UPPSALA UNIVERSITET

Matematiska institutionen Erik Palmgren EXERCISES 1 Tillämpad Logik DV1, ht-00 2000-09-04

Exercises 1 1, Tillämpad Logik DV1

The following problems concern mainly Chapter 1-4 of "Konstruktiv logik" and Section 3 of "Oavgörbara problem i elementär aritmetik".

- 1. (A nonconstructive proof.) Let $S \subseteq \{0,1\}^*$ be an infinite set of strings such that if $u = a_1 a_2 \cdots a_n \in S$, then every initial segment $a_1 a_2 \cdots a_k$ of u $(0 \le k < n)$ also belongs to S. Show that there is an inifinite sequence $b_1 b_2 b_3 \cdots$ such that all its finite initial segments belong to S.
- 2. Construct a typed lambda term add2 of type $\mathbb{N} \to \mathbb{N}$ that adds 2 to each natural number. Show that apply(add2, S(0)) = S(S(S(0))).
- 3. Construct a typed lambda term add of type $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ that implements addition. Show that apply(apply(add, S(0)), S(0)) = S(S(0)).

Hint: Consider the type of add, i.e. add can be considered as function that given a number n, returns a function that adds n to any number. Higher functions are required.

- 4. For each formula below do the following:
 - Prove the formula using the rules of intuitionistic logic.
 - Construct a certificate for the formula using typed lambda calculus.
 - (a) $A \rightarrow A$
 - (b) $A \wedge B \rightarrow B \wedge A$
 - (c) $A \vee B \rightarrow B \vee A$
 - (d) $(A \to B) \land (B \to C) \to (A \to C)$
 - (e) $(A \rightarrow \neg A) \rightarrow \neg A$
 - (f) $A \rightarrow \neg \neg A$
- 5. In intuitionistic logic $\neg A$ is defined as $A \to \bot$. In the exercise above we saw that $A \to \neg \neg A$ has a BHK-interpretation. What would a BHK-interpretation of $\neg \neg A \to A$ be?
- 6. Does $\perp \rightarrow A$ have a certificate? Why or why not?.
- 7. (Definability) Show that the following subsets, relations or functions are definable in the elementary language over $\langle \mathbb{N}; +, \cdot, 0, 1 \rangle$ using as simple formulas as seems possible:

¹Exercises 2-6 courtesy of Lars Lindqvist.

- (a) x is odd
- (b) y = x(x+1)/2
- (c) $x \leq y$
- (d) x divides y
- (e) x is the sum of two prime numbers
- (f) $z = \max(x, y)$
- (g) y = x!
- (h) $y = 2^{2^{2^{2^2}}}$