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1 Introduction

Brouwer’s pioneering results in topology, e.g. invariance of dimension, were devel-
oped within a classical framework of mathematics. Some years later he explained
that “in his topological work he tried to use only methods which he expected could
be made constructive” [10, p. XIV]. It seems that very little of algebraic topol-
ogy, homotopy and homology, has actually been developed constructively in any
detail, or, at any rate, found its way to publication. In the comprehensive treatise
Foundations of Constructive Mathematics, Beeson [4, pp. 26 – 27] writes however

“The classical results of algebraic topology do not require the general
concept of a topological space. If we content ourselves to treat met-
ric spaces, then the standard treatments of the homotopy and homol-
ogy groups are quite straightforwardly constructive, e.g. Greenberg
[1967]17 . One draws all the usual corollaries, e.g. Rn and Rm are not
homeomorphic unless n = m; [...] It is quite essential to deal with uni-
formly continuous functions, and not just with continuous functions.”

To be able to make certain quotient and glueing constructions it is necessary to have
a constructive theory of more general topological spaces than metric spaces. As ar-
gued by many authors, locales, or point-free topologies, should provide a good
constructive foundation for topological theories; see [2, 8, 3, 19, 20]. The point-
free approach can also be regarded as a (re)interpretation of Brouwer’s theory of
choice sequences (Martin-Löf [18], Coquand [6, p. 31]), whereby one regains cov-
ering compactness results, e.g. the Heine-Borel theorem, but with a fully construc-
tive interpretation. For some background and history of point-free topology from
lattice-theoretic origins, see [13, 14]. It is interesting to note that such ideas were
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also introduced in the intuitionistic school, first by Freudenthal [9], and then fur-
ther developed by Troelstra [23]. Already in [9], which treats compact Hausdorff
spaces, the characteristics of point-free topology were clearly visible, some class
of open sets form the fundamental objects, points are merely derived and covering
relations are defined without reference to points. There is also a development of
general topology [24] using non-effective principles, like Brouwer’s Fan Theorem
(which is valid in certain toposes).

Fundamental groups for locales have been constructed by W. He [12]. Various
generalisations and equivalents of fundamental groups for locales and toposes are
studied by Kennison [16]. Most prominently a point-free approach to paths and
homotopy is developed. These papers are not explicitly concerned with construc-
tivity, and certainly not predicativity. We shall here investigate a key element in
the construction of the fundamental group for a formal topology, combining those
foundational perspectives. Formal topology is a predicative version of locale the-
ory, due to Martin-Löf and Sambin; see [22]. We shall therefore work within the
framework of constructive mathematics in the style of Bishop (cf. [5]), which in
turn can be formalised in constructive type theory, or constructive set theory. In fact
some of the results, Theorem 3.4 and 4.1, do not use any kind of choice principle
and are therefore valid in any topos (cf. [15]).

2 Paths in spaces

In the construction of the fundamental group of a space, joining and deformation
of paths in a space are basic operations.

A space Y is said to have the path joining property (PJP) if f : [a,b] // Y
and g : [b,c] // Y are continuous functions with f (b) = g(b), then there exists
a unique continuous function h : [a,c] // Y , with h(t) = f (t) for t ∈ [a,b], and
h(t) = g(t) for t ∈ [b,c]. Classically, every topological space satisfies PJP since
we can define h by cases and then check its continuity. Constructively, case-wise
definition is a priori not possible. Furthermore, uniform continuity, in some form,
is the basic notion. In this section, the discussion is restricted to metric spaces.

Lemma 2.1 Let X be a metric space and let Y be a complete metric space. If
D ⊆ X is a dense subset, and f : D // Y is uniformly continuous, then there is a
unique continuous function h : X // Y so that h(t) = f (t) for all t ∈ D.

Proof. The existence follows from [5, Lemma 3.3.7]. Uniqueness is direct from
continuity, using the inequality |h1(x)− h2(x)| ≤ |h1(x)− h1(t)|+ |h2(t)− h2(x)|,
where t ∈ D. 2

A dense set in the interval [a,b] is, for instance, Da,b = {a+(b−a)k2−n : n =
1,2,3, . . . ;k = 0, . . . ,2n}.

