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Abstract

Families of types are fundamental objects in Martin-Löf type theory. When
extending the notion of setoid (type with an equivalence relation) to families of
setoids, a choice between proof-relevant or proof-irrelevant indexing appears. It
is shown that a family of types may be canonically extended to a proof-relevant
family of setoids via the identity types, but that such a family is in general proof-
irrelevant if, and only if, the proof-objects of identity types are unique. A similar
result is shown for fibre representations of families. The ubiquitous role of proof-
irrelevant families is discussed.

1 Introduction

In set theory, the notion of a family of sets may readily be reduced to the notion
of set. A family of sets may be represented by a function β : B → A. Its fibres
Bx = β−1(x) = {b ∈ B : β(b) = x}, for x ∈ A, represent the sets of the family. This
representation is always possible in systems such as ZF, or in its constructive versions
[1], since by the replacement scheme, any family specified by a set-theoretic formula
ϕ(x, F )

(∀x ∈ A)(∃!F )ϕ(x, F )

can be turned into a family represented by a function. This can be contrasted to Martin-
Löf type theory [10], and other theories of dependent types, where a family of types is
a basic mathematical object. Following the tradition in constructive mathematics (see
[2]) a set is commonly understood in type theory as a setoid, that is, a type together
with an equivalence relation. However the notion of a family of setoids present some
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choices for conceptualisation. In this note we consider two choices, so-called proof-
irrelevant and proof-relevant families (see [3]), and their relation to the identity types
of Martin-Löf. As shown by Streicher [11] and Hofmann and Streicher [6] an important
distinction regarding identity types is whether their proof-objects are unique or not.
In the former case a proof-irrelevant family of setoids can always be associated to each
family of types. In the latter case a more involved proof-relevant notion of family of
setoids seems be necessary to use; see Theorems 4.1 and 4.3. The distinction between
proof-relevant and proof-irrelevant does not appear in classical set-theoretic models of
Martin-Löf type theory, in view of a result by Hedberg [5] on uniqueness of identity
proof-objects (UIP). We present a slight strengthening of this result in Section 6.

2 Families of setoids

A setoid B = (|B|,=B) consists of a type |B| and an equivalence relation, =B, on the
type. An extensional function between two setoids is taken to be a function between
underlying types that respects the equivalence relations. If Bx = (|Bx|,=Bx

) are setoids
indexed by a type x : |A|, there seems to be two principal choices how to extend this
into a family indexed by a setoid A = (|A|,=A). Suppose the type |A| is equipped with
an equivalence relation, =A. Each proof p : x =A y should give rise to an extensional
“reindexing” bijection φp : Bx → By. Starting from a set-theoretic intuition it is natural
to require the following equalities of extensional functions to hold (see [2, Problem 3.2])

(i) φp =ext idBx
whenever p : (x =A x),

(ii) φq ◦ φp =ext φr, whenever p : (x =A y), q : (y =A z), r : (x =A z).

Here =ext denotes the extensional equality of functions. Together the two conditions (i)
and (ii), implies that the proof p is irrelevant, only its existence matter, i.e. φp =ext φq

for any p : x =A y and q : x =A y. This is the standard proof-irrelevant version of
family of setoid, and it seems to be the most widely used notion. The other principal
version is the proof-relevant family, where φp may depend on p. Conditions (i) and (ii)
are replaced by (a) – (d):

(a) φref(x) =ext idBx

(b) φtrans(q,p) =ext φq ◦ φp for p : x =A y and q : y =A z

(c) φsym(p) ◦ φp =ext idBx
for p : x =A y,

(d) φp ◦ φsym(p) =ext idBy
for p : x =A y.

