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Abstract

Families of types are fundamental objects in Martin-Lof type theory. When
extending the notion of setoid (type with an equivalence relation) to families of
setoids, a choice between proof-relevant or proof-irrelevant indexing appears. It
is shown that a family of types may be canonically extended to a proof-relevant
family of setoids via the identity types, but that such a family is in general proof-
irrelevant if, and only if, the proof-objects of identity types are unique. A similar
result is shown for fibre representations of families. The ubiquitous role of proof-
irrelevant families is discussed.

1 Introduction

This article investigates an aspect of the concept of extensional family of setoids — proof
relevance — which sometimes presents a surprising obstacle when trying to transfer for-
malisations from set theory to standard Martin-Lof type theory [11]; compare Example
2.1 below. In set theory, the notion of a family of sets may readily be reduced to the
notion of set. A family of sets may be represented as the fibres of a function 5 : B — A.
Its fibres B, = 8~ '(x) = {b € B : 8(b) = z}, for x € A, represent the sets of the fam-
ily. This representation is always possible in systems such as ZF, or in its constructive
versions [1], since by the replacement scheme, any family specified by a set-theoretic
formula p(z, F')
(Ve e A)3F)p(z, F)

can be turned into a family represented by fibres of a function, i.e. there is a function
B : B — A so that (Vz € A)p(x, 37 (z)). This can be contrasted to Martin-Lof type
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theory [11], and other theories of dependent types, where a family of types is a basic
mathematical object. Following the tradition in constructive mathematics (see [3]) a
set is commonly understood in type theory as a setoid, that is, a type together with an
equivalence relation. However the notion of a family of setoids present some choices for
conceptualisation. In this note we consider two choices, so-called proof-irrelevant and
proof-relevant families (see [4]), and their relation to the identity types of Martin-Lof.
As shown by Streicher [12] and Hofmann and Streicher [7] an important distinction
regarding identity types is whether their proof-objects are unique or not. In the former
case a proof-irrelevant family of setoids can always be associated to each family of types.
In the latter case a more involved proof-relevant notion of family of setoids seems be
necessary to use; see Theorems 4.1 and 4.3. The distinction between proof-relevant and
proof-irrelevant does not appear in classical set-theoretic models of Martin-Lof type
theory, in view of a result by Hedberg [6] on uniqueness of identity proof-objects (UIP).
We present a slight strengthening of his result in Section 6. Streicher introduced a
computational axiomatization of UIP, the K-axiom. We discuss an alternative to this
axiom in Section 7.

In this paper, the results can all be read as theorems of Martin-Lof type theory, given
some standard conventions about the propositions-as-types interpretation [11]. By a
type (or equivalently a proposition) A being true, we mean that there is a construction
or a proof-object p such that the judgement p : A is derivable. More generally, in a
context

A(zy,...,x,) true (x1: X1, 20 0 X5)

means there is a construction p such that
Py, .. xn) s Az, .. Ty) (x1: X1, .., 0 X)),

If no confusion is likely to arise we drop "true" from "A true". We use the standard
interpretation of quantifier and connectives in type theory, thus V and 3 are interpreted
by II respectively X etc.

2 Families of setoids

A setoid B = (|B|,=pg) consists of a type |B| and an equivalence relation, =g, on
the type. In the type-theoretic formalization, which we have in mind here, it is a
5-tuple, with proof-objects for reflexivity, symmetry and transitivity included in the
definition. An extensional function between two setoids B—=C'is taken to be a function
f :|B| —|C| between underlying types that respects the equivalence relations. In a
formalization the proof-object for extensionality (Vz,y : |B|)(z =g y— f(z) =¢ f(y))
is made explicit. Two such functions f, g : B—C are then extensionally equal, f =. g,

iff (va : |B)f(x) =c g(x).



