q) − (p′ − q′)

]
nr−1

+
[
β(p′, q′, s′) − β(p, q, s)

]
nr−2 + O

(
nr−3

))
.

So if p − q < p′ − q′ or if p − q = p′ − q′ and β(p, q, s) > β(p′, q′, s′), then this quotient
approaches 0 as n→∞. �

For the rest of this section, whenever we denote structures by A or A′, some-

times with indices, we assume that they have no �xed point. Also, whenever

we denote groups by H or H ′, sometimes with indices, we assume that they

have no �xed point. Sometimes these assumptions are repeated and sometimes they
are not necessary.

For di�erent subgroups H and H ′ of Aut(A) the sets Sn(A, H) and Sn(A, H ′) may
have nonempty intersections, which complicates the analysis of an asymptotic estimate of
the cardinality of a union like

⋃m
i=1 Sn(A, Hi). However, it turns out that for subgroups

H andH ′ of Aut(A), either Sn(A, H) = Sn(A, H ′) or
∣∣Sn(A, H)∩Sn(A, H ′)

∣∣ is negligibly
small for large enough n. The results 5.3 � 5.8 make this statement precise.
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De�nition 5.2. Suppose that A ∈ S and that H and H ′ are subgroups of Aut(A).
We write H ≈A H ′ if there is an automorphism g ∈ Aut(A) such that, for every t =
1, . . . , r − 1, and every orbit O of H on At,

g(O) = {(g(a1), . . . , g(at)) : (a1, . . . , at) ∈ O}
is an orbit of H ′ on At.

Observe that ≈A is an equivalence relation on the set of subgroups of Aut(A).

Lemma 5.3. Suppose that A ∈ S and that H and H ′ are subgroups of Aut(A). If
H ≈A H ′ then Sn(A, H) = Sn(A, H ′).

Proof. Suppose that H ≈A H ′. Recall from the discussion after the statement of
Proposition 4.4 that Sn(A, H) is the disjoint union of all sets of the form

Sn(AX , H) = {M ∈ Sn(A, H) :M�Spt∗(M) = AX},
where X ⊆ [n], |X| = |A|, AX has universe X and AX ∼= A; and similarly for H ′.
Therefore it su�ces to prove that for all such X ⊆ [n] and AX we have Sn(AX , H) =
Sn(AX , H ′). By (4.4),

Sn(AX , H) =
⋃

Π1,...,Πr−1

Sn(AX ,Π1, . . . ,Πr−1),

where the union ranges over all sequences Π1, . . . ,Πr−1 of (AX , H)-partitions (see Def-
inition 4.8) and Sn(AX ,Π1, . . . ,Πr−1) was de�ned in (4.2). The same holds for H ′.
Hence it su�ces to show that if Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions, then
Π1, . . . ,Πr−1 is a sequence of (AX , H ′)-partitions.

So suppose that Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions and hence there is
an isomorphism f : A → AX such that, for each t = 1, . . . , r−1, Πt is the set of orbits of
Hf = {fσf−1 : σ ∈ H} on Xt. As we assume that H ≈A H ′, there is an automorphism
g ∈ Aut(A) such that, for every t = 1, . . . , r − 1 and every orbit O of H on At, g(O) is
an orbit of H ′ on At. It follows that f ′ = fg−1 : A → AX is an isomorphism and for
each t and each orbit O′ of H ′ on At, g−1(O′) is an orbit of H on At. Consequently, for
each t, Πt is the set of orbits of Hf ′ = {f ′σ(f ′)−1 : σ ∈ H ′} on Xt, so Π1, . . . ,Πr−1 is a
sequence of (AX , H ′)-partitions. �

Lemma 5.4. Suppose that A ∈ S and that H and H ′ are subgroups of Aut(A) such
that H 6≈A H ′. Let X ⊆ [n], |X| = |A| and let AX have universe X and AX ∼= A.
If Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions and Π′1, . . . ,Π

′
r−1 is a sequence of

(AX , H ′)-partitions, then (Π1, . . . ,Πr−1) 6= (Π′1, . . . ,Π
′
r−1).

Proof. Suppose that H 6≈A H ′, Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions and
Π′1, . . . ,Π

′
r−1 is a sequence of (AX , H ′)-partitions. Towards a contradiction, assume

that (Π1, . . . ,Πr−1) = (Π′1, . . . ,Π
′
r−1). Then there are isomorphisms f : A → AX and

f ′ : A → AX such that, for every t = 1, . . . , r−1, Πt is the set of orbits of Hf = {fσf−1 :
σ ∈ H} on Xt and Πt is also the set of orbits of Hf ′ = {f ′σ(f ′)−1 : σ ∈ H ′} on Xt. So
Hf and Hf ′ have the same orbits on Xt, for each t. It follows that g = (f ′)−1f : A → A
is an automorphism such that for every t = 1, . . . , r − 1 and every orbit O of H on At,
g(O) is an orbit of H ′ on At. Hence H ≈A H ′ which contradicts our assumption. �

Lemma 5.5. Suppose that A ∈ S and that H and H ′ are subgroups of Aut(A) such that
H 6≈A H ′. Suppose that X ⊆ [n], |X| = |A| and that AX is a structure with universe X
such that AX ∼= A. If Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions and Π′1, . . . ,Π

′
r−1

is a sequence of (AX , H ′)-partitions, then∣∣Sn(AX ,Π1, . . . ,Πr−1) ∩ Sn(AX ,Π′1, . . . ,Π′r−1)
∣∣∣∣Sn(AX ,Π1, . . . ,Πr−1) ∪ Sn(AX ,Π′1, . . . ,Π′r−1)
∣∣ ≤ ε(n),
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where ε(n) → 0 as n → ∞ and the function ε : N → R only depends on A, H, H ′ and
the vocabulary.

Proof. The assumptions and Lemma 5.4 imply that (Π1, . . . ,Πr−1) 6= (Π′1, . . . ,Π
′
r−1).

Lemma 4.11 is applicable to each one of the sequences Π1, . . . ,Πr−1 and Π′1, . . . ,Π
′
r−1.

Now observe that the proof of Lemma 4.12 works out in exactly the same way even
if Π1, . . . ,Πr−1 is a sequence of (AX , H)-partitions and Π′1, . . . ,Π

′
r−1 is a sequence of

(AX , H ′)-partitions; the proof of Lemma 4.12 only uses the assumption that the se-
quences Π1, . . . ,Πr−1 and Π′1, . . . ,Π

′
r−1 are di�erent. Hence Lemma 5.5 is proved. �

Remark 5.6. If A ∈ S and H ⊆ Aut(A) is a subgroup, then, by Lemma 4.6 and the
argument between Proposition 4.4 and Lemma 4.6,∣∣Sn(A, H)

∣∣ ∼ C

(
n

|A|

)∣∣Sn(AX , H)
∣∣,

where C is a constant that depends only on A, H and the vocabulary, X ⊆ [n], AX is a
structure with universe X such that AX ∼= A (and Sn(AX , H) is as de�ned in (4.1)).

Corollary 5.7. Suppose that A ∈ S and that H and H ′ are subgroups of Aut(A) such
that H 6≈A H ′. Then ∣∣Sn(A, H) ∩ Sn(A, H ′)

∣∣∣∣Sn(A, H) ∪ Sn(A, H ′)
∣∣ ≤ ε(n),

where ε(n) → 0 as n → ∞ and the function ε only depends on A, H, H ′ and the
vocabulary.

Proof. Suppose that A ∈ S and that H and H ′ are subgroups of Aut(A) such that
H 6≈A H ′. By Remark 5.6, it su�ces to prove that there is a function ε(n), depending
only on A, H and the vocabulary, such that limn→∞ ε(n) = 0 and for every X ⊆ [n] and
AX as above, ∣∣Sn(AX , H) ∩ Sn(AX , H ′)

∣∣∣∣Sn(AX , H) ∪ Sn(AX , H ′)
∣∣ ≤ ε(n).

