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Abstract 

In the present paper we introduce a constructive theory of nonstandard arithmetic in higher 
types. The theory is intended as a framework for developing elementary nonstandard analysis 
constructively. More specifically, the theory introduced is a conservative extension of 
HA” + AC. A predicate for distinguishing standard objects is added as in Nelson’s internal set 
theory. Weak transfer and idealisation principles are proved from the axioms. Finally, the use of 
the theory is illustrated by extending Bishop’s constructive analysis with infinitesimals. 

1. Introduction 

The constructive or intuitionistic approach to analysis [3,8] still seems to be devoid 

of a full-fledged nonstandard aspect. As is well known, Robinson’s classical nonstan- 

dard analysis from 1960 is based on highly nonconstructive notions. Schmieden and 

Laugwitz [27] introduced a nonstandard analysis which is far more constructive, 

albeit classical reasoning is still used. The ideas were further developed in subsequent 
papers by Laugwitz [l l-133. In their approach the strong transfer principle is lacking, 
so it cannot be related to standard analysis as easily as in that of Robinson. Earlier 
Chwistek [S, pp. 209-2161 had suggested a similar interpretation of infinitesimals, but 
apparently did not develop this very far. Martin-Ltif [ 173 makes a conceptual analysis 
of the notions of choice sequence [29], and of stream in computer science. From these 
he arrives at a definition of nonstandard objects in constructive type theory, which is 
quite similar to that of Laugwitz and Schmieden. The type theory is extended by 
infinite numbers, and its logic is given a nonstandard interpretation. Given this 
interpretation, the full transfer principle holds. Mycielski [21] develops a locally 
constructive theory of infinitesimals, where every proof can be interpreted in a finite 
model. There are other interesting approaches which are not of immediate concern to 
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us here. As for Brouwer intuitionism [B] there is a first attempt by Vesley [31]. 
Moerdijk and Reyes [20] use topos theory to develop calculus with different kinds of 
infinitesimals. The logic used in the formal theories of their approach is intuitionistic, 
but the necessary properties of their models are not proved constructively. In Moer- 
dijk [19] a constructive sheaf model of nonstandard arithmetic is given, and it is 
shown that it has a full transfer principle relative to the standard model. It remains to 
see whether it holds also for higher type arithmetic. 

To give a quick but incomplete picture of the basic idea in Schmieden and Laugwitz’ 
paper, we could say that they work with the reduced power of the reals, modulo the 
cofinite filter on the natural numbers, whereas Robinson’s approach amounts to using 
instead a nonprincipal ultrafilter. Thus in the former approach two sequences of real 
numbers are identified if they eventually agree; this makes it possible to interpret 
infinitesimals as sequences converging to zero, and infinite numbers as sequences 
growing beyond all bounds. Because of the properties of the cofinite filter, the law of 
trichotomy fails, leaving us with numbers of indeterminate size, for instance those given 
by alternating sequences. This is in contrast to Robinson’s nonstandard reals. 

Another important, and related, idea is the nonarchimedean extension of arithmeti- 
cal theories. This is an extension with one or many symbols for infinite numbers. The 
possibility of using the extended theories for developing elementary nonstandard 
analysis has been perceived by several authors: Jensen [lo], Laugwitz [14], Liu [16], 
Martin-LGf [17] and Mycielski [21]. Laugwitz [14] gave a nonconstructive variant 
involving infinite proof rules. 

The content of the paper is outlined as follows. In Section 2 we give some 
metamathematical results on nonarchimedean extensions, e.g. Martin-Lof’s inter- 
pretation of infinity symbols. We also indicate how such theories might be used. 
Unfortunately, they have no useful external notions, such as being infinitesimal. In 
Section 3 we introduce a new theory, internal HA”‘, which remedies this limitation and 
where it is possible to distinguish standard and nonstandard objects. This theory is 
partly inspired by Nelson’s [22] internal set theory. Internal HA” is a conservative 
extension of HA” + AC, that is of intuitionistic arithmetic in all finite types with an 
axiom of choice. In the internal theory, weak forms of the transfer and saturation 
principles can be proven. The theory formalises the main idea behind Schmieden and 
Laugwitz [27], that every nonstandard object is represented by an infinite sequence of 
standard objects. Indeed, its intended model is essentially a reduced power of a stan- 
dard model of HA” + AC. The model is given in Section 4. These features taken 
together make it possible, we believe, to extend Bishop constructivism with nonstan- 
dard methods. An investigation is started in Section 5. 

2. Nonarchimedean extensions of arithmetic 

Elementary nonarchimedean extensions of the real number structure R can be 
obtained in essentially two different ways, both nonconstructive: one is to use an 
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ultrapower construction, the other is to use the compactness theorem. As a back- 
ground for this section we briefly review the latter method. Let T* be the theory 

Th(R)u{rJ < w : n EN} ) 

where Th(R) is the theory of R and 11 is the numeral S”(0). Clearly every finite subset of 
T* has a model, namely R with o interpreted as a sufficiently large number. By 
compactness there is a model R* of T*. Since R* I= Th(R), R* is an elementary 
extension of R. Thus a nonarchimedean extension of R, with the same true first-order 
formulas, has been constructed. Consequently we have the transfer principle for 
formulas A of Th(R): 

R\AifandonlyifR*bA 

As is well known, such a pair of models is sufficient for carrying out large parts of 
elementary nonstandard analysis (see for example [l] or [9]). A natural question is: 
can nonstandard analysis be done within a theory extended with just constants for 
infinite numbers? Such a theory is called nonarchimedean. In the introduction we 
mentioned that several persons have worked on this question. The most interesting for 
the present discussion are Martin-LGf [ 171 and Mycielski [21]. Through their work it 
became clear that there is nothing intrinsically nonconstructive in the notion of 
a nonarchimedean theory. Nonarchimedean extensions of intuitionistic arithmetic 
(HA, HA’“, etc.) with infinite numbers should be candidates for constructivising 
elementary nonstandard analysis. There are however limitations to this simple- 
minded approach (cf. Section 2.3 below). 

2. I. Nonarchimedean extensions 

Definition 2.1. Let T be a theory containing HA, and let 01 be a symbol not in the 
language of T. Define two different types of nonarchimedean extensions: 

1. T[cl] = Tu(z< a: nEN), 

2. T(a) = Tu{t < CI: t is a closed term in T) 

(< is the order relation on natural numbers, which is primitive recursive.) 

When T is HA or HA” the extensions are equivalent. The interpretation of infinity 
symbols is given by the following simple theorem. 

Theorem 2.2 (Martin-Lof [17]). Let the theory T contain HA, and assume c( is 

a symbol not in T. Then 

T[cl]tA(cr) o (3nEN)T t-A@+x), 

where x is a fresh variable. 
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Proof. ( a) Since proofs are finite, A(a) must be proved from T and finitely many 
axioms 

n, <fx,...,nk<ct. - - 

Let n = max(nl, . . . ,qJ + 1. We can then replace CI by n + x throughout the proof, 
and it remains valid, provided the variable x is fresh w.r.t. the proof. 