If B, = (|B:|,=p,) are setoids indexed by a type = : |A|, there seems to be two
principal choices how to extend this into a family indexed by a setoid A = (|A|,=4).
Suppose the type |A| is equipped with an equivalence relation, =4. Each proof p : x =4
y should give rise to an extensional “reindexing” bijection ¢, : B, — B,. Starting from
a set-theoretic intuition it is natural to require the following equalities of extensional
functions to hold (see [3, Problem 3.2])

(1> ¢p —ext 1de whenever p: (;Ij‘ =2 g;>’

(i) ¢4 0 ¢p =ext ¢r, whenever p: (x =4 y),q: (y =4 2),7: (x =4 2).

Together the two conditions (i) and (ii), implies that the proof p is irrelevant, only its
existence matter, i.e. ¢, =ext @q for any p: x =4 y and ¢ : =4 y. This is the standard
version of family of setoid, and it seems to be the most widely used notion. The other
principal version is the proof-relevant family, where ¢, may depend on p. Conditions
(i) and (ii) are replaced by the weaker conditions (a) — (d):

Here ref(x) : © =4 x is a proof object for reflexivity. Moreover the proof objects
associated with symmetry and transitivity are sym(p) : y =4 x, for p : @ =4 y, and
trans(q,p) :x =4 zforp:x =4y and q:y =4 2.

We note that ¢, : B, — B, is an automorphism on B, for each p : x =4 x. There
may be non-trivial automorphisms, i.e. other than the identity map. However, if we
add the proof-irrelevance condition

(Irr) ¢p =ext ¢g forany p:x =4 yand qg:z=4y.

to (a) — (d) then (i) and (ii) follows, and clearly there are then only trivial automor-
phisms. A family of setoids is called proof irrelevant if it satisfies (a) — (d) + (Irr), or
equivalently (i) and (ii).

Example 2.1 As an example of the desirability of the standard proof-irrelevant version
of family, we consider the problem of constructing certain categories of setoids and
functions. This occurs for in particular when we wish to define a small category of
setoids using a type universe.

Let (B, ¢) be a given family of setoids indexed by the setoid A. We construct a
small category B from this data. The collection of objects of the category B is the
setoid A. We think of an element a of A as a code for the setoid B,. An arrow of the



category is a triple (a, f,b) where a,b: |A| and f : B,— B, is an extensional function.
Two arrows (a, f,b) and (d/, f', V") are equivalent if there are p:a =4 a and q: b =4 ¥/
so that

B,—1 B,
Pp @q
By ——~ By

commutes (extensionally). Arrows (a, f,b) and (c, g,d) are composable if there is ¢ :
b =4 c¢. Their composition is (a,g o ¢; o f,d). Now a problem arises when proving
that composition respects equality of arrows: suppose that (a,b, f) and (a’, V', ') are
equivalent, and that (¢, g,d) and (¢, ¢’,d') are equivalent so that the left and right
squares in the following diagram commute:

f

B, B, —" .B — ¢ .B,
p g Or s
B / B / B / B !
a I b by c s d

Suppose moreover that t : b =4 cand t' : b’ =4 . If (B, ¢) is a proof-irrelevant family
the centre square commutes automatically, proving that composition respects equality
of arrows. This is in general false if the family is proof-relevant.

3 Identity types

The presentation of Martin-Lof type theory given in [11] will be followed here, but
we shall use the older terminology of type for what is now called a set, and large type
or Type for what is now called just type. The identity type construction provides for
each type A a minimal equivalence relation I(A,-,-) on A. This makes (A,1(4,-,)) a
projective object (cf. [9]) in the category of setoids.

For any type A, the identity type I(A,a,b) is the set of proofs that a and b are
propositionally equal in A. The formation rule for the identity type is that I(A, a,b) is
a type whenever A is a type and a,b : A. We shall also write 14(a,b), or even I(a,b),
for 1(A, a, b) if this appears to be typographically clearer. The introduction rule is

a:A
r(a) : I(A,a,a)




The elimination rule for I with respect to the family C(z,y,z) type (x,y : A,z :
(A, 2,y)) is

a,b: A c:1(A, a,b) d(z): C(z,z,r(x)) (z: A) (1)
Joap(c,d) : Cla,b,c) ’

The associated computation rule is Joq4(r(a),d) = d(a). A typical application is to
derive a rule for substituting equals for equals in a proposition, or equivalently, derive a
reindexing operation for families. For B(z) type (x: A), define C(x,y,z) = B(z) —
B(y). Then d(z) = idp) = Ap : B(z).p: C(x,z,r(x)). Hence for ¢ : I(4, a,b)

Jeas(c, (2)idp)) : C(a,b,c) = B(a) = B(b). (2)
Define
Rp.ab(c,q) = Joas(c, (2)idpw))(q) - B(D) (3)
for g : B(a). Clearly Rp q.4(r(a),q) = q.