Here ref(x) : x =A x is a proof object for reflexivity. Moreover the proof objects
associated with symmetry and transitivity are sym(p) : y =A x, for p : x =A y, and
trans(q, p) : x =A z for p : x =A y and q : y =A z.
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We note that φp : Bx → Bx is an automorphism on Bx for each p : x =A x. There
may be non-trivial automorphism, i.e. other than the identity map. However, if we add
proof-irrelevance

(Irr) φp =ext φq for any p : x =A y and q : x =A y.

to (a) – (d) then (i) and (ii) follows, and clearly there are then only trivial automor-
phisms.

Example. As motivation for the standard proof-irrelevant version of family, we con-
sider the construction of a category B of setoids with a new equality on objects. Let
(B, φ) be a family of setoids indexed by the setoid A. The collection of objects of the
category B is the setoid A. We think of an element a of A as a code for the setoid
Ba. An arrow of the category is a triple (a, f, b) where a, b : |A| and f : Ba

// Bb is
an extensional function. Two arrows (a, f, b) and (a′, f ′, b′) are equivalent if there are
p : a =A a′ and q : b =A b′ so that

Ba′ Bb′
f ′

//

Ba

Ba′

φp

��

Ba Bb

f
// Bb

Bb′

φq

��

commutes (extensionally). Arrows (a, f, b) and (c, g, d) are composable if there is t :
b =A c. Their composition is (a, g ◦ φt ◦ f, d). Now a problem arises when proving
that composition respects equality of arrows: suppose that (a, b, f) and (a′, b′, f ′) are
equivalent, and that (c, g, d) and (c′, g′, d′) are equivalent so that the left and right
squares in the following diagram commute:

Ba′ Bb′
f ′

//

Ba

Ba′

φp

��

Ba Bb

f
// Bb

Bb′

φq

��

Bc′
φt′

//

Bc

φt
// Bc

Bc′

φr

��

Bd′
g′

//

Bd

g
// Bd

Bd′

φs

��

Suppose moreover that t : b =A c and t′ : b′ =A c′. If (B, φ) is a proof-irrelevant family
the centre square commutes automatically, proving that composition respects equality
of arrows. This is in general false if the family is proof-relevant.
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3 Identity types

The presentation of Martin-Löf type theory given in [10] will be followed here, but we
shall use the older terminology of type for which is now called a set, and large type
or Type for what is now called just type. The identity type construction provides for
each type A a minimal equivalence relation I(A, ·, ·) on A. This makes (A, I(A, ·, ·)) a
projective object (cf. [8]) in the category of setoids.

For any type A, the identity type I(A, a, b) is the set of proofs that a and b are
propositionally equal in A. The formation rule for the identity type is that I(A, a, b) is
a type whenever A is a type and a, b : A. We shall also write IA(a, b), or even I(a, b),
for I(A, a, b) if this appears to be typographically clearer. The introduction rule is

a : A

r(a) : I(A, a, a)
.

The elimination rule for I with respect to the family C(x, y, z) type (x, y : A, z :
I(A, x, y)) is

a, b : A c : I(A, a, b) d(x) : C(x, x, r(x)) (x : A)

JC,a,b(c, d) : C(a, b, c)
. (1)

The associated computation rule is JC,a,a(r(a), d) = d(a). A typical application is to
derive a rule for substituting equals for equals in a proposition, or equivalently, derive a
reindexing operation for families. For B(x) type (x : A), define C(x, y, z) = B(x) →
B(y). Then d(x) = idB(x) = λp : B(x).p : C(x, x, r(x)). Hence for c : I(A, a, b)

JC,a,b(c, (x)idB(x)) : C(a, b, c) = B(a) → B(b). (2)

Define
RB,a,b(c, q) = JC,a,b(c, (x)idB(x))(q) : B(b) (3)

for q : B(a). Clearly RB,a,a(r(a), q) = q.

A very useful elimination rule, equivalent to the standard (1), is the rule of Paulin-
Mohring [11]. It says that for any parameter a : A and any family D(x, z) type (x :
A, z : I(A, a, x)) if

b : A c : I(A, a, b) d : D(a, r(a))

J′a,D,b(c, d) : D(b, c)
(4)

The computation rule is J′a,D,a(r(a), d) = d.