Theorem 2.2 PJP is valid for complete metric spaces Y .
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Proof. Let f : [a,b] // Y and g : [b,c] // Y be continuous functions. The set
E = Da,b∪Db,c is dense in [a,c]. Since Da,b∩Db,c contains only the element b, and
f (b) = g(b), the following is indeed a definition of a function k : E // Y . Let
k(t) = y if, and only if,

t ∈ Da,b and f (t) = y, or t ∈ Db,c and g(t) = y.

If ω f and ωg are the continuity moduli of f and g, respectively, then

ωk(ε) =def min(ω f (
ε
2
),ωg(

ε
2
))

is a modulus for k. Let h be the unique extension of k according to Lemma 2.1.
Again by this lemma, h restricted to [a,b] is f , and h restricted to [b,c] is g. It is
also the unique such h. 2

This method fails for general metric spaces.

Proposition 2.3 There is a metric space Y , such that if the PJP is valid for Y , then
for any real x

x ≤ 0 or x ≥ 0.

Proof. Let Y be [−1,0]∪ [0,1] as metric subspace of R, and suppose that PJP is
valid for Y . Let f : [−1,0] // Y and g : [0,1] // Y be inclusion maps. Take h :
[−1,1] // Y to be the unique common extension of those maps, as given by PJP.
Thus h�[−1,0] = f and h�[0,1] = g. We show that h(x) = x for all x∈ [−1,1]. Consider
the inclusion k : Y // [−1,1], and the composition k ◦ h : [−1,1] // [−1,1].
Now (k◦h)�[−1,0] = k◦ f , i.e. the inclusion of [−1,0] into [−1,1], and (k◦h)�[0,1] =
k ◦ g, i.e. the inclusion of [0,1] into [−1,1]. The identity map id[−1,1] restricted
similarly, gives obviously the same inclusions. By Theorem 2.2 for [−1,1], we get
k◦h = id[−1,1]. Thus h(x) = k(h(x)) = x for all x ∈ [−1,1]. But h(x) ∈Y , so for all
x ∈ [−1,1],

x ≤ 0 or 0 ≤ x.

The desired conclusion follows, by noting that for any real x it holds that x ∈
[−1,1], x ≤−1/2 or 1/2 ≤ x. 2

As the conclusion is non-constructive [5], the proposition provides a Brouwe-
rian counterexample to the general validity of PJP.

A continuous deformation of a function into another function is a homotopy
[1]. Composition of such two deformations can be regarded as generalised joining
operation: It takes two continuous functions f : X × [a,b] // Y and g : X × [b,c]

// Y which agree at the edges b as: f (x,b) = g(x,b) for all x ∈ X . The operation
should then join them by producing a continuous function h : X × [a,c] // Y so
that h agrees with f and g on X × [a,b] respectively X × [b,c]. It can be expressed
in terms of maps only using a commutative diagram as follows. (This formulation
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will be useful in Section 3.) A pair of spaces (X ,Y ) has the homotopy joining
property (HJP), if the diagram

X × [a,b] X × [a,c]
1X× j1

//

X

X × [a,b]

〈1X ,b̂〉

��

X X × [b,c]
〈1X ,b̂〉

// X × [b,c]

X × [a,c]

1X× j2

��

(1)

commutes, and for any uniformly continuous F : X × [a,b] // Y and G : X× [b,c]
// Y with F ◦ 〈1X , b̂〉 = G ◦ 〈1X , b̂〉, there exists a unique uniformly continuous

H : X × [a,c] // Y so that F = H ◦ (1X × j1) and G = H ◦ (1X × j2). Here the b̂’s
are constant maps with value b on X , and the j’s are inclusions of intervals. (The
case where X = 1 (the one point metric space) is PJP for Y .)

Theorem 2.4 HJP holds for (X,Y ) when X is a metric space and Y is a complete
metric space.

Proof. Analogous to Theorem 2.2, using the dense set X ×E in X × [a,c]. 2

Using this theorem it is possible to construct the fundamental group at a point
of a complete metric space along standard lines [1]. Only the cases where X is a
finite, closed interval are needed. HJP is used, in particular, when showing that
the homotopy relation is transitive: Suppose that p and q are homotopic, and that
q and r are homotopic. Then there are uniformly continuous F : X × [0,1] // Y
and G : X × [1,2] // Y so that for all x ∈ X

F(x,0) = p(x) F(x,1) = q(x) = G(x,1) G(x,2) = r(x).