A very useful elimination rule is the rule of Paulin-Mohring; see appendix of Streicher
[12] for a proof that it is equivalent to the standard rule (1). It says that for any
parameter a : A and any family D(z, z) type (v : A,z :1(A,a,x)) if

b: A c:1(A, a,b) d: D(a,r(a)) (4)
Japp(c,d) : D(b,c)

The computation rule is J', p o(r(a),d) = d.

The identity proofs of A are said to be unique in case
(Vz,w : 14(a,b))1(z,w) (UIP4) (5)

holds. We say that UIP holds if for each type A satisfies UIP 4. Hofmann and Streicher
[7] showed that this need not hold for general types by exhibiting a groupoid model of
type theory. The structure of identity types thus turned out to be more complicated
than expected. In fact, they showed that it induces a groupoid structure on each type,
as follows. Using the standard elimination rule (1) one constructs operations for proofs
of symmetry and transitivity

c 1 I(A b, a) (a,b: A c:1(A, a,b)),
where ¢! = Jo (e, 1) and C(z,y, 2) = 1(A,y, z),
woz:1(A a,u) (a,b,u: A, z:1(A a,b),w: (A b u)),

where wo z = Jo (2, d)(w), C(z,y,2") = 1(A,y,u) = (A, z,u) and d(x) =
idI(A,a:,u)‘



These operations satisfy the groupoid laws with 1, =g4¢ r(z) as identity in the sense
that the following identity statements hold:

(G1) I(1, 0 2,2) for 2 : I(A, z,y),

(G2) I(z01,,2) for 2 : I(A, z, 1),

(G3) I(zo2"1,1,) for 2 : I(A, 2, 1),

(G4) T(z Vo 2, 1,) for 2 : I(A, 2, 1),

(G5) I((z0w) o p,zo0 (wop)) for p: I(A,z,y), w: I(Ayu), 2 : [(Au0).

The type-theoretic version of a groupoid is an E-category [2] where all morphisms
are invertible. To be explicit: A groupoid A = (|A|,Hom, 1,0, ( )~!) consists of

- a type |A|,

a setoid Hom(a, b) of morphisms for any a,b : |A|,

an identity morphism 1, € Hom(a, a) for each a : |A|,

a composition operation o : Hom(b, ¢) x Hom(a, b)—=Hom(a, ¢) for all a, b, c : |A],

- an inversion ( )~!: Hom(a, b) —= Hom(b, a) for a,b : |A|,

satisfying the groupoid laws up to the equality of the Hom-setoids. From (G1-G5)
above follows that each type A yields a groupoid A* = (A, Hom,id,o,( )~!) where
Hom(a,b) = (I(A, a,b), Iya,ap) ().

4 Families of setoids induced by families of types

Any family B of types over A, i.e. a type-valued function B : (A)type in the notation
of [11], gives rise to a proof-relevant family of setoids. Define A* = (A,I(4,-,-)) and
B*(a) = (B(a),1(B(a),,-)) and define ¢, : B(a) — B(b), by ¢,(z) = Rpap(p, ). The

reindexing operation R of (3) is functorial in the sense that
(R1) I(Rpaa(r(a), w),w) holds for a : A, w: B(a),

(R2) I(Rppe(t,Rpap(z,w)),Rpac((to2), w)) holds for a,b,c: A and z : I(A, a,b) and
t:I(A,b,c) and w : B(a).

We shall also write By for ¢,. I-elimination gives
I(I(A, a,b),p,q) = B} =ext By.