The identity proofs of A are said to be unique in case

(∀z, w : IA(a, b))I(z, w) (UIPA) (5)

holds. We say that UIP holds if for each type A satisfies UIPA. Hofmann and Streicher
[6] showed that this need not hold for general types by exhibiting a groupoid model of
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type theory, and the structure of identity types thus turned out to be more complicated
than expected. In fact they showed that it induces as groupoid structure on each type.
Using the standard elimination rule one constructs operations for proofs of symmetry
and transitivity

c−1 : I(A, b, a) (a, b : A, c : I(A, a, b)),

where c−1 = JC,a,b(c, r) and C(x, y, z) = I(A, y, x),

w ◦ z : I(A, a, u) (a, b, u : A, z : I(A, a, b), w : I(A, b, u)),

where w ◦ z = JC,a,b(z, d)(w), C(x, y, z′) = I(A, y, u) → I(A, x, u) and d(x) =
idI(A,x,u).

These operations satisfy the groupoid laws with idx =def r(x) as identity in the sense
that the following identity statements hold:

(G1) I(idy ◦ z, z) for z : I(A, x, y),

(G2) I(z ◦ idx, z) for z : I(A, x, y),

(G3) I(z ◦ z−1, idy) for z : I(A, x, y),

(G4) I(z−1 ◦ z, idx) for z : I(A, x, y),

(G5) I((z ◦ w) ◦ p, z ◦ (w ◦ p)) for p : I(A, x, y), w : I(A, y, u), z : I(A, u, v).

The type-theoretic version of a groupoid is an E-category where all morphisms are
invertible. To be explicit: A groupoid A = (|A|,Hom, id, ◦, ( )−1) consists of

- a type |A|,

- a setoid Hom(a, b) of morphisms for any a, b : |A|,

- an identity morphism ida ∈ Hom(a, a) for each a : |A|,

- a composition operation ◦ : Hom(b, c)×Hom(a, b) //Hom(a, c) for all a, b, c : |A|,

- an inversion ( )−1 : Hom(a, b) // Hom(b, a) for a, b : |A|,

satisfying the usual identities. From (G1-G5) above follows that each type A yields a
groupoid A⋆ = (A,Hom, id, ◦, ( )−1) where Hom(a, b) = (I(A, a, b), II(A,a,b)(·, ·)).
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4 Families of setoids induced by families of types

Any family B of types over A, i.e. a type-valued function B : (A)type in the notation
of [10], gives rise to a proof-relevant family of setoids. Define A∗ = (A, I(A, ·, ·)) and
B∗(a) = (B(a), I(B(a), ·, ·)) and define φp : B(a) → B(b), by φp(x) = RB,a,b(p, x). The
reindexing operation R of (3) is functorial in the sense that

(R1) I(RB,a,a(r(a), w), w) holds for a : A, w : B(a),

(R2) I(RB,b,c(t,RB,a,b(z, w)),RB,a,c((t ◦ z), w)) holds for a, b, c : A and z : I(A, a, b) and
t : I(A, b, c) and w : B(a).

We shall also write B∗

p for φp. I-elimination gives

I(I(A, a, b), p, q) =⇒ B∗

p =ext B
∗

q .

The groupoid laws G1 – G5 gives with ref(x) = idx, sym(p) = p−1 and trans(q, p) = q◦p
the following theorem:

Theorem 4.1 For any family of types B : (A)type the construction (A∗, B∗) is a proof-
relevant family of setoids. 2

We show that UIP gives a precise condition on the index setoid of this family, in
order for the family to be proof-irrelevant. For this we use that, in a special case, the
reindexing operation is a composition operation:

Lemma 4.2 For u : A and B(x) = I(A, u, x), it holds that

I(RB,a,b(z, v), z ◦ v)

for z : I(A, a, b) and v : I(A, u, a).

