
1 Classical and intuitionstic proofs1

We have seen that proofs in intuitionistic logic have the remarkable property that
programs may be extracted from them. Many naturally occurring proofs, in math-
ematical text books or journals, rely as they stand on some use of classical logic. A
natural question is whether there is some mechanical methodfor translating clas-
sical proofs to constructive proofs. It is clear that such methods must have some
limitations in view of the counter examples of the previous chapters. Kurt Gödel
and Gerhard Gentzen showed that there is a method for purely logical proofs, and
certain simple theories, provided the proposition provedA may be substituted by
a classically equivalent propositionA∗. This substitute may not have the same
meaning from a constructive point of view.

Classical predicate logic is obtained by adding thereductio ad absurdum(RAA)
axiom scheme to intuitionistic predicate logic: i.e. adding

⊢X ¬¬A⊃ A

for each formulaA with free variables amongX. In classical logic, the logical con-
stants (connectives and quantifiers)∃ and∨ are actually unnecessary, sinceA∨B
is equivalent to¬(¬A∧¬B) and(∃x)C is equivalent to¬(∀x)¬C. These equiva-
lences do not hold in intuitionistic logic. We define two new logical constants∃c,
theclassical existencequantifier, and∨c theclassical disjunction.

A∨c B ≡ ¬(¬A∧¬B) (1)

(∃cx)C ≡ ¬(∀x)¬C (2)

A formula of predicate logic where the only logical constants used are⊥,∧,→
and∀, is called anon-existential formula.(We may informally think ofA1∨A2 as
a kind of existence statement, e.g.(∃i ∈ {1,2})Ai.)

Define theGödel-Gentzen negative translation(·)∗ by recursion on first order
formulae:

• ⊥∗ = ⊥,

• R(t1, . . . , tn)
∗ = ¬¬R(t1, . . . , tn) , if R is a predicate symbol (R can be=)

• (A∧B)∗ = A∗∧B∗,

• (A∨B)∗ = A∗∨c B∗,

• (A⊃ B)∗ = A∗ ⊃ B∗,

1Lecture notes by Erik Palmgren, October 16, 2007.
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• ((∀x)C)∗ = (∀x)C∗,

• ((∃x)C)∗ = (∃cx)C∗.

It should be clear that the only thing this translation does is to replace∃ and
∨ by their classical versions and to insert two negation signsin front of every
predicate symbol. Obviously, the translationA∗ is provably equivalent toA in
classical predicate logic.

Example 1.1 Let Rbe a binary predicate symbol. Consider the formula

A = (∀x)(∃y)(R(x,y)∨R(y,x)).

Its Gödel-Gentzen translation is

A∗ = (∀x)(∃cy)(¬¬R(x,y)∨c¬¬R(y,x))

Spelling out the definitions of classical connectives∃c and∨c we get

(∀x)¬(∀y)¬¬(¬¬¬R(x,y)∧¬¬¬R(y,x))

The translation theorem is now:

Theorem 1.2 Let A be any formula. If A is provable in classical predicate logic,
then A∗ is provable in intuitionistic predicate logic.

Proof. A formal proof goes by induction on derivations proving something seem-
ingly stronger, namely that ifA1, . . . ,An ⊢X A has a proof in classical logic then
A∗

1, . . . ,A
∗
n ⊢X A∗ has a proof in intuitionistic logic.

Since the proof rules are identical for the systems, save forRAA, one needs
only to prove

⊢X ¬¬A∗ ⊃ A∗ (3)

in intuitionistic predicate logic, for each formulaA. This is done by induction on
the formulaA, using the following theorems of intuitionistic logic.

⊢ ¬¬⊥ ⊃⊥,
⊢ ¬¬¬¬B⊃ ¬¬B,
¬¬A⊃ A,¬¬B⊃ B⊢ ¬¬(A∧B) ⊃ A∧B,
¬¬B⊃ B⊢ ¬¬(A⊃ B) ⊃ (A⊃ B),
(∀x)(¬¬A⊃ A) ⊢ ¬¬(∀x)A⊃ (∀x)A.

We leave their proofs as exercises for the reader.2
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In general the translationA∗ is not intuitionistical equivalent to the original
formula A. In some cases it is however. A non-existential formulaA is called
negativeif every predicate symbol inA is immediately preceded by a negation.
For such a formula every predicate symbol in the corresponding translationA∗

will be preceded by three negations. Intuitionistically, it holds that¬¬¬B ⊃⊂
¬B. Consequently, every negative formula is equivalent to itsown Gödel-Gentzen
interpretation in intuitionistic logic. We have

Corollary 1.3 Let A be a negative formula. If A is provable in classical predicate
logic, then A is also provable in intuitionistic predicate logic.

A setT of closed first-order formulae is called a(first-order) theory.We say
thatT ⊢ A if, for someA1, . . . ,An ∈ T, we haveA1, . . . ,An ⊢ A. Obviously, it is not
possible to use more than finitely many assumptions in a finiteproof! We have as
a consequence of Theorem 1.2 that

Corollary 1.4 For a first-order theory T : if T⊢ A in classical predicate logic,
then T∗ ⊢ A∗ in intuitionistic predicate logic. Here T∗ = {A∗ : A∈ T}.