The groupoid laws G1 — G5 gives with ref(x) = id,, sym(p) = p~! and trans(q,p) = qop
the following theorem:



Theorem 4.1 For any family of types B : (A)type the construction (A*, B*) is a proof-
relevant family of setoids. O

We show that UIP gives a precise condition on the index setoid of this family, in
order for the family to be proof-irrelevant. For this we use that, in a special case, the
reindexing operation is a composition operation:

Lemma 4.2 Foru: A and B(x) =1(A, u,x), it holds that
I(Rpap(z,v),z00)
for z : 1(A,a,b) and v : 1(A,u,a).
Proof. Let C(a,b, z) be the formula
(Vv : 1(A,u, a))Ipe) (Rpap(z,v), 2 0v).
Now C(a,a,r(a)) is
(Vv : I(A,u,a))p@) (RBa.(r(a),v),r(a) o v),
which by the groupoid laws and Rp 4 4(r(a), ¢) = ¢ is equivalent to
(Vv : I(A, u, a))lp@ (v, v).

But this follows by the reflexivity law, so by I-elimination C(a,b, z) is true. Hence the
lemma is proved. O

Theorem 4.3 Let A be a fized type. Then UIP holds for A if and only if (A*, B*) is
a proof-irrelevant family of setoids, for any family B : (A)type.

Proof. In view of Theorem 4.1 we may concentrate on the condition (Irr) for proof-
irrelevance.

(=): Assume that UIP holds for A. For p,p' : I(4, a,b) thereis ¢ : I(I(A4, a,b), p,p’).
Let

Clu,v,2) = (Var s B(@))(By() =s0) By(@))

where u,v : I(A, a,b). Clearly, C(u,u,r(u)) is inhabited since =p) is reflexive. Hence
by the elimination rule for 7, we get that C(p,p/, ¢) is true, which says that B* is proof
irrelevant.

(«<=): Suppose that (A*, B*) is a proof-irrelevant family of setoids, for any B :
(A)type. Fix a: A, and let B(x) = I(A, a,x). Then condition (Irr) for B* is that

I(I(A7 a, b)? B;(Q)v B;’(Q)) (6)
holds for a,b : A, p,p’ : I(A,a,b), ¢ : B(a) = I(A,a,a). Now by Lemma 4.2 and
B(q) = Rp,as(p, q) the equation (6) is equivalent to

I(I(A,a,b),poq,p 0 q).
Putting ¢ = r(a), we get I(I(A,a,b),por(a),p’ or(a))
|

the groupoid, we have I(I(A,a,b), p,p’) for all p,p’
A. O

, and since r(a) is an identity of
(A,a,b). That is, UIP holds for



5 Families of setoids induced by fibres of maps.

Analogous to set theory, we may present a family of setoids in type theory via fibres of
a function f : S — A between setoids. Define the fibre of f over a as the setoid

F7Ha) =aet (B2 1 8)(f(2) =a a),~),

where (z,p) ~ (2/,p') holds if and only if z =g 2’. For q:a =4 blet f~(q): [~ (a) =
f71(b) be given by

f@)(z.p) = (z,q0p).
This clearly defines a proof-irrelevant family of setoids.

Using the UIP it is possible to obtain each family (A*, B*) as the fibres of a certain
projection function 7y : S — A*. For this we need a lemma about identity types.

Lemma 5.1 On a sigma type S = (Xx : A)B(x), the I-equality is characterised by
I(S, (a,), (', b)) <= (Fp : 1(A, a, ")) (B(d'), Rp.a.0 (p, D), V).
Proof. (<) We show that (Va,a’ : A)(Vp: (A, a,d"))C(a,d,p) where
Cla,d’,p) = (Vb : B(a))(V0' : B(a')[I(B(a'), Rp,aa(p,b),b) = 1(S, (a,b), (a’, b))].
By I-elimination it suffices to show C(a, a,r(a)) which using Rp .. (x(a),b) = b is
(Vb : B(a))(VV' : B(a))[I(B(a),b,b") = I(S, (a,b), (a,V))].