( -=) Let 0 denote cut-off subtraction. Since HA t y > n + E+ (y 0s) = y, substi- 
tuting c( 0r-r for x yields 

Theorem 2.3. Let T be a theory containing HA, and suppose CI is not in T. Then 

T(U) t A(U) o there exists a closed term t in T with T I- A(t + x), 

where x is a fresh variable. 

Proof. Analogous to the above. 0 

The theorems work for a wide variety of theories T (which need not be based on 
intuitionistic logic). In the case of HA”, tl is introduced as a constant of type 0. 

Corollary 2.4. Both T [a] and T(M) are conservative extensions of T. 

2.2. Successive extensions 

The difference between the two types of extensions appears when considering 
successive extensions. We have 

HA[w][w’]FA(o,w’) o (3nEN)HAkA(n+x,z+y). 

Applying Theorem 2.3 twice it can be seen that 

HA(w) (w’) I- A(o, w’) 

(1) 

if and only if there are closed terms t of HA and t’(w) of HA(w) s.t. 

HA I- A(t + x, t’(t + x) + y). 

By definition o < w’ holds in HA(o) (o’), but (1) shows that this is impossible in 
HA [o] [w’]. 

Successive extensions according to the first type are proper. 

Proposition 2.5. Let T be a consistent theory containing HA. Then there are no terms 
f(z) and g(z) of T, such that for all formulas A(u, v) of T: 

TCwl k 4f(4,d~N * @m ENT k 4~ + X,E + Y). 
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Proof. Assume that f(z) and g(z) in fact are such. We have 

TColt-3zCf(z)=f(u)~g(z)=g(w)l. 

By the assumption, for some m E N, 

(2) 

(3) 

T k-32[f(z)=~+xng(z)=nJ+y]. 

Further, since T k m + 1 + x > m, we have by the assumption 

TE@l1-“fW > m* 

Hence by Theorem 2.2, 

T t&J + U) Z=- m 

for some n. Substituting 0 for x and 0, . . . , E for y in (2), successively, yields 

T i-32, ... z,[f(z*) = 1.. =f(z,) = trJ/\g(q)) = m/l .** ilg(zJ = m + n]. 

Clearly all zi are distinct. By the pigeonhole principle, one of the zi)s is greater than or 
equal to n, contradicting (3). c] 

For the second type of extension we have a similar result for the first two leveis 
above arithmetic. 

Proposition 2.6. There are no terms f(z) and g(z) such that for all formulas A(u, u) of 

HA: HA(w) I- A(~(~),g(~)) if and only iffor some terms t, t’(u) of HA, 

HA t A(t + x, t’(t + x) + y). 

Proof. Analogous to the previous proposition, noting that HA[o] and HA(w) are 
equivalent. 0 

2.3. Nonstandard analysis in a nonarchimedean theory 

Take an ordinary formulation of elementary analysis in an arithmetical theory 

T such as HA” + AC. Consider the polynomial 

in T [CO], where o is a symbol for an infinite number. This symbol can be treated like 
a finite number inside the theory. Thus the derivative of eyp is immediately seen to be 
defined, and 
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In a nonarchimedean theory sp (x) is of course not the same as D Fp (x), since w can be 
interpreted as a (sufficiently large) finite number. But if x is not too big, the difference 

Kp(x) - D eTp(x) = x”/co! 

should be small. In Robinson’s nonstandard analysis this difference is indeed infini- 
tesimal for finite x. In T [w] we have nevertheless, for all numerals m,n 

T [w] t- Ix/ < _m 3 leCp(.x) - DeYp(x)l < 2-c. 

But there is no way of expressing that two numbers have an infinitesimal difference, 
inside the theory. This is a severe limitation of nonarchimedean theories. It can be 

overcome to some extent by using a large stock of infinity symbols (cf. [21]). 

2.4. Application to ~yc~e~ski ‘s theories 

Mycielski [21] treated a nonarchimedean extension of a fragment of Peano arith- 
metic. We consider his type of extension, but for a theory T containing all of Heyting 
arithmetic. Let (w,: 9 E Qj be a set of distinct symbols, not in T, indexed by rational 
numbers. TM is the union of all theories 

where q1 < ... < qn. This theory has a dense set of infinity symbols. 

Proposition 2.7. TM is conservative over T. 

Proof. If A, expressed in the language of T, is proved in TM, then for some sequence 
q1 < .,. < qn of rationals 

VGJ ‘.. (c.Q t A. 

Hence T k A, using Corollary 2.4. 0 

Mycielski calls a function f ~s-c~~~~~~~~s if s < z and 

Ix - Yl < l/w, -+If(x~ -“f(Y)1 < l/f%. 

Theorem 2.3 now gives an interpretation of this notion. For simplicity, suppose that 
fcontains no infinity symbols. Then 

T(o,) (co,) t-f is rs-continuous 

if and only if, for some terms t, and t,, 

T k Ix - yl < 

We see that this yields a continuity modulus for f: 
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2.5. Representability offunctions 

Let T be a theory including the symbols 0 and S, so that all numerals n, n EN, are 
available. A partial function y, : Nk -+* N is represenfed by the term t(x,, . . . ,xk) of T, if 
for all nl,...,nk,m~N: 

C3(n 1 ,..., nk)l = m tj T k t(n, ,..., 2) = m. - - 
(ai = b means that a is defined and equals 6.) The following result shows that the term 

language of a nonarchimedean theory is very rich. 

Theorem 2.8. Let T be HA or HA” + AC. Then all partial recursive functions are 
representable by terms in T [co]. 

Proof. Cf. [24]. We note that the restriction to HA in that paper is inessential. [7 

3. Internal HA” 

Intuitionisti~ arithmetic in all finite types, HA”, suffices to formalize elementary 
parts of constructive analysis (cf. the discussion in [7]). The theory contains function 
types, such as the type of all functions on natural numbers, and the type of functions 
on this type, and so on. In particular, the real numbers and their functions can thereby 
be quantified over. However there is no concept of set in HA”, so, for instance, the 
general theory of metric spaces [4] has to be omitted. 

In this section we shall extend HA” with nonstandard objects. This new system, 
internal HA”, iHA” for short, is partly inspired by Nelson’s [22] extension of set 
theory. To each type 0 we associate a predicate SP(x), with the intuitive meaning that 
x is a standard object of type G. The intended model of the theory can be described as 
the reduced power of the standard model of HA” (w.r.t. the cofinite filter on the 
natural numbers). (For a general definition of reduced powers of many sorted 
structures, see [18].) In Section 4, we shall model iHA” inside HA“’ furnished with the 
axiom of choice (AC). By this procedure it will immediately be clear that the internal 
theory is constructive, and moreover conservative over HA” + AC. This is in analogy 
with Nelson’s internal set theory: it is a conservative extension of set theory. 

