BONUS PROBLEMS 1 APPLIED LOGIC, Fall-09 2009-09-04

The following problems (from Exercise sheet 1) are bonus problems. Solutions are to be presented at the exercise class 9 September. Correct solutions will give 2.5% in bonus points. The total amount of bonus points possible will be 15%. The bonus percent is multiplied with the maximum points of the final written exam and then added to the score achieved at the examination.

- 1. Decide whether the following *instances* of Post's correspondence problem (PCP) are solvable. Provide a solution, or give a proof that no solution is possible!
 - (a) (11,0), (10,1)
 - (b) (000, 0), (0, 0000)
 - (c) (00, 10), (01, 0), (0, 110000)
- 2. (Definability) Let \mathcal{M} be a model for the language L and let $A = |\mathcal{M}|$ be its universe. A subset $S \subseteq A^n$ is *(first-order) definable* in \mathcal{M} if there is an L-formula φ with free variables among x_1, \ldots, x_n such that

 $S = \{(a_1, \ldots, a_n) \in A^n : \mathcal{M} \models_{\ell} \varphi \text{ and } \ell(x_1) = a_1, \ldots, \ell(x_n) = a_n\}$

A relation $R \subseteq A^n$ is definable in \mathcal{M} if the corresponding subset R is definable. A function $f: A^n \to A$ is definable in \mathcal{M} if its graph

graph
$$f = \{(a_1, \dots, a_n, b) \in A^{n+1} : f(a_1, \dots, a_n) = b\}$$

is a definable subset in \mathcal{M} .

Show that the subsets, relations or functions in (a) – (h) below are definable in $\mathcal{N} = \langle \mathbb{N}; +, \cdot, 0, 1 \rangle$ using as simple formulas as seems possible.

For instance the set of even numbers is defined by

$$\{m \in \mathbb{N} : \mathcal{N} \models_{\ell} (\exists x) \ x + x = y \text{ and } \ell(y) = m\}$$

This also shows that the predicate x is even is definable. The function $f(x) = x^2$ is defined by

$$\{(m,n)\in\mathbb{N}^2:\mathcal{N}\models_{\ell}x\cdot x=y\text{ and }\ell(x)=m,\ell(y)=n\}.$$

- (a) x is odd
- (b) y = x(x+1)/2
- (c) $x \leq y$
- (d) x divides y
- (e) x is the sum of two prime numbers
- (f) $z = \max(x, y)$
- ▷ Let *L* be a first-order language with finitely many symbols. A structure \mathcal{M} for *L* is called *decidable*, if there is an algorithm which for every closed first order formula φ in the language *L* decides whether $\mathcal{M} \models \varphi$ holds or not. A well-known example of an *undecidable* structure is the structure of natural numbers $\mathcal{N} = \langle \mathbb{N}, +, \cdot, 0, 1 \rangle$.
- 3. (Definability and decidability) Recall that in automata theory one studies languages as subsets of strings over a fixed alfabet. Let $\Sigma = \{a, b\}$ be an alfabet, and let Σ^* be the set of finite strings. Thus

$$\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Here ϵ is the empty string. Let & denote concatenation of strings, so baba&bba = bababba. We may now regard $\langle \Sigma^*; \& \rangle$ as a first-order structure with concatenation as the only operation. Find elementary propositions (formulas) over $\langle \Sigma^*; \& \rangle$ that definies the following properties (note that = may be used)

- (a) x is a substring of y
- (b) x is an empty string (you may not mention ϵ)
- (c) x is a string of length 1 (you may not mention 0 or 1) (Hint: use(a) and (b). How many substrings can such a string have?)
- (d) x is a string of length 4.

Consider now an extended structure $\langle \Sigma^*; \&, *, a, b, \epsilon \rangle$ where a, b, ϵ are constants (so they may be mentioned in elementary propositions) and moreover there is a "string duplicator" * that satisfies the following

$u * \epsilon$	=	ϵ	(erase)
u * (a&v)	=	u * v	(take a pause)
u * (b&v)	=	(u * v)&u	(make a copy).

Thus ab * bab = abab and $ab * aa = \epsilon$.

(e) Prove that the structure $\langle \Sigma; \&, *, a, b, \epsilon \rangle$ is undecidable, by showing that *if* it was decidable, then we could decide $\langle \mathbb{N}, +, \cdot, 0, 1 \rangle$ as well, contradicting a well-known theorem.