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Abstract

Two common approaches to constructive and effective topology are con-

nected by showing that formal topologies have canonical representation in

terms of Scott domains. Moreover a map lifting theorem for the representa-

tion is proved.
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The theory of domain representations initiated by Stoltenberg-Hansen and Tucker
[9] gives a method for introducing notions of computability on abstract mathematical
structures. These structures may be of countable as well as uncountable cardinality.
The compact elements of the representing Scott domain form the finitistic objects
of the computation theory. In [10] and later in [1, 2] the method was applied to
classes of topological spaces. Another theory which can serve the same purpose is
the theory of formal spaces, which is concerned with representations of locales. It
comes in a predicatively constructive variant [5, 4], and in an effective variant [7].
The purpose of the present paper is to demonstrate one basic connection between
the two methods for representing spaces. We recommend [4] as a background.

A topological space X is domain representable by (D,DR, ϕ) if D is a Scott
domain and DR ⊆ D is a subset, the representing elements, equipped with the Scott
topology induced by D, and where ϕ : DR // X is a continuous map which
is onto. Explicitly this means that the topology on DR has as a base the sets
Ba = {x ∈ DR : a ⊑ x} where a varies over the compact elements of D. One may
consider further conditions [2] on the map ϕ. In the examples of the present paper
the map will be a homeomorphism, but having full generality is useful in some cases
[3].

Formal topology includes a constructive theory of domains [7, 6, 4]. In this note
we show that every formal topology S automatically gives a domain representation
of its space of points X = Pt(S). This is done by taking the Scott compactification
[4] S0 of S and letting the representing domain be D = Pt(S0). We also show that
each continuous map between formal spaces extends to a continuous map between
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their domain representations. An interesting feature of the extended function is that
it can be applied not only to partial elements but also to non-constructive elements.
The latter is in general not possible for the original function in a constructive setting.

1 Formal topology

We use standard definitions for formal topology on pre-ordered neighbourhoods; see
[4, Def. 2.1]. For such a topology X we indicate components as X = (X,≤X , � X ),
where X is the set of basic neighbourhoods ordered by ≤X , and where � X is the
cover relation.

The points of a formal topology X form a class Pt(X ). For a ∈ X let ext(a) =
extX (a) denote the subclass of points α in X where a ∈ α. For a subset U ⊆ X,
let extX (U) denote the union of all the subclasses extX (a) where a ∈ U . The point
topology on Pt(X ) is the topology τX which has extX (a) for a base.

2 Domain representability

By ordering the points of a formal topology by inclusion we can obtain some familiar
DCPOs and domains. A subset S of a pre-order (X,⊑) is directed in case it is
inhabited and for any a, b ∈ S, there is c ∈ S with a ⊑ c and b ⊑ c.

Theorem 2.1 If X is a formal topology, then (Pt(X ),⊆) is a directed complete
partial order.

Proof. Let αi be a directed family of points indexed by the set I. Then ∪i∈Iαi is
a point, which is the supremum of the family. 2

For many spaces X the inclusion relation between points is trivial since all points
are maximal. This is, for example, the case for regular formal topologies. However,
for a big class of T0-spaces it has an interesting structure. A formal topology X =
(X,≤X , � X ) is unary if

a� X U =⇒ (∃b ∈ U) a ≤X b.

In such a topology a↑ = {b ∈ X : a ≤X b} is a point, for any a ∈ X. This is usually
a non-maximal point.

We need a notion of semi-lattice adapted to pre-orders. A pre-order (X,≤) is
a lower semi-lattice pre-order (LSP) if it has a largest element ⊤ and an operation
∧ : X ×X // X so that

(a) x ∧ y ≤ x and x ∧ y ≤ y,

(b) z ≤ x and z ≤ y implies z ≤ x ∧ y.

A weaker notion is the following. A pre-order (X,≤) is a consistently complete lower
semi-lattice pre-order (CLSP) if it has a largest element ⊤ and for any consistent
pair x, y ∈ X, i.e. which has a lower bound t ≤ x and t ≤ y, there is an element
x ∧ y satisfying (a) and (b) above.
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Theorem 2.2 ([7, 6]) If X is a unary formal topology, where (X,≤X ) is a CLSP,
then D = (Pt(X ),⊆) is a Scott domain.

