Svar och ledningar

1. Mgun ser ut som \(\{x_2 := t_1, \ldots, x_{n+1} := t_n \} \) där \(t_1 = g(x_1, x_1) \) och \(t_{k+1} = g(t_k, t_k) \) för \(k = 1, \ldots, n \). Man visar med induktion att \(t_k \) har \(2^k \) förekomster av variabeln \(x_1 \). För hela mgun har vi \(2 + 2^2 + \cdots + 2^n = 2^{n+1} - 2 \) förekomster av variabeln.

2. Om sökmetoden i fullständighetssatsen tillämpas på sekventen

\[\neg \forall x_1 \cdots \forall x_m \exists y_1 \cdots \exists y_n \varphi(x_1, \ldots, x_m, y_1, \ldots, y_n) \]

ersätts först alla de \(\forall \)-kvantifierade variablerna av nya varialbler. Vi antog att funktionssymboler ej förkommer så den aktiva termlistan \(t_1, \ldots, t_k \) kommer ej att utökas därefter. \((\rightarrow \exists)\) reglerna kan bara tillämpas ett ändligt antal gånger. Dessa existenskvantifierade formulor kan aldrig flytta till vänstersidan. Reglerna för satslogiska operatorer minskar storleken på formulorna, så dessa kan bara tillämpas ett ändligt antal gånger. Därmed måste sökprocessen avstanna efter ett ändligt antal steg, och vi kan avläsa ett bevis eller en motmodell.

3. (a) Skolem CNF: \(\forall u [(P(f(u), g(u)) \lor P(h(u), k(u))) \land (P(f(u), g(u)) \lor \neg P(u, k(u)))] \).
(b) Skolem CNF: \(\forall x \forall y \forall u \forall v [(-P(x, y) \lor Q(f(x, y), x)) \land (-Q(v, u) \lor P(u, g(x, y, u, v)))] \).

4. \(S \) består av klausulerna 1 – 4.

1. \(Q(x) \lor P(f(x)) \lor P(v) \)
2. \(R(g(y), y) \lor \neg P(y) \)
3. \(\neg R(g(f(x)), u) \)
4. \(\neg Q(c) \)
5. \(P(f(c)) \lor P(v) \) resolvent av 1 och 4
6. \(\neg P(f(z)) \) resolvent av 2 och 3
7. \(\Box \) resolvent av 5 och 6 (med \(P(f(c)) \) som faktor av 5).

Uppenbarligen är klausul 5 och 6 element i \(\text{Res}(S) \), varför \(\Box \in \text{Res}^2(S) \). Upp till namnbyte på variablerna består \(\text{Res}(S) \) av \(S \), klausul 5 och 6 samt klausuler \(\neq \Box \) som fås när 1 och 2 resoveras. Alltså \(\Box \notin \text{Res}(S) \). Slutsats: \(\Box \in \text{Res}^n(S) \) om och endast om \(n \geq 2 \).