Proof. Let C(a, b, z) be the formula

(∀v : I(A, u, a))IB(b)(RB,a,b(z, v), z ◦ v).

Now C(a, a, r(a)) is

(∀v : I(A, u, a))IB(a)(RB,a,a(r(a), v), r(a) ◦ v),

which by the groupoid laws and RB,a,a(r(a), q) = q is equivalent to

(∀v : I(A, u, a))IB(a)(v, v).

But this follows by the reflexivity law, so by I-elimination C(a, b, z) is true. Hence the
lemma is proved. 2
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Theorem 4.3 Let A be a fixed type. Then UIP holds for A if and only if (A∗, B∗) is
a proof-irrelevant family of setoids, for any family B : (A)type.

Proof. In view of Theorem 4.1 we may concentrate on the condition (Irr) for proof-
irrelevance.

(⇒): Assume that UIP holds for A. For p, p′ : I(A, a, b) there is c : I(I(A, a, b), p, p′).
Let

C(u, v, z) = (∀x : B(a))(B∗

u(x) =B(b) B
∗

v(x)),

where u, v : I(A, a, b). Clearly, C(u, u, r(u)) is inhabited since =B(b) is reflexive. Hence
by the elimination rule for I, we get that C(p, p′, c) is true, which says that B∗ is proof
irrelevant.

(⇐): Suppose that (A∗, B∗) is a proof-irrelevant family of setoids, for any B :
(A)type. Fix a : A, and let B(x) = I(A, a, x). Then condition (Irr) for B∗ is that

I(I(A, a, b), B∗

p(q), B
∗

p′(q)) (6)

holds for a, b : A, p, p′ : I(A, a, b), q : B(a) = I(A, a, a). Now by Lemma 4.2 and
B∗

p(q) = RB,a,b(p, q) the equation (6) is equivalent to

I(I(A, a, b), p ◦ q, p′ ◦ q).

Putting q = r(a), we get I(I(A, a, b), p ◦ r(a), p′ ◦ r(a)), and since r(a) is an identity of
the groupoid, we have I(I(A, a, b), p, p′) for all p, p′ : I(A, a, b). That is, UIP holds for
A. 2

5 Families of setoids induced by fibres of maps.

Analogous to set theory, we may present a family of setoids in type theory via fibres of
a function f : S → A between setoids. Define the fibre of f over a as the setoid

f−1(a) =def ((Σz : S)(f(z) =A a),∼),

where (z, p) ∼ (z′, p′) holds if and only if z =S z′. For q : a =A b let f−1(q) : f−1(a) →
f−1(b) be given by

f−1(q)(z, p) = (z, q ◦ p).

This clearly defines a proof-irrelevant family of setoids.

Using the UIP it is possible to obtain each family (B∗, A∗) as the fibres of a certain
projection function π1 : S // A∗. For this we need a lemma about identity types.

Lemma 5.1 On a sigma type S = (Σx : A)B(x), the I-equality is characterised by

I(S, (a, b), (a′, b′)) ⇐⇒ (∃p : I(A, a, a′))I(B(a′),RB,a,a′(p, b), b
′).
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Proof. (⇐) We show that (∀a, a′ : A)(∀p : I(A, a, a′))C(a, a′, p) where

C(a, a′, p) = (∀b : B(a))(∀b′ : B(a′))[I(B(a′),RB,a,a′(p, b), b
′) → I(S, (a, b), (a′, b′))].

By I-elimination it suffices to show C(a, a, r(a)) which using RB,a,a(r(a), b) = b is

(∀b : B(a))(∀b′ : B(a))[I(B(a), b, b′) → I(S, (a, b), (a, b′))].