Recall from (4.4) that

Sn(AX , H) =
⋃

Π1,...,Πr−1

Sn(AX ,Π1, . . . ,Πr−1)

where the union ranges over all sequences of (AX , H)-partitions. Given X and AX there
is a �nite bound α, depending only on A, H, H ′ and the vocabulary, such that there
are at most α sequences Π1, . . . ,Πr−1 of (AX , H)-partitions and at most α sequences
Π′1, . . . ,Π

′
r−1 of (AX , H ′)-partitions. Therefore the bound we are looking for is a �xed

multiple of the bound given by Lemma 5.5. �

Lemma 5.8. Suppose that A ∈ S and that Hi, i = 1, . . . ,m, are subgroups of Aut(A)

such that if i 6= j, then Hi 6≈A Hj and
∣∣Sn(A, Hi)

∣∣/∣∣Sn(A, Hj)
∣∣ converges to a positive

rational number. Then ∣∣∣∣∣
m⋃
i=1

Sn(A, Hi)

∣∣∣∣∣ ∼
m∑
i=1

∣∣Sn(A, Hi)
∣∣.

Proof. From Corollary 5.7 it follows that if i 6= i′ then

(5.1)
∣∣Sn(A, Hi) ∩ Sn(A, Hi′)

∣∣ ≤ o(1)
(∣∣Sn(A, Hi)

∣∣ +
∣∣Sn(A, Hi′)

∣∣),
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where the bound o(1) depends only on A, H1, . . . ,Hm and the vocabulary. Now the as-

sumption that
∣∣Sn(A, Hi)

∣∣/∣∣Sn(A, Hi′)
∣∣ converges to a positive rational number and (5.1)

implies that if i 6= i′, then∣∣Sn(A, Hi) ∩ Sn(A, Hi′)
∣∣ ≤ o(1)

∣∣Sn(A, Hi)
∣∣,

for some bound o(1) which depends only on A, H1, . . . ,Hm and the vocabulary. If we
let Un be the union of all intersections

Sn(A, Hi) ∩ Sn(A, Hi′)

where {i, i′} range over all subsets of [m] with cardinality 2, then we get, for every i,∣∣Sn(A, Hi)
∣∣ − ∣∣Un

∣∣ ≥ (
1− o(1)

)∣∣Sn(A, Hi)
∣∣,

where the bound o(1) depends only on A and H1, . . . ,Hm. Now we get∣∣∣∣∣
m⋃
i=1

Sn(A, Hi)

∣∣∣∣∣ ≥
m∑
i=1

(∣∣Sn(A, Hi)
∣∣ − ∣∣Un

∣∣) ≥ (
1− o(1)

) m∑
i=1

∣∣Sn(A, Hi)
∣∣.

Since also ∣∣∣∣∣
m⋃
i=1

Sn(A, Hi)

∣∣∣∣∣ ≤
m∑
i=1

∣∣Sn(A, Hi)
∣∣

the proof of the lemma is �nished. �

Proposition 5.9. Let A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S be such that none of them has any
�xed point. Suppose that for every i = 1, . . . ,m and j = 1, . . . , li, Hi,j is a subgroup
of Aut(Ai) without any �xed point and that for every i = 1, . . . ,m′ and j = 1, . . . , l′i
H ′i,j is a subgroup of Aut(A′i) without any �xed point. Then the following limit exists in

Q ∪ {∞}:

(5.2) lim
n→∞

∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ .
Proof. By just removing, if necessary, some Ai or A′i and relabelling the rest of the
structures and groups, we may assume that Ai 6∼= Aj if i 6= j and A′i 6∼= A′j if i 6= j. Also,

by Lemma 5.3, we may assume that Hi,j 6≈Ai Hi,j′ if j 6= j′ and that H ′i,j 6≈A′i H
′
i,j′ if

j 6= j′.
By Proposition 5.1 (i), for all 1 ≤ i ≤ m and all 1 ≤ j, j′ ≤ li,∣∣Sn(Ai, Hi,j′)

∣∣/∣∣Sn(Ai, Hi,j)
∣∣

converges to a rational number or approaches in�nity, as n → ∞. The same holds for

all 1 ≤ i ≤ m′, all 1 ≤ j, j′ ≤ l′i and
∣∣Sn(A′i, H ′i,j′)

∣∣/∣∣Sn(A′i, H ′i,j)
∣∣. Therefore it su�ces

to prove (5.2) under the assumption that for all 1 ≤ i ≤ m and all 1 ≤ j, j′ ≤ li,∣∣Sn(Ai, Hi,j′)
∣∣/∣∣Sn(Ai, Hi,j)

∣∣ converges to a positive rational number and for all 1 ≤ i ≤

m′ and all 1 ≤ j, j′ ≤ l′i,
∣∣Sn(A′i, H ′i,j′)

∣∣/∣∣Sn(A′i, H ′i,j)
∣∣ converges to a positive rational

number.
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From our assumptions we have Sn(Ai, Hi,j)∩Sn(Ai′ , Hi′,j′) = ∅ if i 6= i′ (and the same
for A′i, A′j , H ′i,j and H ′i,j′). By applying Lemma 5.8 and the assumptions, we now get∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ =

∑m′

i=1

∑l′i
j=1

∣∣Sn(A′i, H ′i,j)
∣∣∑m

i=1

∑li
j=1

∣∣Sn(Ai, Hi,j)
∣∣

=

∣∣Sn(A′1, H1,1)
∣∣∑m

i=1

∑li
j=1

∣∣Sn(Ai)
∣∣ + . . . +

∣∣Sn(A′m′ , Hm′lm′
)
∣∣∑m

i=1

∑li
j=1

∣∣Sn(Ai, Hi,j)
∣∣

=

(
m∑
i=1

li∑
j=1

∣∣Sn(Ai, Hi,j)
∣∣∣∣Sn(A′1, H

′
1,1)
∣∣
)−1

+ . . . +

(
m∑
i=1

li∑
j=1

∣∣Sn(Ai, Hi,j)
∣∣∣∣Sn(A′m′ , H

′
m′,lm′

)
∣∣
)−1

.

Note that Proposition 4.4 implies that, for all i, j and all su�ciently large n,
∣∣Sn(Ai, Hi,j)

∣∣ >
0, and similarly for and A′i and H ′i,j , so we do not divide by zero in the above expres-

sion if n is large enough. By Proposition 5.1 (i), for every choice of i, i′, j and j′,∣∣Sn(Ai, Hi,j)
∣∣/∣∣Sn(A′i′ , H ′i′,j′)

∣∣ converges to a rational number or approaches ∞. This

implies (5.2) so the proposition is proved. �

Proposition 5.10. Let G and G′ be �nite groups. Then the following limit exists in
Q ∪ {∞}:

lim
n→∞

∣∣{M∈ Sn : G′ ≤ Aut(M)
}∣∣∣∣{M∈ Sn : G ≤ Aut(M)
}∣∣ .

Proof. Let G and G′ be �nite groups. Lemma 4.3 implies that there are �nitely many

structures A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S,

subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai), for i = 1, . . . ,m, and

subgroups H ′i,1, . . . ,H
′
i,l′i
⊆ Aut(A′i), for i = 1, . . . ,m′,

such that the following hold:

(i) None of the permutation groups Aut(Ai), Aut(A′i), Hi,j or Hi,j has any �xed
point.

(ii)
∣∣{M ∈ Sn : G ≤ Aut(M)

}∣∣ ∼ ∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ as n→∞.

(iii)
∣∣{M ∈ Sn : G′ ≤ Aut(M)

}∣∣ ∼ ∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣ as n→∞.

Hence it su�ces to prove that

lim
n→∞

∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣
exists in Q ∪ {∞}. But this follows immediately from Proposition 5.9. �

By the de�nition of Sn(A, H) (De�nition 4.1), for every M ∈ Sn(A, H), Aut(M)�
Spt∗(M) has a subgroup Hf such that Hf

∼=P H. The next lemma shows that for
almost allM∈ S(A, H) any such Hf has the same orbits as Aut(M)�Spt∗(M).