Then HJP gives the desired homotopy H : X × [0,2] // Y deforming p into r.

3 Formal topology

In contrast to the negative result of the previous section, the category of formal
topologies satisfies HJP for all pairs of spaces (X ,Y ). Equivalently, it can be stated
as: the diagram (1) is a pushout in this category, for every object X . This main
result in shown in Section 4. In Section 3.1 we review of some of the basics of
formal topology. Sections 3.2-3.4 prepares for the main result.

3.1 Basic definitions and results

Definition 3.1 A formal topology consists of a pre-order X = (X ,≤) of basic open
neighbourhoods and � ⊆ X ×P (X), the covering relation, satisfying the four cov-
ering conditions
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(Ref) a ∈U =⇒ a�U ,

(Tra) a�U , U �V =⇒ a�V ,

(Loc) a�U , a�V =⇒ a�U≤∩V≤,

(Ext) a ≤ b =⇒ a�{b}.

Here U �V ⇔def (∀a ∈U)a�V , and moreover, Z≤ =def {x ∈ X : (∃z ∈ X) x ≤ z}
is the down-closure of Z. Furthermore we require that the cover relation is set-
presented, in the sense that there is a family {C(a, i)}i∈I(a) of subsets of X so that

a�U ⇐⇒ (∃i ∈ I(a))C(a, i) ⊆U.

We write the components of a formal space X as (X ,≤X , �X ,CX ), often omitting
the set-presentation CX .

Define the mutual cover relation U ∼ V to hold iff U �V and V �U . Let
Z� = {x ∈X : x�Z}. A subset Z ⊆ X is saturated if Z� = Z. The saturated subsets
corresponds to elements in the associated locale. They may always be represented
by subsets up to mutual covering, since U ∼ U� . Any subset represents an open
set in this way. A subset Z ⊆ X is down-closed if Z≤ = Z.

A pair (a,U), where a ∈ X and U ⊆ X , is called a covering axiom. A formal
topology X is generated by a family of covering axioms (ai,Ui) (i ∈ I), if �X is
the smallest relation satisfying covering conditions and the axioms

ai �X Ui (i ∈ I).

From the set-presentation of a formal topology X one can obtain a generating fam-
ily of covering axioms (b j,Vj) j∈J for X as follows. Let J = {(a, i) : a ∈ X , i ∈
IX (a)} and put b(a,i) = a, V(a,i) = CX (a, i). Conversely, one can show (see e.g.
[21]) that if X satisfies axioms (Ref), (Tra), (Loc) and (Ext) and is generated by
a set-indexed family of covering axioms, then X is a formal topology. It is often
easier to exhibit a set of covering axioms, than a set-presentation.

3.1.1 Points

A point of X is a non-void subset α ⊆ S which is

(Fil) ≤-filtering, i.e. for a,b ∈ α, there is c ∈ α with c ≤ a and c ≤ b,

(Spl) such that α contains a neighbourhood from U , whenever a�U and a ∈ α.
(This is often expressed as: “a point splits any cover”).

The points of a formal topology X form a class Pt(X ), which, under certain condi-
tions, is a set. For a ∈ X , let a∗ denote the subclass of points in X satisfying a ∈ α.
For a subset U ⊆ X , let U ∗ denote the union of all the subclasses a∗ for a ∈U .
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Lemma 3.2 Any formal cover in X is a point-wise cover:

a�X U =⇒ a∗ ⊆ ∪U∗. 2

The converse implication is not true in general, and this explains why results
like the Heine-Borel Theorem are possible to prove in this setting. We say the
covers of formal topology X are order conservative, if a ≤X b whenever a� X {b}.
This notion is of course only interesting if ≤ has a simpler definition than � . (Any
formal topology is isomorphic to an order conservative one where � is the partial
order.) The covers are point-wise order conservative if a∗ ⊆ b∗ implies a ≤X b. In
view of Lemma 3.2 the latter is a stronger property.

3.1.2 Continuous morphisms

Let S = (S,≤, �) and T = (T,≤′, � ′) be formal topologies. A relation F ⊆ S×T
is a continuous mapping S // T if

(A1) aF b, b�
′V =⇒ a�F−1V ,

(A2) a�U , xF b for all x ∈U =⇒ aF b,

(A3) S�F−1 T ,

(A4) aF b, aF c =⇒ a�F−1(b≤′ ∩ c≤′).

