UPPSALA UNIVERSITET

Matematiska institutionen
Erik Palmgren

EXERCISES 5

Tillämpad Logik DV1, ht-02
2002-09-30

Exercises 5

1. Determine the Skolem conjunctive normal form for each of the following formulas, and thereby its equivalent set of clauses. P and Q are predicate symbols.
(a) $\forall u[\forall x \neg \exists y P(x, y) \rightarrow \neg \forall x(\exists z P(x, y) \rightarrow \forall y P(u, y))]$.
(b) $\forall x(\exists y P(x, y) \leftrightarrow \exists z Q(z, x))$.
2. Deduce using resolution the empty clause (\square) from the following set of clauses
(a) $\{\neg P(x), P(x) \vee \neg Q(x), P(x) \vee \neg R(x), Q(x) \vee R(x)\}$,
(b) $\{\neg P(x, y), P(x, y) \vee \neg Q(x, z) \vee \neg P(z, y), P(x, y) \vee \neg Q(x, y), Q(a, b), Q(b, c)\}$.
3. Deduce using resolution the empty clause (\square) from the following set of clauses

$$
S=\{Q(x) \vee P(f(x)) \vee P(v), R(g(y), y) \vee \neg P(y), \neg R(g(f(z)), u), \neg Q(c)\}
$$

For what $n \geq 0$ does $\square \in \operatorname{Res}^{n}(S)$ hold? (See notation in Das.)
4. Let $\varphi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ be a quantifier free formula without function symbols or the identity relation. Show that it is algorithmically decidable whether

$$
\forall x_{1} \cdots \forall x_{m} \exists y_{1} \cdots \exists y_{n} \varphi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)
$$

has a proof or is refutable. ${ }^{1}$ (Compare to Exercise 4.6.)
5. Show that the most general unifier of

$$
f\left(g\left(x_{1}, x_{1}\right), g\left(x_{2}, x_{2}\right), \ldots, g\left(x_{n}, x_{n}\right)\right) \text { and } f\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)
$$

has 2^{n} occurrences of the variable x_{1}. (This shows that it is necessary to represent terms in some efficient way, for instance as DAGs). There is a indeed a linear time unification algorithm. ${ }^{2}$)

[^0]
[^0]: ${ }^{1}$ This was proven by Thoralf Skolem 1919, before the completeness theorem was formulated.
 ${ }^{2}$ A. Martelli, U. Montanari: An efficient unification algorithm. ACM Transactions on Programming Languages and Systems 4(1982), 258-281.