Lemma 5.11. Suppose that A ∈ S has no �xed point and that H is a subgroup of
Aut(A) without any �xed point. There is a function ε(n), depending only on A, H and
the vocabulary, such that limn→∞ ε(n) = 0 and the proportion of M ∈ Sn(A, H) with
the following property is at most ε(n):
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(∗) For some isomorphism f : A → M�Spt∗(M) such that Hf = {fσf−1 : σ ∈ H}
is a subgroup of Aut(M)�Spt∗(M), there is t ∈ {1, . . . , r − 1} such that the
orbits of Aut(M)�Spt∗(M) on Spt∗(M)t are not the same as the orbits of Hf

on Spt∗(M)t.

Proof. LetM∈ Sn(A, H), X = Spt∗(M) and AX =M�X, so AX ∼= A. Moreover, let
f : A → AX be an isomorphism and assume that Hf = {fσf−1 : σ ∈ H} is a subgroup
of Aut(M)�X. Suppose that for some t ∈ {1, . . . , r− 1} the orbits of Aut(M)�X on Xt

are not the same as the orbits of Hf on Xt. It follows that Aut(M)�X has fewer orbits
on Xt than Hf . Hence there is a subgroup H ′ of Aut(A) such that H ⊆ H ′, H ′ has
fewer orbits than H on At andM∈ Sn(A, H ′). It follows that H ′ 6≈A H and that

M∈ Sn(A, H ′) ∩ Sn(A, H).

Now Corollary 5.7 implies that∣∣Sn(A, H) ∩ Sn(A, H ′)
∣∣ ≤ ε(n)

∣∣Sn(A, H) ∪ Sn(A, H ′)
∣∣,

where ε(n) → 0 as n → ∞ and ε(n) only depends on A, H, H ′ and the vocabulary.
Since H is a subgroup of H ′ we have

Sn(A, H ′) ⊆ Sn(A, H),

which implies that

(5.3)
∣∣Sn(A, H ′)

∣∣ ≤ ε(n)
∣∣Sn(A, H)

∣∣.
We have proved that if M ∈ Sn(A, H) and satis�es (∗) then M ∈ Sn(A, H ′) for some
subgroup H ′ of Aut(A) such that (5.3) holds. As the number of subgroups H ′ of Aut(A)
is �nite and depends only on A the lemma follows. �

De�nition 5.12. Suppose that A ∈ S has no �xed point and that H is a subgroup
of Aut(A) without any �xed point. For M ∈ Sn(A, H) we say that H is the full
automorphism group of M if for every isomorphism f : A → M�Spt∗(M) such that
Hf = {fσf−1 : σ ∈ H} is a subgroup of Aut(M)�Spt∗(M) we have Hf = Aut(M)�
Spt∗(M).

Lemma 5.13. Suppose that A ∈ S has no �xed point and that H is a subgroup of
Aut(A) without any �xed point. The proportion of M ∈ Sn(A, H) such that H is the
full automorphism group ofM converges to either 0 or 1 as n→∞.

Proof. By Lemma 5.11, it su�ces to considerM ∈ Sn(A, H) with the following prop-
erty:

For every isomorphism f : A → M�Spt∗(M) such that Hf is a subgroup of
Aut(M)�Spt∗(M), Hf and Aut(M)�Spt∗(M) have the same orbits on Spt∗(M)t

for all t = 1, . . . , r − 1.

For such M the question whether there is g ∈ Aut(M)�Spt∗(M) such that g /∈ Hf

depends only on the isomorphism type of A, H and the isomorphism f : A → M�
Spt∗(M). In fact, it depends only on the isomorphism type of A and H. For if f
and f ′ are isomorphisms from A to M�Spt∗(M), Hf = Aut(M)�Spt∗(M) and g ∈
Aut(M)�Spt∗(M) does not belong to Hf ′ , then, since |Hf | = |Hf ′ | (because f ′f−1 is
an isomorphism from Hf to Hf ′ as permutation groups), we get |Hf ′ | < |Aut(M)| =
|Hf | = |Hf ′ |, which is impossible. �

Lemma 5.14. Suppose that A ∈ S has no �xed point and that H ⊆ Aut(A) is a subgroup
without any �xed point. For every group G ≤ H, the proportion of M ∈ Sn(A, H) such
that G ∼= Aut(M) converges to either 0 or 1 as n→∞.
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Proof. Suppose that A ∈ S has no �xed point, that H ⊆ Aut(A) is a subgroup without
any �xed point and G ≤ H. Since Aut(M) ∼= Aut(M)�Spt∗(M) for every M ∈ S,
Lemma 5.13 implies that the proportion of M ∈ Sn(A, H) such that H ∼= Aut(M)
converges to either 0 or 1 as n → ∞. If G ∼= H it follows that the proportion of
M ∈ Sn(A, H) such that G ∼= Aut(M) converges to either 0 or 1 as n → ∞. If G is
isomorphic to a proper subgroup ofH then, sinceH ≤ Aut(M) for everyM∈ Sn(A, H),
it follows that G 6∼= Aut(M) for everyM∈ Sn(A, H). �

Proposition 5.15. If G is a �nite group then there is a rational number 0 ≤ a ≤ 1 such
that

lim
n→∞

∣∣{M∈ Sn : G ∼= Aut(M)
}∣∣∣∣{M∈ Sn : G ≤ Aut(M)
}∣∣ = a.

Proof. Let G be a �nite group. By Lemma 4.3, there are �nitely many

structures A1, . . . ,Am ∈ S and

subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai), for i = 1, . . . ,m

such that:

(i) None of the permutation groups Aut(Ai) or Hi,j has a �xed point.
(ii) G ≤ Hi,j for all i and j.

(iii)
∣∣{M ∈ Sn : G ≤ Aut(M)

}∣∣ ∼ ∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ as n→∞.

Lemma 5.14 says that for every Ai and every Hi,j the proportion of M ∈ Sn(Ai, Hi,j)
such that G ∼= Aut(M) converges to either 0 or 1. Let (A′i, H ′i,j), i = 1, . . . ,m′, j =

1, . . . , l′i, enumerate the pairs (Ai, Hi,j) such that the proportion ofM∈ Sn(Ai, Hi,j) for
which G ∼= Aut(M) converges to 1. Then∣∣{M∈ Sn : G ∼= Aut(M)

}∣∣∣∣{M∈ Sn : G ≤ Aut(M)
}∣∣ ∼

∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ → a as n→∞

for some rational 0 ≤ a ≤ 1, by Proposition 5.9. �

Proposition 5.16. Let G and G′ be �nite groups. Then the following limit exists in
Q ∪ {∞}:

lim
n→∞

∣∣{M∈ Sn : G′ ∼= Aut(M)
}∣∣∣∣{M∈ Sn : G ∼= Aut(M)
}∣∣ .

Proof. By Lemma 4.3, there are �nitely many

structures A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S,

subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai), for i = 1, . . . ,m, and

subgroups H ′i,1, . . . ,H
′
i,l′i
⊆ Aut(A′i), for i = 1, . . . ,m′,

such that:

(i) None of the permutation groups Aut(Ai), Aut(A′i), Hi,j or Hi,j has any �xed
point.

(ii) G ≤ Hi,j and G
′ ≤ H ′i,j for all i, j.

(iii)
∣∣{M ∈ Sn : G ≤ Aut(M)

}∣∣ ∼ ∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ as n→∞.

(iv)
∣∣{M ∈ Sn : G′ ≤ Aut(M)

}∣∣ ∼ ∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣ as n→∞.