Here F−1Z = {x ∈ S : (∃y ∈ Z)xRy} and z≤′ is {z}≤′ . It is possible to replace
the quantifications over the subsets U and V , with quantification over the set-
presentations of S and T respectively.

Some equivalent versions of the above axioms are

(A1’) b�
′ V =⇒ F−1b�F−1V ,

(A2’) a�F−1b =⇒ aF b,

(A4’) F−1U ∩F−1V �F−1(U≤′ ∩V≤′).

We have for any continuous F that F−1U �F−1V , if U �
′V . Hence F−1U ∼

F−1V whenever U ∼′ V . Also by (A1) F−1(U� ′) ∼ F−1U . By (A2) it follows that
each F−1Z is down-closed.

Each continuous mapping induces a point function f = Pt(F) given by

α 7→ {b : (∃a ∈ α)F(a,b)} : Pt(S) // Pt(T )

and which satisfies: aF b ⇒ f [a∗] ⊆ b∗.
Composition of two continuous morphisms F : X // Y and G : Y // Z is

given as follows
a(G◦F)c ⇐⇒ a� X F−1[G−1(c)].
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The one-point formal topology is the terminal object in the category of formal
topologies. It is constructed as 1 = ({∗},≤1, �1), where ∗ ≤1 ∗ and a� 1U iff U
is inhabited. The terminal map !Y from Y to 1 is defined by letting the relation
y !Y a be true for all y and a.

Now any point α ∈ Pt(X ) in a formal topology, gives a unique morphism Fα : 1
// X , which is given by

aFα x ⇐⇒ x ∈ α.

A map α̂ : Z // X which is constant α is defined by the composition Fα◦ !Z .
More explicitly, the map is given by the relation

z α̂x ⇐⇒ z� Z{u ∈ Z : x ∈ α}.

In particular, if z is covered by the empty set, then z α̂x holds for any x.

3.2 Closed subspaces

Let X = (X ,≤, �) be a formal topology. A subset U ⊆X defines an open set in the
topology. It also defines a closed subspace by its formal complement as follows.
Let X −̇U = (X ,≤, � ′) where

a�
′V ⇐⇒ a�U ∪V.

(Note that �
′ is generated by the covering axioms for � and the pairs (a, /0) for

a�U .) By the definition of �
′ we see that

X−̇U = X−̇(U� ). (2)

Proposition 3.3 Let X be a formal topology. For S ⊆ X, we have

α ∈ Pt(X −̇S) ⇐⇒ α ∈ Pt(X ) and α /∈ S∗.

We shall consider inclusion mappings between closed subspaces of a formal
topology X . For subsets V ⊆U ⊆ X , let EU,V : X −̇U // X −̇V be defined by

xEU,V y ⇐⇒def x� (X −̇U) {y}.

The right hand side is thus equivalent to x� X U ∪{y}, and hence we have

a�X −̇U E−1
U,VW ⇐⇒ a� X U ∪W. (3)

Each morphism EU,V is a monomorphism in the category of formal topologies.
Furthermore it follows that

EV,W ◦EU,V = EU,W (4)

for W ⊆V ⊆U ⊆ X . We shall write EU for EU, /0 : (X −̇U) // X . Note that

EU,V = EU� ,V�
. (5)
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3.2.1 A glueing theorem

We generalise slightly the glueing theorem from [19] (there stated without proof).

Theorem 3.4 Let X be a formal topology. Let I be a finite index set, and suppose
that Ui ⊆ X is down-closed for each i ∈ I. Suppose that Fi : (X −̇Ui) // Y , i ∈ I,
are continuous morphisms such that for all i, j ∈ I,

Fi ◦EUi j,Ui = Fj ◦EUi j,U j (6)

where Ui j = Ui ∪U j. Let W = ∩i∈IUi. Then there is a unique F : (X −̇W ) // Y
such that

F ◦EUi,W = Fi (7)

for all i ∈ I.

Proof. Note that by definition of composition and (3) we have

a(Fi ◦EUi j ,Ui)b ⇐⇒ a�X −̇Ui j E−1
Ui j,Ui

F−1
i b

⇐⇒ a�X Ui j ∪F−1
i b

⇐⇒ a�X Ui ∪U j ∪F−1
i b

⇐⇒ a�X U j ∪F−1
i b.