3.1. Arithmetic in all finite types 

We first present the system HA” in some detail. (For a discussion the reader is 
referred to [28,30].) This system is based on many-sorted intuitionistic logic, where 
the sorts are the jinite type symbols, Y, defined inductively by: 

OE9- (the type of natural numbers) 

o,roY =r uxrg9- (product types) 

cr,TEF * ET-+ZEY (function types) 

The language of HA* is defined as follows. We let t : (T denote that t is of type cr. 
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For each type G E F there are infinitely many variables xc’? y”, z”, _. . of type C. 
We have the following constants: 

O:O (zero) 

s:o -+o (successor) 

k 17** : Q + (7 --+ cr) (function space 

s”.“,‘:(P-‘(a-,~))-,((p-,cr)-*(p~5)) combinators) 

P b*r:O +(z -+(GXZ)) (pairing) 

p;;“-:(crxz)-M, p(;‘r:(aXz)-+z (projections) 

r*:u -+((n t(O -+c)) --+(O -+a)) (recursor) 

On each type 0 there is a predicate symbol ( =J for equality. 
For each pair of types 0, z there is a function symbol for application, Apus’, with two 
arguments: the first being of type (7 -+ z and the second of type 0, yielding a value of 
type z. 

The terms of HA” are formed from applications, constants and variables, complying 
to the type discipline. The ~~r~~~~s are built from atomic formulas in the usual 
manner. An atomic formula is either _t (absurdity~ or c =ca s where t : c and s : c are 
terms. Henceforth we use the convention that A(xl, 1 _. )x,) means that all free vari- 
ables in A are among x1, . . . , x,. It will be convenient to make the following abbrevi- 
ations: crz for (T + 7 and ts for Ap”,‘(t,s). We moreover write cl~z ..- 0, for 
g1(g2 +..(~,-l~,) e-e) and sls2 mess, for (--a (slsz) a.. s,). The type information attached 
to subterms will frequently be omitted. We take the letters i,j, k, e, m, n to be variables 
of type 0, unless otherwise indicated, If 2 = x1,. . . ,x,, we write Jy for xly, . . . , x,y. 

~q~a~i~y axioms: 

X=X 

x=y-+y=x 

x=y+y=z+x=z 

x= y-+u=v+xu=yv 

Dejining axioms for combinators: 

kxy = x 

sxyz = xz(yz) 

Po(PXY) = x Pl (PXYI = Y 

P(POZ)(PlZl = z 

rxyO = x 

rxyfS2) = Y(rxyz)z 
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Arithmetical axioms: 
l The fourth Peano axiom: 10 = S(x). 
l The induction schema: for every formula A assume 

A(ii,O)~Vn(A(ij,n) -+ A(u’,S(n)))+VnA(u’,n). 

The above axioms constitute HA”. We also consider an extension HA” + AC with 
the axiom of choice 

(AC) Vx”3y’A(iI,x,y) + ~z~~WA(~~,X,ZX), 

for each formula A. 

3.2. The internal theory 

We expand the language of HA” by adding a new constant for an infinite number 
co : 0, and for each type cr E T a new predicate 

SP(x) for “x is standard”. 

The intended interpretation of St’(x), in the reduced power model, is that x is 
eventually constant. The intended interpretation of co is the simplest infinite number 
in this model, namely the identity 2i.i. The axioms directly taken over from HA” are: 
(I) the equality axioms, (II) the defining axioms for combinators, (III) the fourth Peano 
axiom. A new equality axiom for the standard predicate is necessary: 

(IV) x = y + St(x) + St(y). 

A term is said to be internal if it does not contain the infinity constant co. The internal 
constants c are standard: 

To formulate the remaining axioms we introduce the abbreviations vs’xb A(u’, x) for 
Vx”(St”(x) + A@, x)), and 3 stud A@, x) for 3x”(St”(x) A A(u’, x)). These are the rela- 
tivisations of the respective quantifiers to standard objects. Standard functions ap- 
plied to standard arguments give standard values: 

(VI) vs’xOr V’“‘y” St(xy). 

Induction on standard numbers, so called external induction, is admissible: 

(VII) A(u’,0)~V’“‘n(A(u’,r1) + A(ii,Sn)) --) V’“‘nA(iI,n), 

for arbitrary A. Furthermore we have the external axiom of choice for any A: 

(VIII) W”‘x”3”y’A(ii,x,y) + 3st~b7VSt~uA(iZ,~,~~). 

Remark. If A is a formula, let A”’ be the result of relativising all quantifiers to St. It is 
not difficult to see that A H A”’ defines an interpretation of HA” + AC into the 
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present theory. More precisely, if HA” + AC I- A(xl, . . . ,x,), then 

iHA” k St(x,) A “. Ast(x,) -+AS’(X~,...,Xn). 

The verification uses only the hitherto given axioms. 
The following axiom, the limit principle, states that every nonstandard object is the 

“limit” of a sequence of standard objects: 

(IX) Vx” 3 styon [.K = y co]. 

Finally, there is the limit equality axiom which determines when two such limits are 

equal: 

(X) tjstxoOByoo[xco =yoo cr3”‘kV”‘n>k(xn=yn)]. 

We often refer to such a (standard) k as a stage. This concludes the axiomatisation of 
iHAW. 

We define classes of formulas which will be of importance later on. A formula free 
from co-symbols A is called internal if it does not contain the standard predicate St; 

the formula is almost i~ternu~ if the St-predicate occurs only in subfo~ulas 

Vi0 [St(i) A i < t + B] (4) 

of A, where the free variables oft are either free in A or bound by quantifiers where the 
range is restricted to standard objects. A variable occurring in such a t is called 
confining. The idea is that such subformulas are really conjunctions of variable finite 
length when t is standard.. A formula is subgeometric it is formed from atomic 
formulas using only A and 3; the formula is almost subgeometric if it in addition can 
contain universal quantifications of the form (4), subject to the same conditions on t. 

The wider classes of formulas represent slight but useful improvements, in the Los 
principle (see below), over the more natural. The class of constructive Hornformulas is 
the least class VSP such that 

l %YZ contains the atomic formulas, 
0 %‘S is closed under conjunction, existential and universal quantification, 
0 if A is subgeometric and B E %?S, then A -+ B E VX. 

One can prove that every Horn formula is classically equivalent to a constructive 
Horn formula, and conversely. If we allow almost subgeometric A in the last clause, 
we call the resulting class of formulas almost constructive Horn. Almost internal 
formulas, which are almost subgeometric, are called ame~ub~e, those which are almost 
constructive Horn are called light. 

Theorem 3.1 (The Los principle). Let A@, m) be an amenable formula where m is not 
a con~~ing uariabie. Then 

\d”‘x’[A(x’, oO)+-+3S’kVS’n 2 kA”‘(jt,n)]. 
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Proof. By induction on the complexity of A. The case A E _L is trivial. Let 

A(l,m) E (S~(2,rn) = s,(xt,m)). 

Using abstraction on variables we find internal terms tI, t2 such that 

tim = Si(jl, m) 

for i = 1,2. The limit equality axiom applied to these terms gives 

This proves the atomic cases. The conjunctive case is easy. Consider the -+ -direction 
of the 3 -case: Suppose A (3, co) = 3 z B(x’, z, co). By the limit principle, there is a stan- 
dard w such that B(x’,w ca, oo). z is not confining, so the induction hypothesis can be 
applied, and yields a standard k such that 

(Vn 2 k) Bst(jt,wn, n). 

Hence for all standard n B k, 3 “z B”‘(Jt, z, n). 
3 -case, c- -direction: Suppose 

3S’kVs’n > k3”‘zB”‘(~,z,nf. 

Since B is decidable, 3 “z can be moved outside n B k. The external axiom of choice 
can thereby be applied: 

3s’w3S’kV”‘n B kBst(~,wn,~). 