As in the proof of Proposition 5.15 we now use Lemma 5.14. So let (A∗i , H∗i,j), i =

1, . . . ,m∗, j = 1, . . . , l∗i , enumerate all pairs (Ai, Hi,j) such that the proportion of
M ∈ Sn(Ai, Hi,j) for which G ∼= Aut(M) converges to 1. Similarly, let (A+

i , H
+
i,j),
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i = 1, . . . ,m+, j = 1, . . . , l+i , enumerate all pairs (A′i, H ′i,j) such that the proportion of

M∈ Sn(A′i, H ′i,j) for which G′ ∼= Aut(M) converges to 1. Then∣∣{M∈ Sn : G′ ∼= Aut(M)
}∣∣∣∣{M∈ Sn : G ∼= Aut(M)
}∣∣ ∼

∣∣∣⋃m+

i=1

⋃l+i
j=1 Sn(A+

i , H
+
i,j)
∣∣∣∣∣∣⋃m∗

i=1

⋃l∗i
j=1 Sn(A∗i , H∗i,j)

∣∣∣ ,
where, by Proposition 5.9, the right side converges to a rational number or tends to
in�nity as n→∞. �

Remark 5.17. By the use of Lemma 4.3 and arguments similar to those already carried
out one can prove that an/bn converges to a rational number as n→∞ if, for example,
an = |Sn(spt ≥ k1)| and bn = |Sn(spt ≥ k2)|.

6. Logical limit laws

The main results of this section are Theorems 6.1 and 6.2, where the later implies Theo-
rem 1.2. In Remark 6.9 we observe that we do not have a zero-one law in Theorems 6.2
or 1.2.

Theorem 6.1. Suppose that A ∈ S has no �xed point and let H be a subgroup of Aut(A)
without any �xed point. Then S(A, H) has a zero-one law.

Before proving Theorem 6.1 we derive:

Theorem 6.2. (i) Let A1, . . . ,Am ∈ S be such that none of them has any �xed point.
Suppose that for every i = 1, . . . ,m and j = 1, . . . , li, Hi,j is a subgroup of Aut(Ai) with-

out any �xed point. Then

m⋃
i=1

li⋃
j=1

S(Ai, Hi,j) has a limit law. Moreover the limit always

belongs to a �nite set of rational numbers which is determined only by the structures Ai
and the permutation groups Hi,j.
(ii) The following sets have limit laws: for every �nite group G, {M ∈ S : G ∼= Aut(M)}
and {M ∈ S : G ≤ Aut(M)}, and for every integer m ≥ 2, S(spt∗ = m), S(spt ≥ m)
and S(spt∗ ≥ m). Moreover, in each case there is a �nite set Q ⊆ Q such that for every
sentence ϕ, the proportion of structures in which ϕ is true converges to a number in Q.

Proof. Part (i) is immediate from Theorem 6.1 and Proposition 5.9. For part (ii) let X
be any one of the sets of structures considered. By Lemmas 4.2 and 4.3 (and in one case
the proof of Proposition 5.15), there are structures A1, . . . ,Al ∈ S without any �xed
point and for every i = 1, . . . , l and j = 1, . . . , li, a subgroup Hi,j of Aut(Ai) without
any �xed point, such that if Xn = X ∩ Sn then∣∣Xn

∣∣ ∼ ∣∣∣∣∣
l⋃

i=1

li⋃
j=1

Sn(Ai, Hi,j)

∣∣∣∣∣.
Now part (ii) follows from part (i). �

6.1. Proof of Theorem 6.1. Suppose that A ∈ S has no �xed point and let H be a
subgroup of Aut(A) without any �xed point. We will de�ne a theory TA,H and show that
it is consistent and complete and that for every �nite subset ∆ ⊆ TA,H , the proportion
of M ∈ Sn(A, H) such that M |= ∆ approaches 1 as n → ∞. Then the compactness
theorem implies that if TA,H |= ϕ then the proportion of M ∈ Sn(A, H) in which ϕ is
true approaches 1 as n → ∞; otherwise that proportion approaches 0. The argument
follows a well known path, using so-called extension axioms. What makes things more
complicated here, compared with Fagin's original proof [6, 8] that for every k ∈ N the
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proportion ofM∈ Sn satisfying the k-extension axiom approaches 1 as n→∞, is that
all members of Sn(A, H) have nonempty support (of cardinality |A|).

To make the main ideas of the argument more transparent, to avoid heavy formulations
and notation and to expose more clearly how our argument di�ers from the �standard
argument� (in [6, 8] for example), we will prove Theorem 6.1 in the special case when
the vocabulary consists of only one binary relation symbol R. It is straightforward to
generalise the argument to any �nite relational vocabulary with at least one relation
symbol of arity at least 2, but it comes at the expense of longer de�nitions and heavier
notation and formulations in order to keep track of all data and how it can be com-
bined. Moreover, the arguments can be modi�ed to the case when we assume that some
(possibly all) relation symbols are always interpreted as irre�exive relations, or when we
assume that some (possibly all) relation symbols are always interpreted as irre�exive and
symmetric relations.

For any structureM and formula ϕ(x) we let

ϕ(M) = {a ∈M :M |= ϕ(a)}.
Let p = |A|, A = {a1, . . . , ap} and let x1, . . . , xp be distinct variables. For ai, aj ∈ A,
let ai ≈ aj mean that ai and aj belong to the same orbit of H. Let χA(x1, . . . , xp) be
a formula which describes the isomorphism type of A. More precisely, χA(x1, . . . , xp)
is the conjunction of all formulas of the following form: xi 6= xj for i 6= j; R(xi, xj) if
A |= R(ai, aj); and ¬R(xi, xj) if A |= ¬R(ai, aj).

We will de�ne formulas θ(x), ξ(x, y) such that the proportion ofM∈ Sn(A, H) such
that the following hold approaches 1 as n→∞:

(I) For every a ∈M ,M |= θ(a) if and only if a ∈ Spt∗(M).
(II) M satis�es following sentence, denoted ψ:

∃x1, . . . , xm

(
χA(x1, . . . , xm) ∧ ∀y

[
θ(y) ←→

m∨
i=1

y = xi

]
∧∧

ai≈aj

ξ(xi, xj) ∧
∧
ai 6≈aj

¬ξ(xi, xj) ∧

m∧
i,j=1

∀y
[
¬θ(y) ∧ ξ(xi, xj) −→

(
ξ(y, xi)←→ ξ(y, xj)

)
∧
(
ξ(xi, y)←→ ξ(xj , y)

)])
.

It is straightforward to de�ne, for every k ∈ N, a sentence ϕk such that for every, possibly
in�nite, structureM:

(III) IfM |= ϕk then the following hold:
(a)

∣∣θ(M)
∣∣ = m and the relation de�ned by ξ(x, y) restricted to θ(M) is an

equivalence relation.
(b) For every choice of i ∈ {0, 1}, B ⊆ M \ θ(M) with |B| = k, sets E,E′ of

ξ-equivalence classes on θ(M) and Y, Y ′ ⊆ B, there is c ∈ M \ θ(M) such
that

(i) M |= R(c, c) ⇐⇒ i = 1,
(ii) for every a ∈ θ(M),
M |= R(c, a) ⇐⇒ a belongs to some class in E and
M |= R(a, c) ⇐⇒ a belongs to some class in E′, and

(iii) for every b ∈ B,
M |= R(c, b) ⇐⇒ b ∈ Y and
M |= R(b, c) ⇐⇒ b ∈ Y ′.
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We call ϕk the k-extension axiom. Assuming that we have θ(x), ξ(x, y), ψ and ϕk, k ∈ N,
as above, we let

TA,H = {ψ} ∪ {ϕk : k ∈ N}.
Note that every model of TA,H is in�nite. We postpone the proof that TA,H has a
model to the end of the argument. By �os' and Vaught's categoricity theorem (see
[19], Theorem 8.5.1, for instance), TA,H is complete if we can prove that it is countably
categorical.

Lemma 6.3. IfM1 andM2 are countable models of TA,H thenM1
∼=M2.