The last step follows since Ui ⊆ F−1
i b. By a similar equivalence for Fj ◦EUi j,U j , the

equation (6) can be read as the equivalence: for all a and b,

a� X U j ∪F−1
i b ⇐⇒ a�X Ui ∪F−1

j b. (8)

Any saturated set, such as F−1
i b, is down-closed as well. This property is used

frequently when applying the localisation axiom (Loc).
We show uniqueness first, which gives an explicit definition of F . Suppose that

F satisfies (7). Then for any i ∈ I, by expanding definitions and using transitivity,

a�X Ui ∪F−1b ⇐⇒ a�X Ui ∪E−1
Ui,W F−1b ⇐⇒ aFi b. (9)

We use localisation to obtain

a�X
\

i∈I

(Ui ∪F−1b) ⇐⇒ (∀i ∈ I) aFi b. (10)

Note that finiteness of I is essential here. Now
\

i∈I

(Ui ∪F−1b) = (
\

i∈I

Ui)∪F−1b = W ∪F−1b,

so the left hand side of (10) is equivalent to aF b. Thus we have

aF b ⇐⇒ (∀i ∈ I) aFi b
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which is an explicit definition of F , which is therefore uniquely determined.
Suppose now that F is given by this explicit definition. We show that it satisfies

(7) and is continuous. To show (7), note first that we have by the definition of ◦

aF ◦EUi,W b ⇐⇒ a� X Ui ∪F−1b. (11)

Since F ⊆ Fi, its right hand side implies a� X Ui ∪F−1
i b, that is aFi b. Thus we

have F ◦EUi,W ⊆ Fi. To show the reverse inclusion, suppose that aFi b. From (8)
we get, for any j, that a� X Ui ∪F−1

j b. Then applying localisation,

a�X Ui ∪
\

j∈I

F−1
j b.

But
T

j∈I F−1
j b = F−1b, by definition of F , so this gives, via (11), aF ◦EUi,W b.

This proves (7).
Finally, we show that F is continuous. The following lemma is then used.

Lemma 3.5 Suppose that a� XUi ∪F−1
i V, for every i ∈ I. Then a� X W ∪F−1V .

Proof. By localisation, we have, since Ui is down-closed,

a� X
\

i∈I

(Ui ∪F−1
i V ).

Let x be an element in the right hand side. Using that I is finite, there are only two
cases to consider:

Case 1: If x ∈Ui for all i, we have x ∈
T

j∈I U j = W , and, trivially, x� X W ∪
F−1V .

Case 2: If x ∈ F−1
i V , for some i, then V is inhabited and thus U j ⊆ F−1

j V for
any j, which implies that x ∈

T

j∈I F−1
j V . Hence there are b j ∈ V , j ∈ J, so that

xFj b j for each j ∈ J. Fix j ∈ J. Using (8) it follows from xFj b j , that for any k,
x�X U j ∪F−1

k b j . Thus by localization, and the definition of F ,

x�X U j ∪
\

k∈I

F−1
k b j = U j ∪F−1b j ⊆U j ∪F−1V

Again by localisation, we obtain x� X (
T

j∈I U j)∪F−1V = W ∪F−1V as desired.
2

Using this lemma the conditions (A1) – (A4) for continuity are now straight-
forward to check. This finishes the proof of the glueing theorem. 2

The theorem now gives the following corollary which appeared in [19].

Corollary 3.6 Let Y be a formal topology and suppose that U1,U2 ⊆ Y are satu-
rated subsets. Write V = U1 ∪U2 and W = U1 ∩U2. Then the following diagram is
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a pushout

Y −̇U1 Y −̇W
EU1,W

//

Y −̇V

Y −̇U1

EV,U1

��

Y −̇V Y −̇U2
EV,U2

// Y −̇U2

Y −̇W

EU2,W

��

(12)

Proof. By (4) it follows that the diagram commutes. The pushout property is a
direct consequence of Theorem 3.4 for I = {1,2}. 2

We use this result to prove HJP for formal topology in Section 4.