But this follows directly by another application of I-elimination.
(⇒) By Σ-elimination we find for z : S terms π1(z) : A and π2(z) : B(π2(z)) so that

π1((a, b)) = a and π2((a, b)) = b. For z, z′ : S and q : I(S, z, z′), let C(z, z′, q) be

(∃p : I(A, π1(z), π1(z
′)))I(B(π1(z

′)),RB,π1(z),π1(z′)(p, π2(z)), π2(z
′)).

By I-elimination it is sufficient to prove C(z, z, r(z)) for all z : S. By Σ-elimination it
is enough that C((a, b), (a, b), r(a, b)) holds, i.e.

(∃p : I(A, a, a))I(B(a),RB,a,a(p, b), b).

This can be achieved by letting p = r(a) and using RB,a,a(r(a), b) = b and I-introduction.
Consequently, if q : I(S, (a, b), (a′, b′)), then C((a, b), (a′, b′), q) as was desired. 2

Theorem 5.2 Let A be a fixed type. For a family B : (A)type, let S = (Σx : A)B(x)
and let π1 : S

∗ → A∗ be the first projection. For each a : A define θa : π
−1
1 (a) → B(a)∗

by letting
θa((u, v), p) = RB,u,a(p, v).

Then θa is a well-defined bijection of setoids for any a : A and any choice of B : (A)type
if and only if A satisfies UIP.

Proof. (⇐): Assume that A satisfies UIP. Suppose ((u, v), p) and ((u′, v′), p′) are equal
in π−1

1 (a). Thus by definition p : I(A, u, a), p′ : I(A, u′, a) and I(S, (u, v), (u′, v′)) holds.
By Lemma 5.1 follows that there is some q : I(A, u, u′) with I(B(u′),RB,u,u′(q, v), v′).
Thus I(B(a),RB,u′,a(p

′, (RB,u,u′(q, v)),RB,u′,a(p
′, v′)). By the functoriality property (R2)

it follows
I(B(a),RB,u,a(p

′ ◦ q, v),RB,u′,a(p
′, v′)).

But UIP for A gives that I(A, p′ ◦ q, p) holds, and hence by I-elimination we have that

I(B(a),RB,u,a(p, v),RB,u′,a(p
′, v′)) (7)

holds, thus proving θa well-defined. Suppose now (7) where p : I(A, u, a) and p′ :
I(A, u′, a). Hence (p′)−1 ◦ p : I(A, u, u′) and applying R((p′)−1, ·) to (7) we obtain by
functoriality and (G4)

I(B(a),RB,u,u′((p′)−1 ◦ p, v), v′).

8



Hence by Lemma 5.1,
I(S, (u, v), (u′, v′)).

Thus θa is injective. To prove surjectivity, let b : B(a) and consider θa((a, b), r(a)) =
RB,a,a(r(a), b) = b. Thus θa is a well-defined bijection.

(⇒): Suppose that θa is a well-defined bijection for each choice of B, and any
a : A. Let a, b : A be fixed. Define B(x) = I(A, a, x). Let z : B(b) and w :
B(b). Hence p = w ◦ z−1 : I(A, b, b). Then I(B(b), p ◦ z, w) holds by the groupoid
laws. But I(B(b),RB,b,b(p, z), p ◦ z) by Lemma 4.2 with a = b and u = a, and
hence I(B(b),RB,b,b(p, z), w). It follows by Lemma 5.1 that I(S, (b, z), (b, w)), and
hence that ((b, z), r(b)) and ((b, w), r(b)) are equal in π−1

1 (b). Now θb is well-defined,
so I(B(b), θb((b, z), r(b)), θb((b, w), r(b))) holds, i.e. I(B(b), z, w) = I(I(A, a, b), z, w) is
inhabited. 2

Remark 5.3 This result shows that the statement that θa is a well-defined bijection
in Moerdijk and Palmgren [9, p. 196, line 13 – 15] actually need the assumption UIP
to be true. This assumption was omitted in that paper.