Proof. This is a standard back-and-forth argument, so we only sketch it. Suppose
that M1 and M2 are countable models of TA,H . Since both M1 and M2 satisfy ψ it
follows that θ(M1) and θ(M2) are �nite and that there is an isomorphism f0 : M1�
θ(M1) → M2�θ(M2) such that for all a, b ∈ θ(M1), M1 |= ξ(a, b) if and only if
M2 |= ξ(f0(a), f0(b)). Therefore it su�ces to prove the following statement:

Claim. Suppose that B1 ⊆M1 \ θ(M1), B2 ⊆M2 \ θ(M2) and that

f :M1�(θ(M1) ∪B1)→M2�(θ(M2) ∪B2)

is an isomorphism. If c1 ∈ M1 \ (θ(M1) ∪ B1) (or c2 ∈ M2 \ (θ(M2) ∪ B2)) then there
is c2 ∈ M2 \ (θ(M2) ∪ B2) (or c1 ∈ M1 \ (θ(M1) ∪ B1)) such that f can be extended to
an isomorphism fromM1�(θ(M1) ∪B1 ∪ {c1}) toM2�(θ(M2) ∪B2 ∪ {c2}).

Let k = |B1| = |B2|. The claim follows in a straigthforward way since M and N are
models of {ψ,ϕk}. �

It remains to show that there are θ(x) and ξ(x, y) such that, for every k, the proportion
ofM ∈ Sn(A, H) that satisfy (I) and the sentences ψ and ϕk approaches 1 as n → ∞.
Recall that, with the notation from Section 4,

Sn(A, H) =
⋃
X

⋃
AX

SX(AX , H),

where the �rst union ranges over all subsets of [n] with cardinality m = |A|, and for each
such subset X, the second union ranges over all structures AX with universe X that
are isomorphic to A. As observed in that section, if X 6= X ′ then Sn(AX , H) is disjoint
from Sn(AX′ , H). Moreover, if AX and A′X are di�erent structures with universe X then
Sn(AX , H) is disjoint from Sn(A′X , H). Recall our assumption in this proof that there is
only one relation symbol R and it has arity r = 2. In Section 4 we also saw (recall (4.4))
that for each Sn(AX , H),

Sn(AX , H) =
⋃
Π1

Sn(AX ,Π1),

where the union ranges over all (AX , H)-partitions Π1 of X; see De�nition 4.8. The
number of (AX , H)-partitions of X is the same for every su�ciently large n, every
X ⊆ [n] with |X| = m and every AX ∼= A. Therefore it su�ces to prove that there are
θ(x), ξ(x, y) and, for every k, 0 < α < 1 such that for every X ⊆ [n] with |X| = m,
every AX ∼= A with universe X and every (AX , H)-partition Π1, the proportion of
M∈ Sn(AX ,Π1) that satisfy (I) and the sentences ψ and ϕk is at least 1− αn.
For the rest of this section we �x X ⊆ [n] with |X| = |A| = m and AX ∼= A

with universe X. The results below refer to all large enough n with respect to other
parameters that occur.
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De�nition 6.4. We say thatM∈ Sn(AX ,Π1) has the k-extension property if (III) (b)
holds when `θ(M)' is replaced by `X' and `ξ-equivalence classes' with `parts of the
partition Π1 (of X)'.

Lemma 6.5. For every k ∈ N there is 0 < αk < 1, depending only on k and A, such
that the proportion ofM ∈ Sn(AX ,Π1) which does not have the k-extension property is
at most αnk .

Proof. Recall that Sn(AX ,Π1) ⊆ Tn(AX ,Π1), where Tn(AX ,Π1) was de�ned in (4.3)

in Section 4. From Lemma 4.9 we know that
∣∣Sn(AX ,Π1)

∣∣/∣∣Tn(AX ,Π1)
∣∣ → 1 as

n→∞, so it su�ces to prove the statement of the lemma for Tn(AX ,Π1) in the place of
Sn(AX ,Π1). The reason for doing this is that Tn(AX ,Π1) is easier to work with because
its members do not have the constraint that the support of the structure is exactly
X (but from the arguments in Section 4 we know that for every M ∈ Tn(AX ,Π1),
X ⊆ Spt∗(M)).

LetM∈ Tn(AX ,Π1). A subset B ⊆ [n]\X of cardinality k can be chosen in no more
than nk ways. Once B ⊆ [n] \ X with |B| = k is �xed, the number of ways to choose
i ∈ {0, 1}, E,E′ ⊆ Π1 and Y, Y ′ ⊆ B is bounded where the bound depends only on k
and A. Therefore it su�ces to show, for an arbitrary �xed B ⊆ [n] \ X with |B| = k
and an arbitrary choice of i ∈ {0, 1}, E,E′ ⊆ Π1 and Y, Y ′ ⊆ B, that the proportion
of M ∈ Tn(AX ,Π1) such that there is no c ∈ M such that the conjunction of (i)�(iii)
of (III) is satis�ed is at most αnk for some constant 0 < αk < 1 that depends only on k
and A.

For arbitrary c ∈ [n]\ (X ∪B) we estimate the probability that at least one of (i)�(iii)
of (III) fails. We consider Tn(AX ,Π1) as a probability space by giving each member the
same probability. From the de�nition of Tn(AX ,Π1) we see that the probability that
M∈ Tn(AX ,Π1) satis�es (i)�(iii) of (III) is 2−β for some β > 0 depending only on |X|
and |B|, and independently of what the case is for other elements than c in [n]\ (X ∪B).
The probability that, for every c ∈ [n] \ (X ∪ B), the conjunction of (i)�(iii) does not
hold is therefore (

1− 2−β
)n−|X∪B|

.

As B can be chosen in at most nk ways it follows that the probability that the conjunc-
tion of (i)�(iii) is not satis�ed in M ∈ Tn(AX ,Π1) is at most αnk for some 0 < αk < 1
that depends only on k and A. �

Remember that m = |A| = |X|. Let θ(x) denote the following formula:

∃y1, . . . , ym−1

(
m−1∧
i=1

x 6= yi ∧
∧
i 6=j

yi 6= yj ∧

∀z

[(
z 6= x ∧

m−1∧
i=1

z 6= yi

)
−→

(
R(x, z) ←→ R(y1, z)

)])
.

Lemma 6.6. Suppose thatM∈ Sn(AX ,Π1) has the 2-extension property. Then for all
a ∈M , a ∈ X = Spt∗(M) if and only ifM |= θ(a).

Proof. Suppose that M |= θ(a). Then there are distinct b1, . . . , bm−1 ∈ M di�erent
from a such that for all c di�erent from b1, . . . , bm−1 and from a,

M |= R(a, c) ←→ R(b1, c).

AsM has the 2-extension property this is only possible if a, b1 ∈ X = Spt∗(M) and a
and b1 belong to the same part of Π1.
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Now suppose that a ∈ Spt∗(M) = X. Let b1, . . . , bm−1 be such that

X = {a, b1, . . . , bm−1}
and a and b1 belong to the same part of Π1. By the de�nition of Sn(AX ,Π1), there is
an automorphism of M which sends a to b1 and �xes every element outside of X and
therefore we must have

M |= ∀z

[(
z 6= a ∧

m−1∧
i=1

z 6= bi

)
−→

(
R(a, z) ←→ R(b1, z)

)]
.

�

Let ξ(x1, x2) be the formula

∀z
(
¬θ(z) −→

[
R(z, x1) ←→ R(z, x2)

])
.

Lemma 6.7. Suppose that M ∈ Sn(AX ,Π1) has the 2-extension property. Then for
all a1, a2 ∈ X = Spt∗(M), a1 and a2 belong to the same part of Π1 if and only if
M |= ξ(a1, a2).

Proof. Suppose that a1, a2 ∈ X = Spt∗(M) and a1 and a2 belong to the same part of
Π1. By the de�nition of Sn(AX ,Π1), for every c ∈ M \ X there is an automorphism
which sends a1 to a2 and �xes every element outside of X. From Lemma 6.6 it follows
thatM |= ξ(a1, a2).

Now suppose that a1, a2 ∈ X = Spt∗(M) and M |= ξ(a1, a2). From Lemma 6.6 it
follows that for all c ∈M \X

M |= R(c, a1)⇐⇒ R(c, a2).