3.3 Formal reals

The basic neighbourhoods of the formal reals R are R = {(a,b)∈Q2 : a < b} given
the inclusion order (as intervals), denoted by ≤R . The cover �R is generated by

(G1) (a,b)�{(a′,b′) : a < a′ < b′ < b} for all a < b,

(G2) (a,b)�{(a,c),(d,b)} for all a < d < c < b.

This means that �R is the smallest covering relation satisfying (G1) and (G2). The
set of points Pt(R ) form a structure isomorphic to the Cauchy reals R. The order
relation of points is given by α < β iff b < c for some (a,b) ∈ α and (c,d) ∈ β.
Define α ≤ β iff ¬(β < α). The latter is equivalent to: b ≤ c for all (a,b) ∈ α and
(c,d) ∈ β.

For a rational q ∈ Q define the corresponding real by q̌ = {(a,b) ∈ R : a < q <
b}. We write q̌ as q when no confusion can arise. It is easily seen that (a,b)∗ ⊆
(c,d)∗ implies (a,b) ≤ (c,d). By Lemma 3.2 its follows that R is point-wise order
conservative.

The following may be regarded as a point-free version of the trichotomy prin-
ciple for real numbers.

Theorem 3.7 For any point β of the formal reals R let

Tβ = {(a,b) ∈ R : b < β or (a,b) ∈ β or β < a}.

Then for any U ⊆ R we have

U ∼R U≤∩Tβ.

Proof. The covering U≤ ∩ Tβ �R U is clear by the axioms (Tra) and (Ext). To
prove the converse covering, suppose that (a,b) ∈ U . Then it suffices by axiom
(G1) to show (c,d)� R U≤∩Tβ for any a < c < d < b. For any such c,d we have
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β < c or a < β, by the co-transitivity principle for real numbers. In the former
case, (c,d) ∈ U≤ ∩ Tβ, so suppose a < β. Similarly comparing d,b to β we get
d < β, in which case (c,d) ∈U≤∩Tβ, or we get β < b. In the latter case we have
(a,b) ∈U≤∩Tβ, so in particular (c,d)�U≤∩Tβ. 2

Next we define the closed interval [α,β], for α ≤ β, as the formal topology
R −̇Uα,β where

Uα,β = {(a,b) : b < α or β < a}.

Then [α,α] is a terminal object in the category, but the proof of this is not as
immediate as in point-set topology:

Lemma 3.8 Let X be a formal topology. Let β ∈ Pt(R ). Then β̂ is the unique
continuous map X // [β,β].

Proof. The proof that β̂ is a continuous map X // [β,β] is left to the reader.
Suppose now that F : X // [β,β] is another continuous map. For any I ∈ β, we
have R� [β,β] I, and hence F−1R� [β,β] F−1I. Thus for any u ∈ R, we have, using
(A3) for F , u� [β,β] F−1I, i.e. uF I. It has been shown that for any I,

{u ∈ R : I ∈ β} ⊆ {u ∈ R : uF I} = F−1I. (13)

Suppose x β̂ I, i.e. x�X {u ∈ R : I ∈ β}. Hence xF I, by (13). This proves β̂ ⊆ F .
To prove F ⊆ β̂, suppose that xF I. By Theorem 3.7,

I ∼R I≤∩Tβ.

Thus x�X F−1(I≤∩Tβ). Take any u ∈ F−1(I≤∩Tβ). It suffices to prove u β̂ I. For
some J = (a,b) ≤ I we have J ∈ Tβ and uF J. There are three cases: (i) b < β, (ii)
β < a and (iii) a < β < b. For (i) we get J � [β,β] /0, so

u� X F−1J �X F−1 /0 = /0 = {v ∈ R : J ∈ β},

i.e. u β̂J. Case (ii) is symmetric and yields u β̂J as well. In case (iii), J ∈ β, so u β̂J
is immediate. Thus in all cases u β̂J. This shows

F−1(I≤∩Tβ) ⊆ β̂−1(I≤∩Tβ),

and therefore by transitivity x� X β̂−1(I≤∩Tβ). Again using I ∼R I≤∩Tβ, we get
x�X β̂−1(I), i.e. x β̂ I. This shows F ⊆ β̂. 2

3.4 Product topologies

We recall the construction of the product of two formal topologies X1 = (X1,≤1
, � 1) and X2 = (X2,≤2, � 2). The product is X = (X1×X2,≤, �) where (x1,x2)≤
(y1,y2) iff x1 ≤1 y1 and x2 ≤ y2, and where � is the least cover relation so that
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(PC1) x1 � 1U implies (x1,x2)�U ×{x2}

(PC2) x2 � 2V implies (x1,x2)�{x1}×V .

