Exercises 2 Tillämpad Logik DV1, ht-02 2002-09-10

Exercises 2

- 1. Consider the modal model given by the set of week days
 - $W = \{Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, \}$

where the accessibility relation R(x, y) is x is no later than y. The truth-values for P, Q and R are as follows on each day.

t =	\mathbf{M}	\mathbf{Tu}	\mathbf{W}	\mathbf{Th}	\mathbf{F}	\mathbf{Sa}	\mathbf{Su}
$V_t(P) =$	1	0	1	1	1	0	1
$V_t(Q) =$	0	0	1	1	0	1	1
$V_t(R) =$	1	0	1	0	0	0	0

A possible interpretation of symbols: The activities of Sergeant Snåårskog: P drinks all day, R drives a tank, Q cleans his guns. Compute the truth-value of each of the following formulas in the model just defined.

- (a) $V_{\mathbf{M}}(\diamondsuit(Q \land R))$
- (b) $V_{\mathbf{Th}}(\diamondsuit(Q \land R))$
- (c) $V_{\mathbf{M}}(\Box(R \to P))$
- (d) $V_{\mathbf{M}}(\Box(P \to \Diamond Q))$
- (e) $V_{\mathbf{M}}(\Box(P \land \Diamond Q))$
- (f) $V_{\mathbf{M}}(\Diamond \Box Q)$)
- (g) $V_{\mathbf{M}}(\Diamond \Box R)$)
- (h) Is it possible to find a formula A = A(P, Q, R) which holds precisely on Thursday, i.e. such that $V_t(A) = 1$ is holds precisely when $t = \mathbf{Th}$.
- (i) For which week days is it possible to find such formulas?
- 2. Decide which of the following formulae are provable in intuitionistic propositional logic. For each formula give a proof in natural deduction or provide a Kripke model which shows that it is unprovable. (The symbols \rightarrow and \neg of Ch. 4 are here denoted \supset and \sim .)
 - (a) $(((P \supset Q) \supset Q) \supset Q) \supset (P \supset Q)$
 - (b) $(P \supset Q) \lor (Q \supset P)$
 - (c) $\sim \sim P \supset (P \lor \sim P)$

3. Consider a modal logic model $\mathcal{M} = (\mathbb{N}, \leq, \{V_t\}_{t \in \mathbb{N}})$ where H_t (t = 0, 1, 2, ...) are proposition variables such that

$$V_t(H_s) = \begin{cases} 1 & \text{if } t \ge s, \\ 0 & \text{if } t < s. \end{cases}$$

Let P be a propositional variable. Express the following using modal formulas that use a fixed number of H-variables (whose number is independent of m and n).

- (a) P holds at all time points in the interval $[m,n] = \{m, m+1, m+2, \ldots, n\}$. (I.e. find a formula A containing P such that $\mathcal{M} \models A$ iff for all $t \in [m,n]$: $V_t(P) = 1$.)
- (b) P holds at some point in time in the interval [m, n].
- 4. Define for every $k \in \mathbb{N}$ a relation R_k on \mathbb{N} such that its corresponding operator \Box_k in a modal logic model $(\mathbb{N}, \{R_k\}_{k \in \mathbb{N}}, \{V_t\}_{t \in \mathbb{N}})$ behaves as

$$V_t(\Box_k A) = 1 \Longleftrightarrow V_t(A) = V_{t+1}(A) = \dots = V_{t+k}(A) = 1.$$

What is the intuitive interpretation of this operator? How does \diamond_k work? Try to give some general laws for these operators and examples of what they can express.

- 5. Let $\mathcal{M} = (W, R, \{V_t\}_{t \in W})$ be a modal logic model. Let P be a propositional variable.
 - (a)* Show that if $\mathcal{M} \models \Box P \rightarrow P$, for each possible valuation V_t , then R must be reflexive.
 - (b)* Show that if $\mathcal{M} \models \Box P \rightarrow \Box \Box P$, for each possible valuation V_t , then R must be transitive.
- 6. Suppose that $\mathcal{M} = (W, R, \{V_t\}_{t \in W})$ is a modal logic model. Let A be an arbitrary modal formula.
 - (a) Show that if R is reflexive, then $\mathcal{M} \models \Box A \to A$.
 - (b) Show that if R is transitive, then $\mathcal{M} \models \Box A \rightarrow \Box \Box A$.
 - (c) Show that if R is symmetric, then $\mathcal{M} \models \Diamond \Box A \rightarrow A$.
 - (d) Show that if R is an equivalence relation, then \Box satisfies the introspection axioms in \mathcal{M} .
 - (e)* Show that if R is a linear order, then $\mathcal{M} \models \Diamond \Box \Diamond A \leftrightarrow \Box \Diamond A$