UPPSALA UNIVERSITET

Matematiska institutionen
Erik Palmgren

Exercises 2
Tillämpad Logik DV1, ht-02
2002-09-10

Exercises 2

1. Consider the modal model given by the set of week days

$$
W=\{\text { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, }\}
$$

where the accessibility relation $R(x, y)$ is x is no later than y. The truth-values for P, Q and R are as follows on each day.

$t=$	\mathbf{M}	$\mathbf{T u}$	\mathbf{W}	$\mathbf{T h}$	\mathbf{F}	$\mathbf{S a}$	$\mathbf{S u}$
$V_{t}(P)=$	1	0	1	1	1	0	1
$V_{t}(Q)=$	0	0	1	1	0	1	1
$V_{t}(R)=$	1	0	1	0	0	0	0

A possible interpretation of symbols: The activities of Sergeant Snåårskog: P drinks all day, R drives a tank, Q cleans his guns. Compute the truth-value of each of the following formulas in the model just defined.
(a) $V_{\mathbf{M}}(\diamond(Q \wedge R))$
(b) $V_{\mathbf{T h}}(\diamond(Q \wedge R))$
(c) $V_{M}(\square(R \rightarrow P))$
(d) $V_{\mathbf{M}}(\square(P \rightarrow \diamond Q))$
(e) $V_{\mathbf{M}}(\square(P \wedge \diamond Q))$
(f) $\left.V_{M}(\diamond \square Q)\right)$
(g) $\left.V_{\mathbf{M}}(\diamond \square R)\right)$
(h) Is it possible to find a formula $A=A(P, Q, R)$ which holds precisely on Thursday, i.e. such that $V_{t}(A)=1$ is holds precisely when $t=\mathbf{T h}$.
(i) For which week days is it possible to find such formulas?
2. Decide which of the following formulae are provable in intuitionistic propositional logic. For each formula give a proof in natural deduction or provide a Kripke model which shows that it is unprovable. (The symbols \rightarrow and \neg of Ch. 4 are here denoted \supset and ~.)
(a) $(((P \supset Q) \supset Q) \supset Q) \supset(P \supset Q)$
(b) $(P \supset Q) \vee(Q \supset P)$
(c) $\sim \sim P \supset(P \vee \sim P)$
3. Consider a modal logic model $\mathcal{M}=\left(\mathbb{N}, \leq,\left\{V_{t}\right\}_{t \in \mathbb{N}}\right)$ where $H_{t}(t=0,1,2, \ldots)$ are proposition variables such that

$$
V_{t}\left(H_{s}\right)= \begin{cases}1 & \text { if } t \geq s \\ 0 & \text { if } t<s\end{cases}
$$

Let P be a propositional variable. Express the following using modal formulas that use a fixed number of H-variables (whose number is independent of m and n).
(a) P holds at all time points in the interval $[m, n]=\{m, m+1, m+2, \ldots, n\}$. (I.e. find a formula A containing P such that $\mathcal{M} \vDash A$ iff for all $t \in[m, n]: V_{t}(P)=1$.)
(b) P holds at some point in time in the interval $[m, n]$.
4. Define for every $k \in \mathbb{N}$ a relation R_{k} on \mathbb{N} such that its corresponding operator \square_{k} in a modal logic model $\left(\mathbb{N},\left\{R_{k}\right\}_{k \in \mathbb{N}},\left\{V_{t}\right\}_{t \in \mathbb{N}}\right)$ behaves as

$$
V_{t}\left(\square_{k} A\right)=1 \Longleftrightarrow V_{t}(A)=V_{t+1}(A)=\cdots=V_{t+k}(A)=1 .
$$

What is the intuitive interpretation of this operator? How does \diamond_{k} work? Try to give some general laws for these operators and examples of what they can express.
5. Let $\mathcal{M}=\left(W, R,\left\{V_{t}\right\}_{t \in W}\right)$ be a modal logic model. Let P be a propositional variable.
(a)* Show that if $\mathcal{M} \models \square P \rightarrow P$, for each possible valuation V_{t}, then R must be reflexive.
(b)* Show that if $\mathcal{M} \models \square P \rightarrow \square \square P$, for each possible valuation V_{t}, then R must be transitive.
6. Suppose that $\mathcal{M}=\left(W, R,\left\{V_{t}\right\}_{t \in W}\right)$ is a modal logic model. Let A be an arbitrary modal formula.
(a) Show that if R is reflexive, then $\mathcal{M} \models \square A \rightarrow A$.
(b) Show that if R is transitive, then $\mathcal{M} \models \square A \rightarrow \square \square A$.
(c) Show that if R is symmetric, then $\mathcal{M} \models \diamond \square A \rightarrow A$.
(d) Show that if R is an equivalence relation, then \square satisfies the introspection axioms in \mathcal{M}.
(e)* Show that if R is a linear order, then $\mathcal{M} \models \diamond \square \diamond A \leftrightarrow \square \diamond A$