Since z is not confining, we have by the inductive hypothesis, B(jZ, wco, CO). 

Bounded V-case: Assume that A(jt,m) E (Vi < t(Z)) B(X!, i,m). We need only to 
note that if 3 is standard, then t(Z) is standard, and thus 

and 

3”‘k(V”‘n 2 k)(W’i < t(Z))BS’(jZ,i,n) 

are equivalent. The case now follows by the induction hypothesis. •1 

Corollary 3.2. Let A(?, ii+) be an amenable formula, where none of the variables v’ are 

conjining. Then 

Proof. Let B(jt,g,z) = A@', jJz). By the assumption z is not confining in B and the 
result follows from the Los principle. IJ 
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Remarks. In Martin-LGf [ 171 it was pointed out that, in effect, the Los principle holds 

for internal, subgeometric formulas, in the setting of type theory. The Los principle 
implies that cc is infinite; take A(x, y) to be x < y. 

Theorem 3.3 (The lifting principle). Let A(?, m) be a light formula, where m is not 
conjining. Then 

V’“‘jT [3 s’k(VStn B k) A”‘(%!, n) + A(jt, co)]. 

We say that A”’ is lifted. 

Proof. By induction on the complexity of A. The base cases have already been dealt 
with in Theorem 3.1. The A -case is easy, and the j-case is analogous to that of 
Theorem 3.1. 

+-case: Suppose there is a standard k such that 

VS’n 2 k[B”‘(3,n) + Cs’(2,n)]. 

The assumption B(St, co) gives that for some stage k’ 2 k, (Vn 2 k’)B”‘(I,n). Thus 
(V”n 2 k’) C”(jt, n), and C(st, co) follows from the inductive hypothesis. 

V-case: The case where A(%!, m) = (V”i < t(2)) B(jt, i, m) is analogous to the corres- 
ponding case in Theorem 3.1. Say A(jt, m) = Vz’B(Jt, z, m), where B is a light formula. 
Suppose 

3”‘k(V’“‘n 2 k)t/S’z” BSt(Z,z,n). 

Let W:OO be standard. Hence for (Fn 2 k) B”‘(x’, wn,n). Since z is not confining, we 
have by the inductive hypothesis 

B(jl, woo, CO). 

The limit principle gives the result. 0 

The lifting principle corresponds to the well-known result from classical model 
theory, that taking reduced powers preserves the truth of Horn formulas. 

Remark. We point out a possible source of confusion. Let P(i) be an internal atomic 
formula. Then both A(x) E (Vsti < x)P(i) and A’(x) E (Vi < x) P(i) are light, and they 
are not equivalent. However A”’ and Alst are equivalent. Thus certain formulas can be 
lifted in two different ways. 

Theorem 3.4 (The transfer principle). Let A(Z) = VjJ [B(jZ,$) + C(jt,$)] be a light 
formula with B and C almost subgeometric. Then 

V”‘st [A”‘(?) ++ A(%!)]. 

Proof. This follows from the Los principle and the lifting principle. 0 
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Remark. The restriction in the lifting principle to Horn formulas is necessary in 
general. There are true formulas (a) Vn (A v B) and (b) V% (1 A --+ B) that cannot 
be lifted. As for (a), let A G (n mod 2 = 0) and B G (n mod 2 = 1). The lifted formula 
would imply A(@ v B(a), which is impossible. For (b) consider A = (n > 0), 
B 3 (n = 0). But 1 ( co mod2 > 0) and co mod2 # 0. See also Section 5.1. 

3.3. Dejnitional extensions 

It turns out that Theorem 3.1 and its consequences are sometimes too weak for 
application to constructive analysis. The equality relation for real numbers, e.g., is 

given by a logically complex formula. We wish to treat this and similar relations as if 
they were atomic in order to obtain useful transfer principles. 

Let L be the language of iHA”. Let R1, . . . , RN, R;‘, . . . , Rg be new relation symbols, 

and denote L extended with these L’. Suppose we are given arbitrary formulas Ai 
(i = l,... ,N) of L with free variables among x1, . . . ,x,,. We let iHA”[R?i] be the 
extension of iHA” obtained by adding the definitions 

R;‘(x,, . . . , x,,) - 4x1, * ‘. 9 x,,) 3 

WY, ~0, .a- ,y,, c+dStk(Vs’m 2 k)R;‘(y,m, . . . . y,,m). 

An equality axiom for each new predicate is also added. The limit principle in L’ 

guarantees that Ri is completely defined. We note that for standard x1, . . . ,x,,: 

R;‘(x,, . . . ,X,,)t,Ri(xl,...,x,,). 

RQ’ is the standard predicate, while Ri is said to be its nonstandard version. Moreover 
the axiom schemata of IHA” are extended to cover also formulas of L’. It is immediate 
that iHA” [fl, A] is a conservative extension of iHA”. A formula in L’ is (almost) 
internal if it is (almost) internal in the usual sense, and possibly contains Ri-predicates, 
but not Ry’-predicates. We extend the ( .)S’-translation so that Ri is translated by Rf’. 

Theorem 3.1, Corollary 3.2 and Theorem 3.3 also hold when taking internal 
formulas in the extended sense. This is seen by observing that the new base cases are 
trivially true by the very definition of the new predicates. 

3.4. Idealisation principles 

The idealisation principle of Nelson’s internal set theory states that for internal 
formulas B(x, y): 1ff or everyjnite standard set z, there exists a set x such that for all 
y E z, B(x, y), then there exists a set x such thatfor all standard y, B(x, y). In Robinson’s 
nonstandard analysis this corresponds to the saturation property of enlargements. We 
prove weak versions of these principles inside iHA”, adapted to the restricted expres- 
siveness of our theory. Examples are given in this and later sections which show that 
they are still useful. 



310 E. Pahtgren/Annals of Pure and Applied Logic 73 (1995) 297-325 

Theorem 3.5 (Subgeometric saturation). Let A@, v, i?, i) be an amenable formula, 

where u’ are nonconfining, and which satisfies the chain condition 

V”i Vii, v, i4 [A(u’, v, d, i + 1) -+ A(iZ, v, i4, i)]. 

(i) If v is also nonconjining in A, 

V~V”‘3~V”‘i3vA(u’,v,~,i) -+3vV”‘iA(u’,v,iG,i)]. 

(ii) Let A’ be the~or~ula resulting by removing all restrictions to Sf in A. Then 

V~V”‘iS[tl”‘i3”‘vA(u’,u,~,i) -+3vVS’iA’(u’,u,~,i}]. 

Proof. We first prove (i). Let u’ = 300, where X! are standard; let 3 be standard, 
Suppose that for each standard i there is a Vi = yi co with yr standard and A(u’, vi, i4, i). 
Thus by Corollary 3.2, we can successively choose an increasing sequence of stages 
kO < kl < k2 < ... such that 

(Vstj 2 kJ A”‘(?j, yi j, SJ, if. (3 

Now define z as follows: for j < kO, let z(j) = kO; for k, < j < k,, 1, let z(j) = y,(j). 
(To find the m we need only to search up to and including kj,) We prove that v = zcc 
is the desired object. Let i be standard and suppose that j & ki. Then for some I, 

SO z(j) = yi+f( j), and thus by (5), 

As’(jtj, zj, i3, i + I). 