We define the Scott compactification X0 of X : For a formal topology X define
≤X0

by
a ≤X0

b⇐⇒ a� X {b}

and define � X0
by

a� X0
U ⇐⇒ (∃b ∈ U)a ≤X0

b.

Let X0 = (X,≤X0
, � X0

). We have the following basic result relating a topology and
its Scott compactification.

Theorem 2.3 If X is a formal topology, such that (X,≤X0
) is a CLSP, then

(a) X0 is a unary formal topology,

(b) Pt(X ) ⊆ Pt(X0),

(c) Pt(X ) ∩ extX0
(U) = extX (U).

Proof. (a) It is easily verified that � X0
is a covering relation. The unary property

of covers follows by definition.
(b) Suppose that α is a point in X . Then α is inhabited. If a, b ∈ α, then there

is c ∈ α with c ≤X a and c ≤X a. We have c ≤X0
a, c ≤X0

b, since ≤X0
is an

extension of ≤X . Suppose now that a� X0
U and a ∈ α. Since X0 is unary, there is

some b ∈ U with a ≤X0
b. Hence a� X {b}, and because α is a point in X , we have

b ∈ α. We have shown that α is a point in X0.
(c, ⊆): For α ∈ Pt(X ) we have by (b) that: α ∈ extX (a) iff α ∈ extX0

(a). 2

We can now state the first main observation as an easy corollary.

Corollary 2.4 For any formal topology X its space X = Pt(X ) is represented by
the domain D = Pt(X0) with representing elements DR = Pt(X ) and representation
map ϕ being the identity. This is called the canonical domain representation of X.

Proof. From Theorem 2.2 and 2.3 it follows that the domain D = (Pt(X0),⊆)
represents the space X = (Pt(X ), τX ), where DR = Pt(X ) and ϕ : DR // X is the
identity map. The topology on DR is the relative topology induced by the topology
of Pt(X0). Thus it has base sets of the form Pt(X ) ∩ extX0

(a). By Theorem 2.3(c)
these are just the sets extX (a). Hence DR and X have the same topology, so ϕ is a
homeomorphism and in particular an onto quotient map. 2

We remark that in [8] representations of locally compact spaces by domains
and by formal topologies were considered simultaneously, and that the Corollary is
implicit in their paper.
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3 Lifting of continuous mappings

Suppose that (D,DR, ϕ) and (E,ER, ψ) are domain representations of X and Y ,
respectively. An important problem for domain representations is whether it is
possible to extend, or lift, a continuous function X // Y to a continuous function
D // E. By this we mean more precisely the following. Is it possible to associate
to each continuous function f : X // Y , a continuous function f̄ : D // E

such that f̄ [DR] ⊆ ER and f ◦ ϕ = ψ ◦ f̄? Such a lifting is possible under certain
conditions on the representations of X and Y ; see [2].

Here we show that the lifting result (Theorem 3.3) is almost automatic for con-
tinuous maps between formal spaces and their canonical representations. We recall
the notion of a continuous map. Consider formal topologies S = (S,≤, � ) and
T = (T,≤′, �

′). A relation F ⊆ S × T is a continuous mapping S // T if

(A1) aF b, b�
′V =⇒ a�F−1 V ,

(A2) a�U , xF b for all x ∈ U =⇒ aF b,

(A3) S�F−1 T ,

(A4) aF b, aF c =⇒ a�F−1(b≤′ ∩ c≤′).

Here F−1Z = {x ∈ S : (∃y ∈ Z) xF y} and z≤′ is {x ∈ T : x ≤′ z}.

Each continuous mapping F induces a point function f = Pt(F ) : Pt(S) //

Pt(T ) given by
f(α) = {b ∈ T : (∃a ∈ α) aF b}.

It satisfies: aF b ⇒ f [ext(a)] ⊆ ext(b).

Note that if both S and T are unary then the axioms for a continuous mapping
simplify to

(I1) c ≤ a, aF b, b ≤′ d =⇒ c F d,

(I2) (∀a ∈ S)(∃b ∈ T ) aF b

(I3) aF b, aF c =⇒ (∃d ≤′ b, c) aF d.

Proposition 3.1 Let F : S // T be a continuous map between arbitrary formal
topologies. Then the point function f = Pt(F ) : Pt(S) // Pt(T ) preserves directed
suprema, i.e.

f(∪i∈Iαi) = ∪i∈If(αi)

for directed sets αi (i ∈ I) of points.

