UPPSALA UNIVERSITET Matematiska institutionen Erik Palmgren

EXERCISES 5 Tillämpad Logik DV1, ht-02 2002-09-30

Exercises 5

- 1. Determine the Skolem conjunctive normal form for each of the following formulas, and thereby its equivalent set of clauses. P and Q are predicate symbols.
 - (a) $\forall u [\forall x \neg \exists y P(x, y) \rightarrow \neg \forall x (\exists z P(x, y) \rightarrow \forall y P(u, y))].$
 - (b) $\forall x (\exists y P(x, y) \leftrightarrow \exists z Q(z, x)).$
- 2. Deduce using resolution the empty clause (\Box) from the following set of clauses

(a)
$$\{\neg P(x), P(x) \lor \neg Q(x), P(x) \lor \neg R(x), Q(x) \lor R(x)\},\$$

(b) $\{\neg P(x,y), P(x,y) \lor \neg Q(x,z) \lor \neg P(z,y), P(x,y) \lor \neg Q(x,y), Q(a,b), Q(b,c)\}.$

3. Deduce using resolution the empty clause (\Box) from the following set of clauses

 $S = \{Q(x) \lor P(f(x)) \lor P(v), R(g(y), y) \lor \neg P(y), \neg R(g(f(z)), u), \neg Q(c)\}.$

For what $n \ge 0$ does $\Box \in \operatorname{Res}^n(S)$ hold? (See notation in Das.)

4. Let $\varphi(x_1, \ldots, x_m, y_1, \ldots, y_n)$ be a quantifier free formula without function symbols or the identity relation. Show that it is algorithmically decidable whether

$$\forall x_1 \cdots \forall x_m \exists y_1 \cdots \exists y_n \varphi(x_1, \dots, x_m, y_1, \dots, y_n)$$

has a proof or is refutable.¹ (Compare to Exercise 4.6.)

5. Show that the most general unifier of

 $f(g(x_1, x_1), g(x_2, x_2), \dots, g(x_n, x_n))$ and $f(x_2, x_3, \dots, x_{n+1})$

has 2^n occurrences of the variable x_1 . (This shows that it is necessary to represent terms in some efficient way, for instance as DAGs). There is a indeed a linear time unification algorithm.²)

¹This was proven by Thoralf Skolem 1919, before the completeness theorem was formulated.

²A. Martelli, U. Montanari: An efficient unification algorithm. ACM Transactions on Programming Languages and Systems 4(1982), 258 – 281.