Since we assume thatM has the 2-extension property this is only possible if a1 and a2

belong to the same part of Π1. �

According to the arguments before De�nition 6.4 and the compactness theorem, the
following corollary concludes the proof of Theorem 6.1.

Corollary 6.8. For every k ∈ N, there is 0 < α < 1, depending only on k and A, such
that the proportion of M ∈ Sn(AX ,Π1) that satisfy (I) and the sentences ψ and ϕl for
l = 0, . . . , k is at least 1− αn.

Proof. Let k′ = max(2, k,m) (where m = |A|). By Lemma 6.5 there is 0 < α < 1,
depending only on k′ and A such that the proportion of M ∈ Sn(AX ,Π1) with the
l-extension property for every l ≤ k′ is at least 1 − αn. From Lemmas 6.6 and 6.7 it
follows that allM∈ Sn(AX ,Π1) with the l-extension property for every l ≤ k′ satisfy (I)
and the sentences ψ and ϕl for l = 0, . . . , k. �

Remark 6.9. Let S′ be any one of the sets of structures in part (ii) of Theorem 6.2 and
let S′n = S′ ∩ Sn. We assume that if a �nite group G is involved in the de�nition of S′

then G is nontrival. We will show that S′ does not satisfy a zero-one law. By Lemmas 4.2
and 4.3 (and in one case the proof of Proposition 5.15), there are mutually nonisomorphic
A1, . . . ,Al ∈ S without any �xed point and, for i = 1, . . . , l and j = 1, . . . , li, subgroups
Hi,j ⊆ Aut(Ai) without any �xed point such that∣∣S′n∣∣ ∼

∣∣∣∣∣
l⋃

i=1

li⋃
j=1

Sn(Ai, Hi,j)

∣∣∣∣∣.
If S′ is {M ∈ S : G ≤ Aut(M)} or {M ∈ S : G ∼= Aut(M)}, then we may also assume
that G ≤ Hi,j or G ∼= Hi,j , respectively, for all i and j.
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Now observe the following: Suppose that A ∈ S has no �xed point and that H is a
subgroup of Aut(A) without any �xed point. Let A′ and A′′ have the same universe A

as A and assume that for every relation symbol R, RA
′

= ∅ and RA′′ = Ai if R is i-ary.
Then H is a subgroup of Aut(A′) and of Aut(A′′) and, from Proposition 4.4, it follows
that ∣∣Sn(A′, H)

∣∣∣∣Sn(A, H)
∣∣ and

∣∣Sn(A′′, H)
∣∣∣∣Sn(A, H)
∣∣

converge to the same c ∈ Q as n → ∞. From the assumption that S′ is one of the
sets of structures in part (ii) of Theorem 6.2 (and G is assumed to be nontrivial) it
follows that there must be i, i′, j, j′ such that Ai 6∼= Ai′ and both

∣∣Sn(Ai, Hi,j)
∣∣/∣∣S′n∣∣ and∣∣Sn(Ai′ , Hi′,j′

∣∣/∣∣S′n∣∣ converge to positive numbers c and c′ as n → ∞. With the help
of the formula θ from the proof of Theorem 6.1 one can easily construct a sentence ϕ
which, in almost allM ∈ S′, expresses that �M�Spt∗(M) ∼= Ai�. Then the proportion
ofM∈ S′n in which ϕ is true converges to some number 0 < d < 1.

7. Unlabelled structures

The main result of this �nal section is Theorem 7.7, which implies Theorem 1.3, which
says that Theorems 1.1 and 1.2 hold also for unlabelled structures.

De�nition 7.1. (i) For everyM∈ S, let [M] = {N ∈ S : N ∼=M}.
(ii) For every X ⊆ S, let [X] = {[M] :M∈ X}.
(iii) We say that a set X ⊆ S is closed under isomorphism ifM∈ X, N ∈ S and N ∼=M
implies that N ∈ X.

The next lemma is a generalisation of Lemma 4.3.10 in [6].

Lemma 7.2. If Xn ⊆ Sn is closed under isomorphism then∣∣[Xn

]∣∣n! =
∑

π∈Symn

∣∣Sn(π) ∩Xn

∣∣.
Proof. For every M ∈ Sn and π ∈ Symn, let π(M) denote the unique structure
N ∈ Sn such that π is an isomorphism fromM onto N . Fix an arbitraryM∈ Xn and
let H = Aut(M). Then H is a subgroup of Symn and we consider the left cosets of H
in Symn. Note that for every N ∈ Xn we have N ∼=M if and only if there is π ∈ Symn

such that π(M) = N . For all π, σ ∈ Symn we have

πH = σH ⇐⇒ H = π−1σH ⇐⇒ π−1σ ∈ H = Aut(M) ⇐⇒ π(M) = σ(M)

As we assume that Xn is closed under isomorphism it follows that∣∣{N ∈ Xn : N ∼=M}
∣∣ = the number of cosets (the index) of Aut(M) in Symn.

Hence ∣∣Aut(M)
∣∣ · ∣∣{N ∈ Xn : N ∼=M}

∣∣ =
∣∣Symn

∣∣ = n!,

and, as
∣∣Aut(N )

∣∣ =
∣∣Aut(M)

∣∣ if N ∼=M, we get∑
N∈Xn
N∼=M

∣∣Aut(N )
∣∣ =

∑
N∈Xn
N∼=M

∣∣Aut(M)
∣∣ =

∣∣{N ∈ Xn : N ∼=M}
∣∣ · ∣∣Aut(M)

∣∣ = n!.

If M1, . . . ,Mm is a sequence containing exactly one representative from every isomor-
phism class that is represented in Xn, then m =

∣∣[Xn

]∣∣ and∑
M∈Xn

∣∣Aut(M)
∣∣ =

m∑
i=1

∑
N∈Xn
N∼=Mi

∣∣Aut(N )
∣∣ =

m∑
i=1

n! =
∣∣[Xn

]∣∣ · n!.
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We also have∑
M∈Xn

∣∣Aut(M)
∣∣ =

∣∣{(M, π) :M∈ Xn and π ∈ Aut(M)}
∣∣ =

∑
π∈Symn

∣∣Sn(π) ∩Xn

∣∣,
which concludes the proof of the lemma. �

Lemma 7.3. If Y ⊆ S is closed under isomorphism and p ≥ 2 is �xed, then∣∣Sn(spt∗ ≤ p) ∩ Y
∣∣ ∼ n!

∣∣[Sn(spt∗ ≤ p) ∩ Y
]∣∣ as n→∞.

Proof. For every permutation π of [n] and M ∈ Sn, let π(M) denote the unique
structureM′ ∈ Sn such that π is an isomorphism fromM toM′. IfM∈ Sn(spt∗ ≤ p),
π is a permutation of [n] and π(M) =M, then Spt(π) ⊆ Spt∗(M). Hence there are at
most p! permutations π of [n] such that π(M) =M. Since we assume that Y is closed
under isomorphism we get∣∣Sn(spt∗ ≤ p) ∩ Y

∣∣ ≥ (n!− p!)
∣∣[Sn(spt∗ ≤ p) ∩ Y

]∣∣.
It is also clear that∣∣Sn(spt∗ ≤ p) ∩ Y

∣∣ ≤ n!
∣∣[Sn(spt∗ ≤ p) ∩ Y

]∣∣.
Since (n!− p!) ∼ n! as n→∞, it follows that∣∣Sn(spt∗ ≤ p) ∩ Y

∣∣ ∼ n!
∣∣[Sn(spt∗ ≤ p) ∩ Y

]∣∣.
�

Proposition 7.4. Suppose that m, t ∈ N, f1, . . . , fs ∈ Symn, spt(f1, . . . , fs) = m and
t > 2r(m!− 1)m/m! + 1, where r ≥ 2 is the maximal arity of the relation symbols. Then
there is λ > 0 such that for all su�ciently large n,∣∣[Sn(spt ≥ t)

]∣∣∣∣[Sn(f1, . . . , fs)
]∣∣ ≤ 2−λn

r−1
.