By transfer the chain condition holds also when applying the ( * )S’-translation. Using 
this and induction on I we get 

A”“(jZj, zj, 13, i) . 

Hence by the Los principle A($, v, i& i). (ii) is proved by observing that since vi is 
standard, Corollary 3.2 is applicable without requirement on v. Now yij can be 
replaced by Ui in (5) and in the sequel. The last step is modified: from 
(V”‘j 3 ki) A”‘(jTj, zj, 3, i), we conclude by biting (with (Vj 2 kJ A’ as the light formula 
of Theorem 3.3): 

(Vj 2 ki) A’(jZj, zj, ~5, i). 

Thus letting j = co yields A’@, v, 9, i). 0 

The idea of this proof is present already in customary proofs of saturation for ultra 
products. A constructive proof of the restricted form above, for reduced products, is 
given in Palmgren [23]. 
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Corollary 3.6 (Weak idealisation). Let A(u’, v, i?, i) be an amenable formula, where ii 
and v are nonconjining. Then 

VCiV,‘“‘ci,[V’“‘i3v(V’“‘j < i) A(ii,v,Ti,j) -+ 3vV’“‘iA(u’,v,G,i)]. 

Proof. Let B(u’, v, 3, i) 3 (Vj < i) A(i7, v, i4,j). This formula is amenable and noncon- 
fining in u’ and v. It also satisfies the chain condition of Theorem 3.5. The result is 

immediate from part (i) of the theorem. 0 

Laugwitz [13, p. 1191 proves a similar result for enlargements based on cofinite 
filters. We now have weak analogues of the three nonstandard principles of Nelson’s 
internal set theory: 

idealisation weak idealisation, 
standardisation external induction, 
transfer Theorem 3.4. 

Corollary 3.7 (du Bois-Reymond’s lemma (Laugwitz [13])). Suppose (Ui) is a decresing 

sequence of numbers, where ui is injnite for each standard i. Then there is an infinite 
\’ with V”‘i(ui > v). 

Proof. We have by the assumption 

Vs,‘“‘i3v(Vs’j < i)[uj > VAV >j]. 

By Corollary 3.6 there exists a v such that 

V’“‘i [Ui > V A V 2 i]. 

Thus v is the desired number. [7 

The following is a refinement of a result due to Martin-L6f which he proved 
directly. 

Corollary 3.8 (Overspill). Let A@, i4, n) be an amenable formula, where the variables ii 
are nonconjining. Then 

ViiV’“‘B[Vs’nA(ii,ii,n) -+(3v)v infinite A Vp < vA’(ii,iC,p)], 

where A’ is A when all restrictions to St have been removed. 

Proof. Let B(ii, n’, i?, n) E (‘P’p d n’) A(u’, iG, p) A n’ > n. This formula satisfies the 
conditions of Theorem 3S(ii). From V”n A@, G, n) it follows that 
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choosing n’ = n. The theorem yields a number v such that W’n(v 2 n) and 

as required. 0 

4. A model of internal HA” 

We construct the model inside HA” + AC. The construction is essentially a reduced 
power; a nonstandard object of type G is interpreted as a sequence of ordinary objects 
of type a, and two such sequences are considered equivalent if they eventually agree. 
The modelling proves conservativity over HA” + AC. Moreover, everything that is 
true in the model is provable in IHA”. We let ( .)* denote the interpretation function 
from the expressions of IHA” to the expressions of HA”. It will satisfy the conditions: 
l If a is a type, then a* is a type. 
l If a:a, then a*:a*. 
l If A is a formula, then A* is a formula. 
The interpretation is defined as follows for the different syntactic categories. 

Types: For a E Y-, let a* = 0 + a. 
Terms: Each variable x0 is interpreted as a new variable x*O*. 
If c: a is one of the internal constants 0, S,s, k,p,p,,p, or r, then 

Thus c* is constantly c, and c* : a*. The infinite number is however a nonstandard 
object, and is interpreted as 

where I” is the identity function on a. Thus co *-O*. The application function is . 
interpreted as acting pointwise along the sequence; if t* : (a + z)*, s* : a*, then 

This term clearly has type t*. Note that for m:O, (ts)*m = t*m(s*m). 
Formulas: For sequences u, v : 0 -+ a we define two predicates 

St,*(u) = 3kVm z k[um =a u(Sm)], 

u=,*v-3kb’m>k[um=,vm]. 

Thus St,*(u) if and only if u is eventually constant. It is easily seen that the second 
predicate is an equivalence relation, which is respected by the former predicate. The 
interpretation of atomic formulas is as follows: 

W(t)* = St,*@*) 
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and 

(t =d s)* E (t* =,* s*). 

Absurdity is interpreted as itself _L* z 1. The logical constants are translated literally: 
(A@@* E A*oZ?* for 0 E A, v, + and (Qx”A)* E Qx*O*A* for Q = V,:3. This 

defines the interpretation. 
In preparation for the soundness theorem we need a few results on substitution, and 

interpretation of standard quantifiers. It is easily shown that the interpretation com- 
mutes with substitution, i.e. b*[a*/Z*] s ~[c’/F!]* and A*[c’*/?*] = A[SZ/x’]*. 

Lemma 4.1. Let a : z be a term, and let A be a formula of iHA”. Suppose ii = ul, . . . , u,, 

I?-vl,... v andZ*zx* 2 “2 1, . . . ,x,* where ui, O~,X: are of type Oai. Then: 

(i) u1 =a*, vi A ... AU, =z” u, * a*[ii/?*] =r a*[i7/2*]. 

(ii) u1 =,*, v1 A ... AU, =:” v, * A*[iI/x’*] oA*[o’/Z*]. 

(iii) (W’y” A)* [u’/x’*] o Vu” A* [ii, kv/x’*, y*] . 

(iv) (!l”‘y”A)*[u’/jt*] *3u”A*[ii,kv/~*,y*]. 

Proof. (i) and (ii) are proved by a straightforward induction on the complexity of 
a and A respectively. Noting that St,‘(v) if and only if v =t ku, for some u : a, the 
equivalences (iii) and (iv) easily follow from (ii). 0 

Lemma 4.2. Let t : z be an internal term with free variables among XT’, . . . , xr. Then for 

all y,:aT ,..., y,:a,*, 

t* CY 1, . . . 3 y,/x:, . . . . x.*]m =,t[ytm ,..., y,m/x, ,..., x,]. 

Proof. By induction on the complexity of t. 0 

Lemma 4.3. Let A be an internal formula with free variables among XT’, . . . , x:. Then for 
all y, : ar, , y,: an, 

VY?’ ... y: [A[J’/I] +AS’)*[kyI, . . . ,ky,/x:, . . ,xX]]. 

Proof. By induction on the complexity of A. The atomic case = follows from Lemma 
4.2. The quantifier case follows from Lemma 4.1. 0 

Any closed internal formula A is thus equivalent to (ASt)*. We are now in a position 
to prove the soundness theorem. 

Theorem 4.4. The interpretation ( .)* of iHA” into HA” + AC is sound. 
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Proof. The soundness for the logical axioms and rules follows since the interpretation 
is literal for logical constants, and since the interpretation function commutes with 
substitution. We need thus only to check the nonlogical axioms. 

