UPPSALA UNIVERSITET

Matematiska Institutionen Anton Hedin EXERCISES BONUS PROBLEMS 6 APPLIED LOGIC 2009-11-25

Modal Logic and Computation Tree Logic

The BONUS PROBLEMS are marked (+) below. Solutions of these are to be handed in at the latest on 7 December. Maximum bonus for this set of problems is 2.5%. LCS below denotes the course book *Logic in Computer Science* by M. Huth and M. Ryan.

- 1. Suppose the intended meaning of $\Box \phi$ is 'Agent A knows ϕ '. Formalise the following statements in modal logic:
 - (a) If ϕ is true, then it is consistent with what A knows, that A knows it.
 - (b) If it is consistent with what A knows that ϕ , and it is consistent with what A knows that ψ , then it is consistent with what A knows that $\phi \wedge \psi$.
 - (c) If A knows ϕ , then it is consistent with what A knows that ϕ .
 - (d) If it is consistent with what A knows that it is consistent with what A knows that ϕ , then it is consistent with what A knows that ϕ .

Which of these statements seems plausible principles concerning knowledge and consistency.

- 2. Show that the following formulas are valid (with respect to the class of all frames)
 - (a) $\Diamond \phi \leftrightarrow \neg \Box \neg \phi$,
 - (b) $\Box(\phi \land \psi) \leftrightarrow \Box \phi \land \Box \psi$,
 - (c) $\Diamond(\phi \lor \psi) \leftrightarrow \Diamond \phi \lor \Diamond \psi$.
- 3. Consider the basic temporal language and the following frames $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$, where <, in each case, is the usual less-than relation. Which of the following formulas are valid on these frames?
 - (a) $GGp \rightarrow p$,
 - (b) $(p \wedge Hp) \rightarrow FHp$.
- 4. Show that the following formulas are non-valid by constructing a counterexample in each case:

- (a) $\Box \bot$,
- (b) $\Diamond p \to \Box p$,
- (c) $p \to \Box \Diamond p$,
- (d) $\Diamond \Box p \to \Box \Diamond p$,
- (e) $\Box p \to p$.
- 5. (+) Show the following
 - (a) Frame-validity of B: $\phi \to \Box \Diamond \phi$ corresponds to symmetry of R.
 - (b) Frame-validity of D: $\Box \phi \rightarrow \Diamond \phi$ corresponds to R being serial.
- 6. Let **F** be a class of frames. Show that $\Lambda_{\mathbf{F}} = \{ \varphi \mid \mathcal{F} \models \varphi \text{ for all } \mathcal{F} \in \mathbf{F} \}$ is a normal modal logic.
- 7. Consider a modal language with two boxes [1] and [2]. Show that $p \rightarrow [2]\langle 1 \rangle p$ is valid on precisely those frames for the language that satisfy the condition

$$\forall xy(xR_2y \to yR_1x).$$

What sort of frames does $p \to [1]\langle 1 \rangle p$ define?

8. Consider a language with three boxes [1], [2] and [3]. Show that the modal formula $\langle 3 \rangle p \leftrightarrow \langle 1 \rangle \langle 2 \rangle p$ is valid on a frame for this language if and only if the frame satisfies the condition

$$\forall xy(xR_3y \leftrightarrow \exists z(xR_1z \land zR_2y)).$$

- 9. (+) Consider a language with two boxes [1] and [2]. Prove that the class of frames in which $R_1 = R_2^*$, where R_2^* is the reflexive transitive closure of R_2 , is defined by the formulas
 - (a) $\langle 1 \rangle p \to (p \lor \langle 1 \rangle (\neg p \land \langle 2 \rangle p)),$
 - (b) $\langle 1 \rangle p \leftrightarrow (p \lor \langle 2 \rangle \langle 1 \rangle p)$.
- 10. Suppose $\mathcal{T} = (T, <)$ is a bidirectional frame (where we write y < x instead of x < y) such that < is transitive, irreflexive and satisfies $\forall xy(x < y \lor x = y \lor y < x)$. Show that

$$\mathcal{T} \models \{ G(Gp \to p) \to Gp, H(Hp \to p) \to Hp \}$$

implies that \mathcal{T} is finite.

11. Show that Grzegorczyk's formula

$$\Box(\Box(p\to\Box p)\to p)\to p$$

characterizes the class of frames $\mathcal{F} = (W, R)$ satisfying

- (i) R is reflexive,
- (ii) R is transitive,
- (*iii*) there are no infinite paths $x_0 R x_1 R x_2 R \dots$ such that for all $i, x_i \neq x_{i+1}$.
- 12. (+) Exercise 3.4.6 (a) and (b) (only CTL formulas) in Chapter 3 of LCS
- 13. Exercise 3.4.7 (f)-(h) in Chapter 3 of LCS
- 14. (+) Exercise 3.4.8 in Chapter 3 of LCS
- 15. (+) Exercise 3.4.10 (c)-(g) in Chapter 3 of LCS

Some of the exercises are taken from the book *Modal Logic* by Patrick Blackburn, Maarten de Rijke and Yde Venema, which is a very good reference for Modal Logic.