UPPSALA UNIVERSITET

Matematiska Institutionen Anton Hedin EXERCISES BONUS PROBLEMS 5 APPLIED LOGIC 2009-10-26

Semantics of Intuitionistic Propositional Logic

The BONUS PROBLEMS are marked (+) below. Solutions of these are to be handed in at the latest on 2 November. Maximum bonus for this set of problems is 2.5%.

1. Recall that we defined a *lattice* as a partially ordered set (L, \leq) in which every finite subset $F \subseteq L$ has both a least upper bound $\bigvee F$ and a greatest lower bound $\bigwedge F$, with respect to the partial order \leq . Another definition is given by the following:

A lattice $(L, \wedge, \vee, 0, 1)$ consists of a set L with two distinguished elements 0 and 1, and two binary operations \wedge , \vee satisfying the following laws

Idempotency Commutativity Associativity
$$a \lor a = a$$
 $a \lor b = b \lor a$ $a \lor (b \lor c) = (a \lor b) \lor c$ $a \land a = a$ $a \land b = b \land a$ $a \land (b \land c) = (a \land b) \land c$

Absorption Top Bottom
$$a \lor (a \land b) = a$$
 $a \lor 1 = 1$ $a \lor 0 = a$ $a \land (a \lor b) = a$ $a \land 1 = a$ $a \land 0 = 0$

Show that the two definitions are equivalent. The latter (algebraic) definition can in fact be made more compact; show that Idempotency, $a \wedge 1 = a$ and $a \vee 0 = a$ follow from Absorption.

2. A lattice $(L, \wedge, \vee, 0, 1)$ is called *distributive* if the following two equalities hold

D1:
$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$
,
D2: $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$.

Show that D2 follows from D1.

- 3. (+) Show that in a Heyting algebra: if $a \wedge b = \bot$ and $a \vee b = \top$, then $b = \neg a$. Thus every true complement is a pseudo-complement.
- 4. Show that every Boolean algebra is a Heyting algebra.
- 5. Show that every Heyting algebra in which $a \vee \neg a = \top$ for all a, is a Boolean algebra.
- 6. Let (X, \mathcal{O}) be a topological space. Show that the set \mathcal{O} of open sets is a Heyting algebra with respect to intersection and union.
- 7. Consider the following lattices

Which of these are (i) distributive, (ii) Boolean algebras, (iii) Heyting algebras?

- 8. (+) For each of the lattices L_1 - L_4 , in exercise 7, find a finite set $S \subseteq L_i$ and a subset $M \subseteq \mathcal{P}(S)$ such that the Hasse diagram of (M, \subseteq) is the same as that for the lattice L_i .
- 9. In IPC the negation $\neg A$ of a formula is defined as $A \to \bot$. Deduce the meaning of $i \Vdash \neg A$ for $i \in W$, some Kripke model $\mathcal{K} = (W, \leq, L)$.
- 10. (+) Show (without giving derivations) that the following formulas are derivable in CPC but *not* derivable in IPC

$$(i) \ (P \to Q) \lor (Q \to P),$$

$$(ii) \neg (P \rightarrow Q) \rightarrow P \land \neg Q,$$

$$(iii) \ (\neg Q \to \neg P) \to (P \to Q),$$

(iv)
$$((P \to Q) \to P) \to P$$
 (Peirce's law).

11. Consider the following IPC Kripke model \mathcal{K} :

Write down \mathcal{K} formally as a tuple (W, \leq, L) . Construct from \mathcal{K} an equivalent Heyting algebra model. That is, construct from the partial order (W, \leq) a Heyting algebra H and from the labelling function L a H-valuation V, such that

$$V(A) = \top \iff 0 \Vdash A,$$

for all formulas A.

12. (+) Let (P, \leq) be a partially ordered set. Show that $\mathsf{UC}(P) = \{U \subseteq P : U \text{ is upwards closed}\}$ is a Boolean algebra iff the partial order satisfies p = q whenever $p \leq q$.