Equality axioms: Reflexivity, symmetry and transitivity follow because =* is an 
equivalence relation. The cases for application and St are consequences of Lemma 4.1. 

Dejining axioms for combinators: These are readily checked by noting that the 
combinators act pointwise. To give one example, consider the equation 

rxy(S2) = y(rxyz)z. 

We have 

(rxy(Sz))*m = (r*m)(x*m)(y*m)((S*m)(z*m)) 

= r(x*m)(y*m)(S(z*m)) 

= (y*m)(r(x*m)(y*m)(z*m))(z*m) 

= (y(rxyz)z)*m 

The second member follows since c*m = kcm = c for internal constants c. By the 
definition of =* , we now see the validity of the equation under the interpretation. 

Arithmetical axioms: The fourth Peano axiom is easily seen to be valid under the 
interpretation. The validity of external induction follows by applying Lemma 4.1 to 
translate it into usual induction. 

Axioms on internal constants and application: Since an internal constant c is inter- 
preted as a constant sequence, the axiom St(c) is obviously valid. The axiom 
Vst xor V y” St (xy) is also easily checked. 

The external axiom of choice: Suppose ( W’x” 3”‘y’ A@, x, y))*. Lemma 4.1 gives 

MY 3 w’ A* [ku, kw/x*, y*] . 

The axiom of choice gives tbT so that, for all u, 

A* [ku, k(tv)/x*, y*] . 

Now k(tu) =: s(kt)(ku), so by Lemma 4.1, 

A* [ku, s(kt)(ku)/x*, y*] . 

From this it follows that (3 st~ar Vs’xu A(u’, x, zx))*. 

The limit principle: Let x* : CT* = Oa be given. Thus 

x*m = s(kx*)Im = s(kx*)( co*)m. 

Thus x* =* s(kx*)( co*) and since St,*,(kx*), 

(3Sfy0° [x = yco])*. 
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The limit equality axiom: The equivalence 

s(kt) co* =* s(ku) oo* c-, 31 Vm > 1 [s(kt)(km) =* s(kv)(km)], (6) 

for t, u: Oa, follows from the definition of =* . Now >, has a primitive recursive 

characteristic function f;, so that 

m>l edef f>(m,l)=O - fz(km,kl) =*kO. 

Thus the ~ght-hand side of (6) is equivalent to 

(I”‘1 ‘Pm 2 E [xm = ym])* [kt, kv/x*, y*] . 

This validates the axiom and concludes the soundness proof. 0 

Lemma 4.5. For formulas A of IHA” with free variables among 3, the following holds 
in iHA”: 

V”u’(A*“‘[u”/~*] c> A[tIo3/2]). 

Proof. By a straightforward induction on A, using the iHA~-interpreted form of 
Lemma 4.2. [7 

Corollary 4.6. For closed A in HA”, and closed B in IHA”: 
(i) IHA” t A”’ if and only if HA" + AC k A, 

(ii) HA” + AC t B* if and only $iHA” k B. 

Proof. (i) follows from the soundness theorem and Lemma 4.3. (ii) follows from 
Lemma 4.5, and the soundness theorem. 0 

The first result says that IHA” is a conservative extension of HA” + AC. The 
second states that iHA” completely axiomatises the model given inside HA” + AC. 

Corollary 4.1. The theory IHA” has the explicit definability property in the following 

forms. Let A(x) be a formula where x is the only free variable. 
(i) rf iHA” I- 3x A(x), then for some closed t : CT, IHA” I- A(t). 

(ii) If IHA” F 3”x A( x ), h t en or some closed internal t : (r, iHA” k A(t). f 

Proof. This follows from Lemmas 4.3 and 4.5, using the explicit definability property 
of HA” + AC. [? 

Finally, we characterise provability in HA” + AC[ co]. 

Corollary 4.8. Let A(x) be an internal formula. Then 

HA” + AC[ co] I- A( 00) o iHA” t- 3”‘kV”‘n 2 k A”‘(n). 
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Proof. ( =z-) Follows from Theorem 2.2 and the (. )“‘-interpretation. 

( -==) Suppose 

iHA”l-3”‘nW’m 2 nA”‘(m). 

By Corollary 4.7, there is a numeral n such that 

IHA”’ I- V’k A”‘@ + k) 

and hence by Corollary 4.6(i) and Theorem 2.2, HA” + AC[ CO] F A( CO). 0 

Remark. An immediate consequence of this result, and Theorem 2.8, is that all partial 
recursive functions are representable by terms in iHA”. 

5. Constructive nonstandard analysis in the internal theory 

In Section 3 we remarked that elementary parts of Bishop’s constructive analysis 
can be carried out in HA”. We now illustrate the possibilities given by IHA” to handle 
nonstandard real numbers. Nonstandard characterisations of a few standard notions 
concerning sequences and functions are given. The fundamental theorem of calculus is 
proved using nonstandard methods. 

5.1. Extending Bishop ‘s constructive analysis with nonstandard notions 

In Section 3 we saw that the syntactic translation A H A”’ given by relativising all 
quantifiers to standard objects defines an interpretation of HA” + AC into IHA”. 
Thus any theorem A of constructive analysis proved in the former theory is valid in 
the latter as the relativised statement A”‘. In IHA” we have general methods for 
dealing with nonstandard objects of the kind considered by Laugwitz/Schmieden and 
Martin-Liif. The limit principle embodies the idea that every nonstandard object is 
essentially a sequence of standard objects. All operations defined on standard entities 
extend to nonstandard entities by applying them termwise to the representing se- 
quences. Moreover every standard concept or predicate gives rise to a canonical 
nonstandard concept, so that it holds of a nonstandard object, if its representing 
sequence eventually falls under the standard concept. The latter is formalised by the 
procedure of definitional extension given in Section 3.3. We illustrate this with real 
numbers, where we use the definition of Bishop [3]: 

R”‘(x) o ‘Pn Q”‘(x,) A (Vm, n > 0)/x, - x,1 <g k + k, 

where Q”‘(x) is the predicate for “the natural number x represents a rational number” 
and <g is the order relation on rationals. The second condition is that the sequence is 
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regular (a strong form of Cauchy condition). The nonstandard real numbers are given 

by 

R(XCO) o 3”‘k(W’l 2 k)R”‘(xl). 

Thus 2”, ( - l)“, l/ 00 and sin cc are examples of nonstandard real numbers. We 
define standard predicates for equality and positivity of real numbers. 

x =; y 0 (W’n > 0)1x, - y,l <;5 &, 

P”‘(x) 0 (3% > o,J <;x,. 
n 

Again we have the corresponding nonstandard predicates CR and P. While the 
standard and nonstandard predicates agree on standard objects, they mean com- 
pletely different things for nonstandard objects. 

Example. We have 

P( a-‘) 0 3”‘k(V,“‘m 2 k)(3”‘n > O)[nK’ <m-l], 

but 

,,I( CC-l) 0 (3% > 0)3”‘k(v’“‘m 3 k)[n_’ < m-l]. 

The right-hand side of the latter is of course false. 

The order relations <g, CR are given by 

x <s( y 0 P”‘(y -x). 