6 Decidable identity types

Hedberg [5] proved that decidable identity types satisfy UIP in the following sense:

Theorem 6.1 (Hedberg) If (∀x, y : A)(IA(x, y) ∨ ¬IA(x, y)), then

(∀x, y : A)(∀u, v : IA(x, y))I(u, v).

This result shows that UIP is always true in classical extensions of type theory.
Examining the proof in [5] one can see that the same argument proves the somewhat
stronger statement

Theorem 6.2 Let x : A be fixed. If (∀y : A)(IA(x, y) ∨ ¬IA(x, y)), then

(∀y : A)(∀u, v : IA(x, y))I(u, v).

Note that to apply this theorem one does not need to assume that I(A, x, y) is
decidable for every pair x and y. For instance, if A is an infinitary tree, say given by
the introduction rules

0 : A
f : N → A

sup(f) : A

we may not able to decide equality in general. However, for x = 0, I(A, x, y) can be
decided for all y : A, using the appropriate elimination rule.

The main ingredients of Hedberg’s theorem are two lemmas, of which we modify
the second.
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Lemma 6.3 If S ∨ ¬S, then there is f : S → S with

(∀x, y : S)IS(f(x), f(y)).

Proof. If a : S, then we may let f(x) = a. If a : ¬S, then take f(x) = x. 2

Lemma 6.4 Let x : A. If f : (Πy : A)(I(A, x, y) → I(A, x, y)), then there is g : (Πy :
A)(I(A, x, y) → I(A, x, y)) with

(∀y : A)(∀z : IA(x, y))I(g(y, f(y, z)), z).

Proof. Employing the groupoid operations construct g as follows

g(y, w) = w ◦ (f(x, r(x)))−1

for y : A, w : I(A, x, y). Instead of using the standard elimination rule as in [5], we shall
use Paulin-Mohring’s rule (4). Take D(u, z) to be

I(I(A, x, u), g(u, f(u, z)), z),

where u : A, z : I(A, x, u). Now D(x, r(x)) is

I(I(A, x, x), f(x, r(x)) ◦ (f(x, r(x)))−1, r(x)),

which is true in virtue of the groupoid laws. Say the type is inhabited by the proof
object p. Thus for any y : A and z : I(A, x, y) we have that J′x,D,y(z, p) : D(y, z). That
is we have proved

(∀y : A)(∀z : IA(x, y))I(g(y, f(y, z)), z). 2

Proof of Theorem 6.2. Let x : A and suppose that (∀y : A)(IA(x, y)∨¬IA(x, y)).
Thus by Lemma 6.3 we find for each y : A, f(y) : I(A, x, y) → I(A, x, y) with

(∀z, w : IA(x, y))I(f(y, z), f(y, w)). (8)

Lemma 6.4 gives g : (Πy : A)(I(A, x, y) → I(A, x, y)) with

(∀y : A)(∀z : IA(x, y))I(g(y, f(y, z)), z). (9)

Thus applying g to (8) we get for each y : A

(∀z, w : IA(x, y))I(g(y, f(y, z)), g(y, f(y, w))). (10)

By (9) twice we obtain
(∀z, w : IA(x, y))I(z, w). 2
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7 Concluding discussion

We have seen that proof-relevant families of setoids appear in abundance in standard
Martin-Löf type theory. Each family of types B : (A)type yields such a family (A∗, B∗).
However this kind of families seems difficult to use for certain purposes, e.g. construction
of categories with equality on objects. For such purposes the standard proof-irrelevant
families are more suitable. They are, on the other hand, not easy to construct in
standard type theory. Roughly speaking, it seems that we need to construct extensional
collapses of the types involved in the families. This procedure is well-known from set
theory, and indeed, one way of constructing such families is to use Aczel’s method [1]
for modelling constructive set theory CZF: apply the W-type construction to a universe
of types and define equality of sets by W-recursion as bisimilarity of trees.
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