Proof. Suppose that m ∈ N, f1, . . . , fs ∈ Symn and spt(f1, . . . , fs) = m. Let

Ŝn(f1, . . . , fs) =
{
M∈ Sn :M∼= N for some N ∈ Sn(f1, . . . , fs)

}
and observe that

[
Ŝn(f1, . . . , fs)

]
=
[
Sn(f1, . . . , fs)

]
. By Propositions 2.3 and 3.5, there

are constants p, α > 0 such that for all su�ciently large n,∣∣Sn(spt∗ > p)
∣∣∣∣Sn(f1, . . . , fs)
∣∣ ≤ 2−αn

r−1±O
(
nr−2

)
.

Since
∣∣Sn(f1, . . . , fs)

∣∣ ≤ ∣∣Ŝn(f1, . . . , fs)
∣∣, we get∣∣Sn(spt∗ > p)
∣∣∣∣Ŝn(f1, . . . , fs)
∣∣ ≤ 2−αn

r−1±O
(
nr−2

)
,

which implies that

(7.1)
∣∣Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

∣∣ ∼ ∣∣Ŝn(f1, . . . , fs)
∣∣.

Lemma 7.3 with Y = Ŝn(f1, . . . , fs) gives∣∣Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)
∣∣ ∼ n!

∣∣[Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)
]∣∣.

This and (7.1) gives

(7.2) n!
∣∣[Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

]∣∣ ∼ ∣∣Ŝn(f1, . . . , fs)
∣∣.
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Suppose that t > 2r(m!− 1)m/m! + 1. By Lemma 7.2 with Xn = Sn(spt ≥ t) we get

(7.3)
∣∣[Sn(spt ≥ t)

]∣∣ · n! =
∑

π∈Symn

∣∣Sn(π) ∩ Sn(spt ≥ t)
∣∣.

For every π ∈ Symn,
∣∣Sn(π) ∩ Sn(spt ≥ t)

∣∣ ≤ ∣∣Sn(spt ≥ t)
∣∣ and there are not more

than (t− 1)!nt−1 permutations π ∈ Symn such that spt(π) < t. Therefore,

(7.4)
∑

π∈Symn

spt(π)<t

∣∣Sn(π) ∩ Sn(spt ≥ t)
∣∣ ≤ (t− 1)!nt−1

∣∣Sn(spt ≥ t)
∣∣.

If π ∈ Symn and spt(π) ≥ t then Sn(π) ∩ Sn(spt ≥ t) = Sn(π), so we get

(7.5)
∑

π∈Symn

spt(π)≥t

∣∣Sn(π) ∩ Sn(spt ≥ t)
∣∣ =

∑
π∈Symn

spt(π)≥t

∣∣Sn(π)
∣∣.

Now we get ∑
π∈Symn

∣∣Sn(π) ∩ Sn(spt ≥ t)
∣∣(7.6)

≤ (t− 1)!nt−1
∣∣Sn(spt ≥ t)

∣∣ +
∑

π∈Symn

spt(π)≥t

∣∣Sn(π)
∣∣ by (7.4) and (7.5)

≤ (t− 1)!nt−1
∑

π∈Symn

spt(π)≥t

∣∣Sn(π)
∣∣ +

∑
π∈Symn

spt(π)≥t

∣∣Sn(π)
∣∣ by (2.2)

≤ 2(t− 1)!nt−1
∑

π∈Symn

spt(π)≥t

∣∣Sn(π)
∣∣.

Moreover, as
∣∣[Sn(f1, . . . , fs)

]∣∣ =
∣∣[Ŝn(f1, . . . , fs)

]∣∣ we have∣∣[Sn(spt ≥ t)
]∣∣∣∣[Sn(f1, . . . , fs)
]∣∣ =

∣∣[Sn(spt ≥ t)
]∣∣∣∣[Ŝn(f1, . . . , fs)
]∣∣(7.7)

≤
∣∣[Sn(spt ≥ t)

]∣∣∣∣[Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)
]∣∣

=
n! ·

∣∣[Sn(spt ≥ t)
]∣∣

n! ·
∣∣[Ŝn(f1, . . . , fs) ∩ Sn(spt∗ ≤ p)

]∣∣
∼
∑

π∈Symn

∣∣Sn(π) ∩ Sn(spt ≥ t)
∣∣∣∣Ŝn(f1, . . . , fs)

∣∣ by (7.3) and (7.2)

≤
2(t− 1)!nt−1

∑
π∈Symn

spt(π)≥t

∣∣Sn(π)
∣∣∣∣Sn(f1, . . . , fs)

∣∣ by (7.6)

≤ 2(t− 1)nt−1
∑

π∈Symn

spt(π)≥t

exp2

(
r∑
i=1

kiorbi(π) −
r∑
i=1

kiorbi(f1, . . . , fs)

)

by (2.1) and (2.2).
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Since t > 2r(m!− 1)m/m! + 1 it follows from the �nal estimates of the proof of Propo-
sition 2.3 that there is β > 0 such that∑

π∈Symn

spt(π)≥t

exp2

(
r∑
i=1

kiorbi(π) −
r∑
i=1

kiorbi(f1, . . . , fs)

)
≤ 2−βn

r−1±O(nr−2).

This together with (7.7) implies that there is λ > 0 such that∣∣[Sn(spt ≥ t)
]∣∣∣∣[Sn(f1, . . . , fs)
]∣∣ ≤ 2−λn

r−1

for all large enough n. �

Corollary 7.5. Let m, t ∈ N.
(i) If t > 2r(m!− 1)m/m! + 1 then

lim
n→∞

∣∣[Sn(spt ≥ t)
]∣∣∣∣[Sn(spt ≥ m)
]∣∣ = lim

n→∞

∣∣[Sn(spt ≥ t)
]∣∣∣∣[Sn(spt∗ ≥ m)
]∣∣ = 0.

(ii) There is T > m such that

lim
n→∞

∣∣[Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T )
]∣∣∣∣[Sn(spt ≥ m)

]∣∣ =

lim
n→∞

∣∣[Sn(spt∗ ≥ m) ∩ Sn(spt∗ ≤ T )
]∣∣∣∣[Sn(spt∗ ≥ m)

]∣∣ = 1.

Proof. Part (i) follows immediately from Proposition 7.4, because if f ∈ Symn and
spt(f) = m, then Sn(f) ⊆ Sn(spt ≥ m) ⊆ Sn(spt∗ ≥ m).

Part (ii) is proved like Corollary 3.7, but with part (i) instead of Corollary 2.5. �

Corollary 7.6. For every �nite group G there is T ∈ N such that

lim
n→∞

∣∣[{M ∈ Sn : G ≤ Aut(M) and spt∗(M) ≤ T}
]∣∣∣∣[{M ∈ Sn : G ≤ Aut(M)}

]∣∣ = 1.

Proof. Let G be isomorphic to a permutation group without �xed points on [m] for
some m ∈ N+. Let t = 2r(m!−1)m/m!+1. In the same way as we proved Corollary 2.6,
but using Proposition 7.4 instead of Proposition 2.3, we get

lim
n→∞

∣∣[{M ∈ Sn : G ≤ Aut(M) and spt(M) ≤ t)}
]∣∣∣∣[{M ∈ Sn : G ≤ Aut(M)}

]∣∣ = 1.

By Proposition 3.5 the sought after T exists. �

Theorem 7.7. For each result in the previous sections which, for some sequence S′n ⊆
Sn, n ∈ N+, and set X ⊆ S that is closed under isomorphism, can be stated in the form

lim
n→∞

∣∣S′n ∩X
∣∣∣∣S′n∣∣ = c

where 0 ≤ c ≤ 1, we also have

lim
n→∞

∣∣[S′n ∩X
]∣∣∣∣[S′n]∣∣ = c

for the same constant c.
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Remark 7.8. The statement in Theorem 7.7 that we get exactly the same limit c in
both the labelled and unlabelled case may seem counter intuitive, because we consider
structures with a nontrivial automorphism. Roughly speaking, the reason why we indeed
get exactly the same limit in the labelled and the unlabelled case is that for each S′ =⋃
n∈N+ S′n considered, there is p such that

∣∣S′n∣∣ ∼ ∣∣S′n ∩ Sn(spt∗ ≤ p)
∣∣ and therefore

Lemma 7.3 can be applied in the proof of Theorem 7.7.