The apartness and the not-greater-than relation are defined through 

x #“‘y ox <;yvy <;x, 

x 6”‘y -1y <;x. 

Almost all basic standard results on these relations, and the arithmetic of real numbers, 
can be lifted to nonstandard real numbers. We here refer to the results proved in Ch. 2.2 
of Bishop and Bridges [4]. The reason is that they can be formulated as constructive 
Horn formulas in the language extended with R”‘, =S: , -cz , <S: and #S: . Consider 
the following statement: 

V’xyzt [R”‘(x) A R”‘(y) A R”‘(z) A R”‘(t) A x <; z A y <; t + x + y <$ z + t]. 

By the lifting theorem, the same holds with the superscripts st removed. A result which 
does not lift is e.g.: for all standard reals x, y, z, 

x<y+x<zvz<y. 

This does not hold for nonstandard reals, take x = 0, y = 1 and z = (- 2)“. 
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Definition 5.1. Let a and b be real numbers. Define 
(i) a is$nite, if 3”‘k(lal <R k), 

(ii) a is infinite, if k+“k(k <R Ial), 
(iii) a is infinitesimal, if v’“‘k([al <R zek), 
(iv) a and b are infinitely close, if a - b is infinitesimal; in this case we write a N b. 

Thus all standard reals are finite. co and ( - 2)” are infinite. co- ’ is infinitesimal. 
Note that the only standard infinitesimal is 0. 

5.2. Nonstandard characterisations: sequences 

We give first the precise standard definitions in the internal theory. 

Definition 5.2. Let (x,) be a standard sequence of real numbers. 
(i) (x,) converges to the standard real number L, (x,) + L, if 

(V”‘k > 0)3”‘1(V’“‘n 3 1)1x, - LI Cst 2-k. 

(ii) L is a limit point of (x,), if V’“‘kV”‘1(3”‘n 3 1) Ix, - LI cst 2-k. 
(iii) (x,) is bounded if 3S’kW’n(lx,l cst k). 

The following simple but important results give nonstandard characterisations of 
these notions. 

Theorem 5.3. Let (x,) be a standard sequence of real numbers. Let L be a standard real 

number. Then: 

(i) (x,) + L if and only if x, N L. 
(ii) L is a limit point of (x,) ifand only if there is an injinite natural number TV such that 

x, N L. 

Proof. (i) (x,) -+ L is by the Los principle equivalent to 

V’“‘k Ix, - LI < 2-k, 

i.e. x, N L. 

(ii) Suppose that Vst kl(3”n B 1) Ix, - L( cst 2-k. Applying the axiom of choice 
twice, we find a standard function f such that 

V’“‘kl[f(k,l) > lAIxl(,,,, - Ll <“‘2-k]. 

By first lifting this formula, and then letting k = 1 = co we get f( co, co) 2 co and 

1x0 m,ao) - LI < 2_“. 

Thus let q = f( co, co). 
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Conversely, let v = g(co) be infinite with x,, N L. Let k and 1 be fixed standard 
numbers. The Los principle applied to Ix,, - Ll < 2-k yields a stage p such that 

(Vi 2 p) JXg(i) - LI < 2-k. 

Since g(c0) is infinite, we have n = g(i) 2 I for some i 2 p, and thus Ix, - LJ < 2-k. 0 

Proposition 5.4. Let (x,) be a standard sequence of real numbers. Then: (x,) is bounded if 

and only if x, is jnite. 

Proof. ( * ) Let k be standard and suppose V’n (Ix,1 <“’ k). By lifting Vn (lx,1 c k). In 
particular, Ix,1 < k. 

( c’) Suppose (x,1 < k for some standard k. By the Los principle, 

?l(V”‘n 2 l)(Ix,,l < k). 

Now let k’ be a standard upper bound of [x0(, . . . ,Ixr_il, k. Thus (x,) is bounded 
by k’. 0 

The number co acts as a generic infinity in certain formulas. 

Proposition 5.5. Let A@, n) be an amenable formula where n is nonconfining. Then 

V’“‘jt [A(?, cg) + (V infinite n) A(?, n)] 

Proof. Suppose A(?, x$ for fixed standard jt. Thus by the Los principle, there is 
a stage k such that A”‘@!, n) for n > k. Let rl = f(m) be infinite, where f is standard. 
Thus for some standard 1, (V”m 2 l) f(m) 2 k. Hence 

A”‘(Jt,f(m)) 

for m 2 1. Hence, by the Los principle, A@,?). 0 

Remark. It can easily be shown that the proposition holds also for formulas 
A(.?, y) E V’“‘t B(3, y, 2) or 3”‘.? B(jt, y, z’), where B is amenable and not confining in 
y. We thus have, for example, aoo N b, iff for all infinite rl, a,, N b,. Moreover a, is 

finite iff for all infinite rj, a, is finite. 

Proposition 5.6. (Robinson’s sequential lemma (Laugwitz [13])). Assume (s,) to be 
a sequence of real numbers. Zf for every standard n, s, N 0, then for some infinite v, 
(VP < v)s,, N 0. 
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Proof. We use overspill. Let A(s,n) be the formula (V”‘k < n)lskl Q 2-“. Clearly 

V”nA(s,n), so there is an infinite v with 

0% G V)lS”l < 2-v, 

and we are done. 0 

5.3. ~anslandard &haracier~saf~ons: functions 

We recall the usual continuity notion from Bishop [3] 

Definition 5.7. A standard function f:I -t R where I is an interval, is uniform/y 

continuous if there exists a standard function m (which does not have to respect 

equality on reals) such that (‘v’% z+- O)m(&) > 0 and 

(VSt& > O)(V”‘x,y~Z)[lx - yl G m(E) * If(x) -f(y)1 G 81. 

m is called a continuity modulus. A function defined on a general interval J is locally 
uniformaly continuous if it is uniformly continuous on each compact subinterval 
of J. 

The axiom of choice gives several convenient standard characterisations of uniform 
continuity. Here it is important that the continuity modulus is not required to respect 
equality on real numbers. 

Proration 5.8. The following are equivalent for a standard function f: 1 --t R: 

(i) f is uniformly continuous, 
(ii) (V”E > 0)(3”“6 > O)(tp’x,y EI)[Ix - yl 6 6 3 If(x) -f(y)1 6 El, 

(iii) (Vst~)(~stn)(Vst X,I’Ef)[IX -yl G 2-” * If~x) -f(Y)/ G 2-k3. 

Proof. The proof is standard in both senses. •l 

Definition 5.9. A function f: J -+ R defined on a standard interval J is monad preserv- 

ing if 

V&Y EJCX 2 Y *f(x) ~f(Y)l. 

jis locally monad preserving if it is monad preserving on every compact standard 
subinterval of J. 

Theorem 5.10. Let f: J + R be a standard function on the standard interval J. 
(i) If f is uniformiy continuous, then f is monad preserving. 

(ii) If f is locally uniformly continuous, then f is locally monad preserving. 
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Proof. (ii) follows easily from (i). We prove (i). By lifting 

(V’s > O)W&Y~J)ClX - Yl G 44 * If(x) -f(Y)1 G El. 