Proof. If T ⊢ A in classical logic, thenA1, . . . ,An ⊢ A for someA1, . . . ,An ∈ T. By
Theorem 1.2,A1

∗, . . . ,An
∗ ⊢ A∗ in intuitionistic logic. HenceT∗ ⊢ A∗ in intuition-

istic logic. 2

Now for T = /0 this is just Theorem 1.2. We are interested in theories for which
T ⊢ T∗ holds in intuitionistic predicate logic. A formula is aHorn formula if it
has the form

(∀x1) · · ·(∀xm)B or (∀x1) · · ·(∀xm)(A1∧· · ·∧An ⊃ B)

whereA1, . . . ,An,B are atomic formulae. We leave the proof of the following
lemma as an easy exercise:

Lemma 1.5 If A is a Horn formula, then

A⊃ A∗

is provable in intuitionistic logic.

For a theoryT consisting of Horn formulae (aHorn theory) we thus have
T ⊢ A∗ intuitionistically wheneverT ⊢ A∗ classically. Another important example
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is T = PA, the first-order theory of natural numbers, known asPeano arithmetic.
It has the following axioms:

(∀x)¬S(x) = 0

(∀x)(∀y)[S(x) = S(y) → x = y]

(∀x)x+0 = x

(∀x)(∀y)x+S(y) = S(x+y)

(∀x)x·0 = 0

(∀x)(∀y)x·S(y) = x·y+x

(∀x1, . . . ,xn)(C[0/z]∧ (∀x)(C[x/z]→C[S(x)/z])→ (∀z)C).

Here C is an arbitrary formula in the arithmetical language, whereFV(C) ⊆
{x1, . . . ,xn,z}. Using intuitionistic logic this is justHeyting arithmeticwhich was
introduced earlier.

Theorem 1.6 If PA⊢ A is provable in classical logic, then its translation A∗ it is
also provable in Heyting arithmetic.

Proof. Suppose thatA has been proved classically in Peano arithmetic. Then for
some arithmetical axiomsA1, . . . ,An we have a proof of

A1, . . . ,An ⊢X A

in classical logic. So by Theorem 1.2 there is a proof in intuitionistic logic of

A∗
1, . . . ,A

∗
n ⊢X A∗.

If we can find some set of axiomsΓ from PA so that

Γ ⊢X A∗
i (4)

is provable for eachi = 1, . . . ,n in intuitionistic logic, then we are done. In caseAi

is a Horn formula, we includeAi in Γ and get (4) by Lemma 1.5. The only axioms
that are not Horn formulae are the instances of the inductionscheme. Suppose

Ai = (∀x1, . . . ,xn)(C[0/z]∧ (∀x)(C[x/z]→C[S(x)/z]) → (∀z)C).

Then

Ai
∗ = (∀x1, . . . ,xn)(C

∗[0/z]∧ (∀x)(C∗[x/z] →C∗[S(x)/z]) → (∀z)C∗).

But this is also an instance of the induction scheme, which wethus include inΓ.
The so constructedΓ is a subset of PA which satisfies (4).2

4



The above result shows that classical arithmetic is consistent if intuitionistic
arithmetic is consistent. It was an important philosophical motivation for Gödel to
show that intuitionistic logic per se does not add to the safety of the foundations.
The situation has however turned out to be different for stronger axiom systems
than arithmetic.

It is possible to prove the following important result usingfurther proof-theoretic
techniques:

Theorem 1.7 Let A=(∀x)(∃y)P(x,y) be a formula of arithmetic where P is quan-
tifier free. If PA⊢ A is provable classically, then A is also provable in Heyting
arithmetic.

Proof. See Troelstra and van Dalen (1988).2

SinceA in the theorem above has the format of a program specification, it is
possible to use this, and similar results, to extract programs from classical proofs
(see Schwichtenberg 1999).

Exercises

1. LetP(x) be a predicate symbol and considerA= (∃x)P(x)∨(∀x)¬P(x). Prove
the Gödel-Gentzen translated formulaA∗ in intuitionistic logic.

2. Prove the following in intuitionistic logic.

(a) ⊢ ¬¬⊥ ⊃⊥,

(b) ⊢ ¬¬¬¬B⊃¬¬B,

(c) ¬¬A⊃ A,¬¬B⊃ B⊢ ¬¬(A∧B) ⊃ A∧B,

(d)* ¬¬B⊃ B⊢ ¬¬(A⊃ B) ⊃ (A⊃ B),

(e)* (∀x)(¬¬A⊃ A) ⊢ ¬¬(∀x)A⊃ (∀x)A.

3. Prove Lemma 1.5 using contraposition and the following theorem of intution-
istic logic

⊢X ¬¬(A∧B) ⊃⊂ ¬¬A∧¬¬B.

4.(*) This exercise gives an extension of Lemma 1.5. A closedformula

(∀x1) · · ·(∀xn)(A1∧· · ·∧Am ⊃ B1∨· · ·∨Bk)
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is a called aclause, if the Ai andB j are all atomic. Show thatC ⊃C∗ is provable
in intuitionistic logic for any clause.

5. Give a proof in Heyting arithmetic that∀xy(x= y∨¬x= y). Conclude that each
non-existential aritmetical formulaA is equivalent to its negative interpretationA∗

in Heyting arithmetic. Hence by Theorem 1.6, we have that anynon-existential
formula A classically provable in Peano arithmetic, is also provablein Heyting
arithmetic.
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