The projections P1 : X // X1 and P2 : X // X2 are given by

(x1,x2)P1 u ⇔ (x1,x2)�{u}×X2

(x1,x2)P2 v ⇔ (x1,x2)�X1 ×{v}.

If F : Z // X1 and G : Z // X2 are continuous, then 〈F,G〉 : Z // X given
by

z〈F,G〉(x1,x2) ⇐⇒def zF x1 and zGx2

is the unique continuous map Z // X such that P1 ◦〈F,G〉 = F and P2 ◦〈F,G〉 =
G. For H1 : Z1 // X1 and H2 : Z2 // X2 we write as usual H1 ×H2 for 〈H1 ◦
P1,H2 ◦P2〉. The following lemma is easily proved by induction on the covers of
the products.

Lemma 3.9 Let X1 and X2 be formal topologies. Suppose that (x1,x2)�X1×X2 W .

(i) If x2 ∈ β and β ∈ Pt(X2), then x1 �X1 {y1 ∈ X1 : (∃y2 ∈ β)(y1,y2) ∈W}.

(ii) If x1 ∈ α and α ∈ Pt(X1), then x2 �X2 {y2 ∈ X2 : (∃y1 ∈ α)(y1,y2) ∈W}.

In particular, if (x1,x2)P1 y and x2 belongs to some point of X2, then x1 �X1 y. On
the other hand, if (x1,x2)P2 y and x1 belongs to some point of X1, then x2 �X2 y.

Corollary 3.10 Let X1 and X2 be order conservative formal topologies, where ev-
ery neighbourhood contains a point. Then the projection Pk : X1 × X2 // Xk
satisfies

(x1,x2)Pk y ⇐⇒ xk ≤ y.

Using Lemma 3.9 it is straightforward to prove:

Proposition 3.11 Let X1 and X2. Then Pt(X1×X2) and Pt(X1)×Pt(X2) are home-
omorphic via γ 7→ (γ(1),γ(2)) and (α,β) 7→ 〈α,β〉. Here γ(1) = {a : (∃b)(a,b) ∈ γ},
γ(2) = {b : (∃a)(a,b) ∈ γ} and 〈α,β〉 = {(a,b) : a ∈ α,b ∈ β}.

On the other hand, it is well-known in classical locale theory that products are
not preserved by the left adjoint Ω to Pt, unless at least one factor is locally compact
[13, p. 61].

To calculate subspaces of a product space the following result is useful.

Lemma 3.12 Let X and Y be formal topologies.

(a) If V is a subset of Y , then the covers of the spaces X × (Y −̇V ) and X ×
Y −̇X ×V, are the same:

w�X×(Y −̇V ) W ⇐⇒ w�X×Y −̇X×V W.
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(b) For U ⊆V ⊆Y the maps

1X ×EV,U : X × (Y −̇V ) // X × (Y −̇U)

and
EX×V,X×U : X ×Y −̇X ×V // X ×Y −̇X ×U

are identical.

Proof. Part (a): (⇒) is proved by induction on covers. It suffices to check the
implication for generators of the product, which is straightforward.

(⇐) is proved by first establishing the following implication by induction

w�X×Y Z =⇒ w�X×(Y −̇V ) Z.

Using this, one gets from w� X×Y −̇X×V W that w�X×(Y −̇V ) (X ×V )∪W . But
since V �Y −̇V /0, we get by (PC2) in fact w� X×(Y −̇V ) W .

Part (b): We have by the definitions of the two maps to be compared

(x,y)EX×V,X×U (u,v) ⇐⇒ (x,y)� X×Y X ×V ∪{(u,v)} (14)

and
(x,y)1X ×EV,U (u,v) ⇐⇒ (x,y)P1 u and (x,y)(EV,U ◦P2)v (15)

Using Part (a) we get

(x,y)P1 u ⇐⇒ (x,y)� X×Y X ×V ∪{u}×Y. (16)

Furthermore, a calculation gives

(x,y)(EV,U ◦P2)v ⇐⇒ (x,y)� X×Y X ×V ∪X ×{v}. (17)

By applying localisation to the right hand sides of (16) and (17) it follows that
the right hand sides of (14) and (15) are equivalent. 2

4 HJP for formal topologies

Given the preparations of the previous section we can now quite straightforwardly
prove the main result.