But this follows directly by another application of I-elimination.
(=) By X-elimination we find for z : S terms m(2) : A and ma(z) : B(m(2)) so that
m1((a,b)) = a and m((a,b)) = b. For z,2': S and ¢ : 1(5, 2, 2'), let C(z,2,q) be

(Fp 1A, m1(2), m (2))UB(m1(2), Ry (). () (P 2(2)), 72 (2)).-

By I-elimination it is sufficient to prove C(z, z,1(2)) for all z : S. By Y-elimination it
is enough that C((a,b), (a,b),r(a,b)) holds, i.e.

(Fp: (A, a,a)l(B(a), R aq(p,b),b).

This can be achieved by letting p = r(a) and using Rp 4.4(r(a), b) = b and I-introduction.
Consequently, if ¢ : I(S, (a, b), (a’, V")), then C((a,b), (a’,b"),q) as was desired. O

Theorem 5.2 Let A be a fized type. For a family B : (A)type, let S = (X : A)B(x)
and let T, : S* — A* be the first projection. For each a : A define 0, : 77 '(a) — B(a)*
by letting

9a(<u7 ’U),p) = RB,u,a(pa U)'
Then 0, is a well-defined bijection of setoids for any a : A and any choice of B : (A)type
if and only if A satisfies UIP.



Proof. («<): Assume that A satisfies UIP. Suppose ((u,v), p) and ((u',v"),p’) are equal
in 7, *(a). Thus by definition p : I[(4,u,a), p’ : [(4,4',a) and 1(S, (u,v), (u’,v")) holds.
By Lemma 5.1 follows that there is some ¢ : I(A, u, v’) with [(B(uv), Rgu.w(g,v),v).
Thus [(B(a), Re.w .oV, RBuw(q,v)), Rw.(p',v")). By the functoriality property (R2)
it follows

I(B(Cl), RB,u,a(p/ oq, U), RB,u’,a(pla 'U/)).

But UIP for A gives that I(A, p’ o ¢, p) holds, and hence by I-elimination we have that
I(B<a)7 RB,u,a(p7 U)v RB,u’,a(p/> U/)) (7)

holds, thus proving 6, well-defined. Suppose now (7) where p : I(A,u,a) and p' :
[(A,u';a). Hence (p')™'op : I(A,u,u') and applying R((p')7},-) to (7) we obtain by
functoriality and (G4)
[(B(a), RBJL,u’((p,)_l op,v),v).
Hence by Lemma 5.1,
I(S, (u,v), (u',v")).

Thus 6, is injective. To prove surjectivity, let b : B(a) and consider 6,((a,b),r(a)) =
Rp.aa(r(a),b) =b. Thus 6, is a well-defined bijection.

(=): Suppose that 6, is a well-defined bijection for each choice of B, and any
a : A. Let a,b : A be fixed. Define B(zx) = I(A,a,z). Let z : B(b) and w :
B(b). Hence p = wo z~! : I(A,b,b). Then I(B(b),p o z,w) holds by the groupoid
laws. But I(B(b),Rpps(p,2),p o 2) by Lemma 4.2 with ¢ = b and v = a, and
hence I(B(b),Rpps(p,2), w). It follows by Lemma 5.1 that I(S, (b, 2), (b,w)), and
hence that ((b,2),r(b)) and ((b,w),r(b)) are equal in 7;'(b). Now 6, is well-defined,
so I(B(b),0,((b, 2),1(D)), 0p((b,w),r(b))) holds, ie. [(B(b),z,w) = I(I(A,a,b),z w) is
inhabited. O

Remark 5.3 This result shows that the statement that 6, is a well-defined bijection
in Moerdijk and Palmgren [10, p. 196, line 13 — 15] actually need the assumption UIP
to be true. This assumption was omitted in that paper.

6 Decidable identity types

Hedberg [6] proved that decidable identity types satisfy UIP in the following sense:
Theorem 6.1 (Hedberg) If (Vz,y: A)(La(z,y) V —la(z,y)), then
(Va,y : A)(Yu, v : 1a(z,y))(u,v).