We prove two lifting theorems. First we note that H : S // S0 defined by

aH b⇐⇒ a� S{b}.

is a continuous map whose point function is the identity embedding. That is
Pt(H)(α) = α for all α ∈ Pt(S). The theorems will pertain to a large class of
formal topologies. Define a formal topology S = (S,≤, � ) to be an LSP formal
topology, if (S,≤) is a LSP pre-order.
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Theorem 3.2 (Formal Lifting) Let F : S // T be a continuous map between
LSP formal topologies. Then F0 = F is also a continuous map from S0 to T0 with
makes this lifting square commute:

S T
F

//

S0

S

OO

HS

S0 T0

F0
// T0

T

OO

HT

.

Proof. We check that F satisfies (I1), (I2) and (I3).
(I1): Suppose a ≤S0

b and b F c. Thus a� S {b}. Hence by (A2) aF c. Now
suppose b F c and c ≤T0

d. Thus c� T {d}, and by (A1), b� S F
−1(d). Using (A2)

it follows that b F d.
(I2): We have by (A3), S� S F

−1T . As T has a top element, we have T � {⊤}
and so S�F−1⊤. Thus by (A2), s F ⊤ for all s ∈ S. This verifies (I2).

(I3): Suppose aF b and aF c. By (A4) we have a�F−1(b≤T
∩ c≤T

). Now
F−1(b≤T

∩ c≤T
) �F−1(b∧ c), so aF (b∧ c). But b∧ c ≤ b, c, so we have b∧ c ≤T0

b, c.
That the square commutes is a straightforward verification. 2

The Lifting Theorem, in the sense of domain representability, is the second main
observation.

Corollary 3.3 (Lifting Theorem) Let F : S // T be a continuous map be-
tween LSP formal topologies. Then f0 = Pt(F0) : Pt(S0) // Pt(T0) is an extension
of f = Pt(F ) : Pt(S) // Pt(T ).

Proof. By Theorem 3.2 we have F0 ◦HS = HT ◦ F . Now because Pt is a functor
we have for all α ∈ Pt(S),

Pt(F0)(α) = Pt(F0)(Pt(HS)(α)) = Pt(HT )(Pt(F )(α)) = Pt(F )(α)

showing that f0 is an extension of f . 2

There is no serious restriction in considering just LSP formal topologies, since
every formal topology is isomorphic to an LSP formal topology; see [7, Lemma
1.1.17].

Acknowledgement

I am grateful to Sara Negri for help with the references.

References

[1] J. Blanck. Domain representability of metric spaces. Annals of Pure and Applied
Logic 83(1997), 225–247.

5



[2] J. Blanck. Domain representations of topological spaces. Theoretical Computer
Science 247(2000), 229–255.

[3] F. Dahlgren. Effective Distribution Theory. PhD Thesis, Department of Math-
ematics, Uppsala University 2007.

[4] S. Negri. Continuous domains as formal spaces. Mathematical Structures in
Computer Science 12 (2002), 19–52.

[5] G. Sambin. Intuitionistic formal spaces and their neighbourhood. Logic Collo-
quium ’88 (Padova, 1988), 261–285, Stud. Logic Found. Math., 127, North-
Holland, Amsterdam, 1989.

[6] G. Sambin, S. Valentini and P. Virgili. Constructive domain theory as a branch
of intuitionistic point-free topology. Theoretical Computer Science 159(1996),
319–341.

[7] I. Sigstam. On formal spaces and their effective presentation. PhD Thesis, De-
partment of Mathematics, Uppsala University 1990.

[8] I. Sigstam and V. Stoltenberg-Hansen. Representability of locally compact
spaces by domains and formal spaces. Theoretical Computer Science 179(1997),
319–331.

[9] V. Stoltenberg-Hansen and J.V. Tucker. Complete local rings as domains. Jour-
nal of Symbolic Logic 53(1988), 603–624.

[10] V. Stoltenberg-Hansen and J.V. Tucker. Effective Algebras. In: S. Abramsky,
T.S.E. Maibaum, D.M. Gabbay, Handbook of Logic in Computer Science, vol.
4. Ocford University Press 1995, pp. 357–526.

Erik Palmgren

Department of Mathematics, Uppsala University

PO Box 480, SE-751 06 Uppsala, Sweden

E-mail: palmgren@math.uu.se

URL: www.math.uu.se

6