Example 7.9. Here are three examples of applications of Theorem 7.7.
(i) Let t ≥ 2, let ϕ be a sentence and let

Xϕ =
{
M∈ S :M |= ϕ

}
.

By Theorem 6.2,
∣∣Sn(spt ≥ t) ∩ Xϕ

∣∣/∣∣Sn(spt ≥ t)
∣∣ converges to some 0 ≤ c ≤ 1 as

n→∞. Now Theorem 7.7 implies that

lim
n→∞

∣∣[Sn(spt ≥ t) ∩ Xϕ

]∣∣∣∣[Sn(spt ≥ t)
]∣∣ = c.

(ii) Let G be a �nite group, ϕ a sentence and Xϕ as above. By Theorem 6.2,∣∣{M∈ Sn : G ≤ Aut(M)
}
∩ Xϕ

∣∣∣∣{M∈ Sn : G ≤ Aut(M)
}∣∣

converges to some 0 ≤ c ≤ 1. Theorem 7.7 implies that

lim
n→∞

∣∣[{M∈ Sn : G ≤ Aut(M)
}
∩ Xϕ

]∣∣∣∣[{M∈ Sn : G ≤ Aut(M)
}]∣∣ = c.

Proof of Theorem 7.7. Suppose that S′n ⊆ Sn, for n ∈ N+, that X ⊆ S is closed
under isomorphism and that we have proved (in previous sections) that

(7.8) lim
n→∞

∣∣S′n ∩X
∣∣∣∣S′n∣∣ = c

for some 0 ≤ c ≤ 1. In all of these cases it is clear that S′ =
⋃∞
n=1 S

′
n is closed under

isomorphism. It also follows, either by de�nition or by results that have been proved,
that there is an integer p such that

lim
n→∞

∣∣S′n ∩ Sn(spt∗ ≤ p)
∣∣∣∣S′n∣∣ = 1 and(7.9)

lim
n→∞

∣∣[S′n ∩ Sn(spt∗ ≤ p)
]∣∣∣∣[S′n]∣∣ = 1.(7.10)

It follows from (7.8) and (7.9) that

(7.11) lim
n→∞

∣∣Sn(spt∗ ≤ p) ∩ S′ ∩ X
∣∣∣∣Sn(spt∗ ≤ p) ∩ S′

∣∣ = c.

Lemma 7.3 with Y = S′ gives∣∣Sn(spt∗ ≤ p) ∩ S′
∣∣ ∼ n!

∣∣[Sn(spt∗ ≤ p) ∩ S′
]∣∣,

and with Y = S′ ∩X it gives∣∣Sn(spt∗ ≤ p) ∩ S′ ∩ X
∣∣ ∼ n!

∣∣[Sn(spt∗ ≤ p) ∩ S′ ∩ X
]∣∣.
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This together with (7.11) gives∣∣[Sn(spt∗ ≤ p) ∩ S′ ∩ X
]∣∣∣∣[Sn(spt∗ ≤ p) ∩ S′

]∣∣ =
n!
∣∣[Sn(spt∗ ≤ p) ∩ S′ ∩ X

]∣∣
n!
∣∣[Sn(spt∗ ≤ p) ∩ S′

]∣∣
∼
∣∣Sn(spt∗ ≤ p) ∩ S′ ∩ X

∣∣∣∣Sn(spt∗ ≤ p) ∩ S′
∣∣ → c as n→∞.

Combining this with (7.10) gives∣∣[Sn(spt∗ ≤ p) ∩ S′n ∩ X
]∣∣∣∣[S′n]∣∣(7.12)

=

∣∣[Sn(spt∗ ≤ p) ∩ S′n ∩ X
]∣∣∣∣[Sn(spt∗ ≤ p) ∩ S′n

]∣∣ ·
∣∣[Sn(spt∗ ≤ p) ∩ S′n

]∣∣∣∣[S′n]∣∣ → c as n→∞.

Finally we have∣∣[S′n ∩ X
]∣∣∣∣[S′n]∣∣ =

∣∣[Sn(spt∗ ≤ p) ∩ S′n ∩ X
]∣∣∣∣[S′n]∣∣ +

∣∣[Sn(spt∗ ≥ p+ 1) ∩ S′n ∩ X
]∣∣∣∣[S′n]∣∣

which tends to c as n → ∞, because of (7.12) and (7.10). This concludes the proof of
Theorem 7.7. �

References

[1] W. Burnside, Theory of groups of �nite order, Cambridge University Press (1897).
[2] P. J. Cameron, On graphs with given automorphism group, European Journal of Combinatorics,

Vol. 1 (1980) 91�96.
[3] P. J. Cameron, Automorphisms of graphs, in L. W. Beineke, R. J. Wilson eds., Topics in algebraic

graph theory, Cambridge University Press (2005) 137�155.
[4] K. J. Compton, The computational complexity of asymptotic problems I: partial orders, Information

and Computation, Vol. 78 (1988) 108�123.
[5] J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag (1996).
[6] H-D Ebbinghaus, J. Flum, Finite Model Theory, Second Edition, Springer-Verlag (1999).
[7] P. Erd®s, A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar., Vol. 14 (1963) 295�315.
[8] R. Fagin, Probabilities on �nite models, The Journal of Symbolic Logic, Vol. 41 (1976) 50�58.
[9] R. Fagin, The number of �nite relational structures, Discrete Mathematics, Vol. 19 (1977) 17�21.
[10] G. W. Ford, G. E. Uhlenbeck, Combinatorial problems in the theory of graphs. IV, Proceedings of

the National Academy of Sciences, Vol. 43 (1957) 163�167.
[11] Y. V Glebskii, D. I. Kogan, M. I. Liogonkii, V. A. Talanov, Volume and fraction of satis�ability of

formulas of the lower predicate calculus, Kibernetyka Vol. 2 (1969) 17�27.
[12] F. Harary, Note on Carnap's relational asymptotic relative frequencies, The Journal of Symbolic

Logic, Vol. 23 (1958) 257�260.
[13] D. J. Kleitman, B. L. Rothschild, Asymptotic enumeration of partial orders on a �nite set, Trans-

actions of the Americal Mathematical Society, Vol. 205 (1975) 205�220.
[14] Ph. G. Kolaitis, H. J. Prömel, B. L. Rothschild, Kl+1-free graphs: asymptotic structure and a 0-1

law, Transactions of The American Mathematical Society, Vol. 303 (1987) 637�671.
[15] V. Koponen, Asymptotic probabilities of extension properties and random l-colourable structures,

Annals of Pure and Applied Logic, Vol. 163 (2012) 391�438.
[16] V. Koponen, Typical automorphism groups of �nite nonrigid structures, preprint. Online:

http://arxiv-web3.library.cornell.edu/abs/1310.6973

[17] D. Marker, Model Theory: An Introduction, Springer-Verlag (2002).
[18] W. Oberschelp, Strukturzahlen in endlichen Relationssystemen, in: H. A. Schmidt et. al. eds.

Contributions to Mathematical Logic, Proceedings of 1966 Logic Colloquium, North-Holland (1968)
199�213.

[19] Ph. Rothmaler, Introduction to Model Theory, Taylor & Francis (2000).
[20] J. Spencer, The strange logic of random graphs, Algorithms and Combinatorics, Vol. 22, Springer-

Verlag (2001).



LIMIT LAWS OF RANDOM NONRIGID STRUCTURES 39

Ove Ahlman, Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala,

Sweden.

E-mail address: ove@math.uu.se

Vera Koponen, Department of Mathematics, Uppsala University, Box 480, 75106 Upp-

sala, Sweden.

E-mail address: vera@math.uu.se