Theorem 4.1 Let X be a formal topology. For α ≤ β ≤ γ in Pt(R ), the diagram

X × [α,β] X × [α,γ]
1X ×E1

//

X

X × [α,β]

〈1X ,β̂〉

��

X X × [β,γ]
〈1X ,β̂〉

// X × [β,γ]

X × [α,γ]

1X ×E2

��

(18)

is a pushout diagram. Here E1 and E2 are the obvious embeddings of subspaces.
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Proof. We employ Corollary 3.6 with Y = X ×R as the formal topology, and with
U1 = (X ×Uα,β)� and U2 = (X ×Uβ,γ)� as saturated subsets, writing � for � Y .
This gives diagram (12), where V = U1 ∪U2 and W = U1 ∩U2. We have

X ×Uβ,β = X ×Uα,β ∪X ×Uβ,γ.

It follows easily that
V� = (X ×Uβ,β)� (19)

Furthermore, we have

X ×Uα,γ = X ×Uα,β ∩X ×Uβ,γ.

From which it follows that
W = (X ×Uα,γ)� (20)

By (2) and (19) that

Y −̇V = Y −̇V� = Y −̇(X ×Uβ,β)� = Y −̇X ×Uβ,β.

Then using Lemma 3.12.(a) the right hand side is seen to equal X × (R −̇Uβ,β).
Thus

Y −̇V = X × [β,β] (21)

Similarly, using Lemma 3.12.(a) and (2) we get

Y −̇U1 = X × [α,β] Y −̇U2 = X × [β,γ] (22)

As for the final corner of (12), we get by (2), (20) and Lemma 3.12.(a)

Y −̇W = X × [α,γ] (23)

We now use (5) to rewrite the maps of the diagram. From Lemma 3.12.(b) and (19)
follows that

EV,U1 = E(X×Uβ,β)� ,(X×Uβ,γ)�
= EX×Uβ,β,X×Uβ,γ = 1X ×EUβ,β,Uβ,γ . (24)

Symmetrically,
EV,U2 = 1X ×EUβ,β,Uα,β . (25)

Similarly, now using (20), we get

EU1,W = 1X ×EUα,β,Uα,γ EU2,W = 1X ×EUβ,γ,Uα,γ . (26)

Abbreviating E1 = EUα,β,Uα,γ , E2 = EUβ,γ,Uα,γ , E1 = EUβ,β,Uα,β and E2 = EUβ,β,Uβ,γ , we
conclude from equations (21) – (26) above that the following is then a pushout
diagram:

X × [α,β] X × [α,γ]
1X ×E1

//

X × [β,β]

X × [α,β]

1X ×E1

��

X × [β,β] X × [β,γ]1X ×E2
// X × [β,γ]

X × [α,γ]

1X ×E2

��

(27)
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To obtain the pushout diagram (18) from (27) it suffices to show that 〈1X , β̂〉 : X
// X × [β,β] is an isomorphism and that

(1X ×E1)◦ 〈1X , β̂〉 = 〈1X , β̂〉 (1X ×E2)◦ 〈1X , β̂〉 = 〈1X , β̂〉. (28)

The equations (28) are straightforward to check. As for the isomorphism note
that P1 ◦ 〈1X , β̂〉 = 1X . Moreover, 〈1X , β̂〉 ◦ P1 = 〈1X ◦P1, β̂ ◦ P1〉 = 〈P1, β̂〉. But
P2 = β̂ : X × [β,β] // [β,β], by Lemma 3.8 ,so 〈P1, β̂〉 = 〈P1,P2〉 = 1X×[β,β]. 2

Remark 4.2 The special case of Theorem 4.1 when X = 1 gives the PJP property
for formal topologies. This property could as well be obtained more easily from
Corollary 3.6 directly. The latter yields a simple alternative proof of Theorem 4.1,
under the restrictive assumption that X is locally compact. It is known that then
the exponentiation functor (−)X exists; see Maietti [17]. Hence by adjointness,
X × (−) is functor which preserves colimits and, in particular, pushouts. Applying
the functor to an arbitrary PJP diagram then gives the result.
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