Suppose x ‘v y, x,y E J. For a standard E > 0, M(E) is standard and positive, so 
Ix - yl Q m(e). Hence If(x) -f(y)1 d E. Since E > 0 was arbitrary, f(x) -f(y). 0 

The converse does not seem to hold (constructively). The reason for this conclusion 
is that monad preservation can be characterised in terms of sequential continuity. 

Definition 5.11. Let f: .Z -+ R be a standard function on the standard interval J. Then 
f is sequentially uniformly continuous if for all standard sequences (x,) and (y,,) in J, 

X” - Y” + 0 &- f(X”) -f(Yn) + 0. 

Proposition 5.12. Let f: J -+ R be a standardfunction on the standard interval J. Then: 

f is sequentially uniformly continuous if and only if it is monad preserving. 

Proof. ( s=) This follows easily by the nonstandard characterisation of limits. 
( =z- ) Let x N y, where x, y E J. Thus x = ucc and y = ucc for some standard u and u. 

Thus there exists a stage k such that for all standard n 2 k, un, un E J. We let u’ and v’ 
be modifications of u and u, respectively, leaving them unchanged for arguments 2 k, 

but such that tin, v’n E J for all n. Thus x = u’co and y = u’cc and u’cc N u’co. By the 
characterisation of limits, u’n - v’n + 0. The assumption gives f(u’n) -f(u’n) + 0. 

Hence again by the characterisation f(u’co) -f(u’co), i.e. f(x) -f(y). 0 

Nevertheless, uniform continuity can be given a nonstandard characterisation. 

Define a standard predicate, 

CS'(f,L44c*WS'X,Y E:I)CIx - Yl G 6 + If(x) -f(Y)1 6 &I. 

Let C be its nonstandard version. 

Proposition 5.13. Let f: I + R, and let I be standard. Then the following are equivalent: 

(i) f is uniformly continuous, 

(ii) (Vs > 0)(36 > O)C(f,Z,6,&), 
(iii) there are 6, E > 0 with E infinitesimal such that C(f, I, 6, E). 

Proof. (i) =S (ii) follows by lifting the alternate characterisation of uniform continu- 
ity given in Proposition U(ii). (ii) * (iii) is immediate. 

We prove (iii) =S (i). Let 6 = a, and E = pm where a and j? are standard. Thus there 
is a stage k such that for all standard n 2 k, we have a, > 0, ~7. > 0 and 

W’“‘x~Y~~)CIx -Yl G a, +IfW --f(Y)IG B.1. 
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E is infinitesimal, so for each k, there is an n > k such that 0 < /?. < 2-k and thus 

ws’x,Y~~)CIx-Yl <a, -If(x)-f(Y)1 G2-kl. 

It follows that fis uniformly continuous. 0 

Example. We prove that f(x) = x2 is uniformly continuous on I = [ - M, M] where 
M is standard. We have for standard x, y E I, 6 > 0 and lx - yJ < 6, that 

Iy2 - x21 = /2(y - x)x + (y - x)~[ Q 24x1 + S2 6 26M + a2. 

By lifting, we thus have for arbitrary S > 0, C(A I, 6,26M + 6’). If 6 is infinitesimal, 
26M + d2 is also infinitesimal, since M is standard. Thus fis uniformly continuous on 
I, by (iii) in the above proposition. This seems to capture a familiar mode of reasoning 
which begins: “let 6 > 0 be small ... “. 

The characterisation in Proposition 5.13 can be generalised to notions that can be 
defined by a similar quantifier combination, such as differentiability. Consider a for- 
mula (FE > 0)(3”‘6 > 0),4(1,&s). Defining C”’ = A, the following is a sufficient 
condition on the formula A@, 8,s) with real parameters 4s: for standard jt and 
&~‘,E,E’ > 0: 

z‘i(jt,&&)A6’<6AE<&’ * A(St,&‘,E’). 

Wattenberg [32] notes that the proof of the intermediate value theorem (IVT) in 
classical nonstandard analysis is constructive up to the point of applying the standar- 
disation map. Here we can reason thus. Let U”(f;Z) be the standard predicate for 
‘f: Z + R is a uniformly continuous function”. A constructive version of IVT now 
reads: 

Vs’fVs’Z(Vs’a,b EZ)(W’E > 0) 

Clearly this is a constructive Horn formula, so it can be lifted. Taking E ~0, we thus 
find x with f(x) = 0. But in our approach the representing sequence of x could even 
contain subsequences converging to two different zeros off: 

Definition 5.14. Let f; g : Z + R be standard, uniformly continuous functions, where 
Z is a standard interval. Let d be a standard function on reals (which do not have to 
respect equality on reals) with (Vst~ > O)d(.$ > 0. Then f is uniformly &@rentiable, 
with derivative g, if 

(w’s > O)(v”‘x,Y EZ) [ly - xl < d(E) + If(y) -f(x) - g(x)(y - x)1 < Ely - xl]. 

We then write Df = g. 
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Proposition 5.15. Let f: I + R be standard and uniformly diflerentiable. For all x E I 

and I2jl > 0 injinitesimal with x + 5 ~1, 

Df(x) _f(x + 5) -f(x) 

e . 

Proof. We have by lifting, that VS’n (3”‘6 > 0): 

(VXEZ)(V() ITl>Onx+rEIA/rl~~‘f(X+r:-f(X)-DjlX) <2_” . [ I 1 
Since 18 < 6 for every standard 6 > 0, we have for all standard n: 

f(x + 5) -f(x) _ Df(x) < 2-” 

r 
\ . 

This yields the result. 0 

Finally, we prove the fundamental theorem of calculus. 

Theorem 5.16. Let F: I + R be a standard, uniformly difirentiable function with 

dervative 1: Then for a < b in I, 

s 

b 

of(x)dx = F(b) - F(a). 

Proof. We have for all infinite o, 

s b w-l 
f(x)dx = A 1 f(a + id), 

a i=O 

where A = (b - a)/o, by the nonstandard characterisation of limits. By Proposition 
5.15. 

f(a + id) = A-‘(F(a + id + A) - F(a + id)) + vi, 

where vi is infinitesimal. Telescoping the sum, we get 

o-l w-1 

A iso f(a + id) = F(b) - F(a) + A 1 vi. 
i=O 

We can make the estimates 

o-l 

A 1 lqil G Am oTF:m lqil < AO( lqjl + me ‘) = (b - a)lqjl + A N 0, 
i=O . 
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where j is some index, 0 6 j < o. Thus 

s b 

/x)dx ‘v F(b) - F(a). 

Since both sides are standard, they are actually equal. 0 

6. Concluding remarks 

In this paper we introduced a nonstandard arithmetical theory which we believe is 
suitable for the formalisation of elementary constructive nonstandard analysis. Fur- 
ther investigations into the elementary parts would be desirable; by, for example, 
constructivising the work of Laugwitz [13]. For some applications to differential 
equations, see Palmgren [25]. The present theory has the obvious limitation that it 
cannot handle general sets. We could instead have built the nonstandard theory on 
HA* with predicative set quantification. The nonstandard theory would then have 
two kinds of set variables, standard and general. The intended interpretation of 
general set is a sequence of standard sets. Membership of such a set is eventual 
standard membership (cf. the internal sets in [23]). With this interpretation it is 
possible to motivate a standardisation principle, similar to Nelson’s [22]. 
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