This result shows that UIP is always true in classical extensions of type theory.
Examining the proof in [6] one can see that the same argument proves the somewhat
stronger statement



Theorem 6.2 Let x : A be fized. If (Vy : A)(Ia(z,y) V —la(z,y)), then
(Vy : A)(Vu, v = Ta(z, y)(u, v).

Note that to apply this theorem one does not need to assume that I(A,z,y) is
decidable for every pair x and y. For instance, if A is an infinitary tree, say given by

the introduction rules
f:N—=A

sup(f) : A

we may not able to decide equality in general. However, for x = 0, I(A, x,y) can be
decided for all y : A, using the appropriate elimination rule.

0:A

The main ingredients of Hedberg’s theorem are two lemmas, of which we modify
the second.

Lemma 6.3 If SV S, then there is f : S — S with
Proof. If a : S, then we may let f(z) = a. If a : =5, then take f(z) =z. O

Lemma 6.4 Let x : A. If f: (Ily : A)(I(A, z,y) — 1(A,z,y)), then there is g : (Ily :
A) (A, z,y) = 1(A, z,y)) with

(Vy « A)(Vz : La(z, y)g(y, f(y, 2)), 2)-
Proof. Employing the groupoid operations construct g as follows

g(y,w) =wo (f(z,r(x))""

fory : A, w: I(A, z,y). Instead of using the standard elimination rule as in [6], we shall
use Paulin-Mohring’s rule (4). Take D(u, z) to be

(A, 2, u), g(u, f(u, 2)), 2),
where u : A,z : 1(A, x,u). Now D(z,r(zx)) is
I(I(A,2,2), f(z,r(2)) o (f(z,r(x))) ", (@),

which is true in virtue of the groupoid laws. Say the type is inhabited by the proof
object p. Thus for any y : A and 2 : I(A, z,y) we have that J, , (2,p) : D(y, 2). That
is we have proved

(Vy : A) (V2 1 La(, y)L(g(y, f(y, 2)), 2). O

10



Proof of Theorem 6.2. Let x : A and suppose that (Vy : A)(La(z,y) V —Ia(z,y)).
Thus by Lemma 6.3 we find for each y : A, f(y) : [(A,z,y) = (A, z,y) with

(Vz,w s La(z, )I(f(y, 2), f (g, w)). (8)
Lemma 6.4 gives ¢ : (Ily : A)(I(A, z,y) — I(A, z,y)) with
(Vy + A)(Vz : La(z, 9)(g(y, f(y, 2)), 2). (9)
Thus applying g to (8) we get for cach y : A
(Vz,w : La(z,y))lg(y, f(y,2)), 9(y, f(y,w))). (10)

By (9) twice we obtain
(Vz,w : La(z,y)l(z,w). O

7 Axiomatizing uniqueness of identity proofs

In order to axiomatize UIP, Streicher [12] suggested to supplement the standard elimi-
nation operator J for identity types with a second elimination operator K given by the
rule: for D(z,z) type (z: A, z:1(A x, 7))

c:1(A a,a) d(x): D(z,r(x)) (z:A)
Kp.a(e,d) : D(a,c)

and the computation rule Kp ,(r(a),d) = d(a). This rule is akin to the elimination rule
for the unit type — compare (12) below — in that it states that I(A, a, a) has exactly
one element (namely r(a)).

Though K has a good computational interpretation, having two elimination opera-
tors clearly fall outside the pattern of standard Martin-Lof type theory. We show here
that the operators J and K may at least be combined into a single operator J? given by
the elimination rule: for C(x,y,u,v) type (z:A,y: Au: (A x,y),v: (A x,y)) we
have c:1(Aya,b) ¢ :1(A a,b) d(z) : C(z,z,r(x),r(z)) (z:A)

Jeas(c, ¢, d) - Cla,b,c,¢)

with computation rule J¢, ,(r(a),r(a),d) = d(a). This can be considered as a sort of
double recursion operator on identity types; see Remark 7.2 below.

Theorem 7.1 J? is equivalent to the combination of J and K.

11



Proof. We show that these rules are interderivable.

(J + K = J?): Define D(x,v) = C(z,z,v(z),v) (x : A,v : I(A,2,7)). Thus
d(z) : D(z,r(z)) (z: A), so Kp.(v,d) : D(xz,v) for x : A and v : (A4, z,z) by the
K-rule. Abbreviate Kp, by K,. Define

E(z,y,2z) = (Tlw : (A, z,y))C(z,y, z,w).

Thus we have A\v.K,(v,d) : E(z,z,r(z)). By the J-rule we have Jg 4 4(c, () A\v. K, (v, d)) :
E(a,b,c). Thus define

JCab(c d,d) =Jgap(c, () K (v,d)) () : Cla,b,c, ).

Clearly, JZ , ,(r(a),1(a),d) = Jpaa(r(a), () \v.Ke(v,d))(x(a)) = Ka(r(a),d) = d(a).
This proves (J + K = J?).

(J2 = J): Suppose E(z,y, 2) type (z,y: A, z:1(A,z,y)) and e(x) : E(z,z,v(z)) (x:
A). Define C(x,y,u,v) = E(x,y,u). Thus also e(x) : C(x,z,r(z),r(z)) (x: A). For
¢ : I(A,a,b) we have J3,,,(c,c,e) : Cla,b,c,c). We define Jgap(c,e) = I3 ,,(c,c e).
Clearly then J(r(a),e) = e(a).

(J? = K): First we show that (J?) implies UIP. Clearly taking C(z,y,u,v) =
I(I(A, z,y),u,v) we have d(z) = r(r(x)) : C(z,z,r(x),r(z)). Hence for any u,v :
I(A, z,y),

It ay (v, (2)r(r(2))) : II(A, 2, y),u,v), (11)

that is, identity proofs are unique.

We construct K. Let D(x,v) type (z : A,v : I(A,z,2)) and suppose d(z) :
D(z,r(z)) (x: A). Let a: A and ¢ : I(A,a,a). We have JCM( r(a),c, (z)r(r(z))) :
I(I(A,a,a),r(a),c) by (11). Define K using reindexing (3):

Kp a(c d) —def RBr (a) (JCaa( ( )707 (x)r(r(x))),d(a)) : D(a,c)

where B(u) = D(a,u). Thus

Kp.a(r(a),d) = Rpr(a).r) (r(r(a)), d(a)) = d(a).
This shows the equivalence of the elimination rules. O

Remark 7.2 However, also the J*-axiom suggested here breaks the standard mold of
inductively defined sets and families in type theory, since the eliminated type 1(A, a,b)
occurs twice. It may though be seen as an axiomatization of a form of double elimination
for identity types, of the kind derivable for simple inductive types like the unit type or
the natural numbers. For explicit comparison, the unit type N; with canonical element
0; has the elimination rule

c: Ny d:C(0q)

Rio(e,d) : C(0) (12)
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where C'(x) type for x : N;. From this we may derive a double elimination rule

CINl C,ZNl dID(Ol,Ol)
RIple,d,d): D(c, )

where D(z,y) type for x : Ny,y : Ny with computation rule RiD(Ol,Ol,d) = d. The
following construction fulfills the requirements

R‘%,D(Q Cla d) —def (RI,C’(Ca )‘y'RLC’<y7 d)))(cl)

where C(z) = (Ily : Ny)D(z,y) and C'(y) = D(01,y).

8 Concluding discussion

We have seen that proof-relevant families of setoids appear in abundance in standard
Martin-Lof type theory. Each family of types B : (A)type yields such a family (A*, B*).
However this kind of families seems difficult to use for certain purposes, e.g. construction
of categories with equality on objects. For such purposes the standard proof-irrelevant
families are more suitable. They are, on the other hand, not easy to construct in
standard type theory. Roughly speaking, it seems that we need to construct extensional
collapses of the types involved in the families. This procedure is well-known from set
theory, and indeed, one way of constructing such families is to use Aczel’s method |[1]
for modelling constructive set theory CZF: apply the W-type construction to a universe
of types and define equality of sets by W-recursion as bisimilarity of trees.
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