1 Classical and intuitionstic proofs*

We have seen that proofs in intuitionistic logic have theadmble property that
programs may be extracted from them. Many naturally ocogrproofs, in math-
ematical text books or journals, rely as they stand on sometdassical logic. A
natural question is whether there is some mechanical médrdranslating clas-
sical proofs to constructive proofs. It is clear that suchhrods must have some
limitations in view of the counter examples of the previongputers. Kurt Godel
and Gerhard Gentzen showed that there is a method for pagisal proofs, and
certain simple theories, provided the proposition prokaday be substituted by
a classically equivalent propositiok’. This substitute may not have the same
meaning from a constructive point of view.

Classical predicate logic is obtained by addingrédctio ad absurdurfRAA)
axiom scheme to intuitionistic predicate logic: i.e. adgin

Fx =——ADA

for each formulaA with free variables amony. In classical logic, the logical con-
stants (connectives and quantifiessdndV are actually unnecessary, sinke B
is equivalent to~(—AA —B) and (3x)C is equivalent to-(Vx)—-C. These equiva-
lences do not hold in intuitionistic logic. We define two negical constants°©,
theclassical existencquantifier, and/¢ theclassical disjunction

AV’B = —(-AA-B) (1)

(IX)C = —(¥x)-C (2)
A formula of predicate logic where the only logical constansed arel, A, —

andV, is called anon-existential formula(We may informally think ofA; vV A, as
a kind of existence statement, e(gi € {1,2})A;.)

Define theGodel-Gentzen negative translati¢n® by recursion on first order
formulae:

o | *=1,

o R(t1,...,tn)" = ==R(ty,...,t) , if Ris a predicate symboRcan be=)
e (AAB)* = A*AB,

e (AVB)" = A*VCB*,

e (ADB)"=A*D>B,
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o ((VX)C)* = (WX)C*,
o ((INC)* = (IX)C.

It should be clear that the only thing this translation dee®ireplaced and
V by their classical versions and to insert two negation signisont of every
predicate symbol. Obviously, the translatiéh is provably equivalent t& in
classical predicate logic.

Example 1.1 Let Rbe a binary predicate symbol. Consider the formula
A= (VX)(3Y)(R(xy) VR(Y.X)).
Its Godel-Gentzen translation is
A" = (V%) (FY) (~=R(x,Y) VE~-R(y, X))
Spelling out the definitions of classical connectiv#€sand Vv we get

(V%) =(vy) 2= (===R6Y) A ===R(Y; X))

The translation theorem is now:

Theorem 1.2 Let A be any formula. If A is provable in classical predicaigit,
then A is provable in intuitionistic predicate logic.

Proof. A formal proof goes by induction on derivations proving sdihiieg seem-
ingly stronger, namely that iy, ...,An Fx A has a proof in classical logic then
Al,..., A, Fx A" has a proof in intuitionistic logic.
Since the proof rules are identical for the systems, sav®foh, one needs
only to prove
Fx =—A" D A" (3)

in intuitionistic predicate logic, for each formuka This is done by induction on
the formulaA, using the following theorems of intuitionistic logic.

F—--1D>1,

F—=---B > —--B,

-—-ADA -—-BDBF--(AAB) D AAB,

--BD>BF-=(ADB)D>(ADB),

(VX)(—WA D) A) H —\—\(VX)A D) (VX)A.

We leave their proofs as exercises for the reader.



In general the translatioA* is not intuitionistical equivalent to the original
formula A. In some cases it is however. A non-existential formile called
negativeif every predicate symbol i\ is immediately preceded by a negation.
For such a formula every predicate symbol in the correspanthianslationA*
will be preceded by three negations. Intuitionisticaltyholds that———B >C
—B. Consequently, every negative formula is equivalent towts Godel-Gentzen
interpretation in intuitionistic logic. We have

Corollary 1.3 Let A be a negative formula. If A is provable in classical pcate
logic, then A is also provable in intuitionistic predicatagic.

A setT of closed first-order formulae is called(frst-order) theory.We say
thatT + Alif, for someAy, ..., Ay, € T, we havedy,. .., Ay - A. Obviously, it is not
possible to use more than finitely many assumptions in a fonagef! We have as
a consequence of Theorem 1.2 that

Corollary 1.4 For a first-order theory T: if T- A in classical predicate logic,
then T* - A* in intuitionistic predicate logic. Here T= {A*: A€ T}.

Proof. If T+ Ain classical logic, thed,..., Ao+ Afor someA,..., A, € T. By
Theorem 1.2A:1%, ..., Ay* = A" in intuitionistic logic. Hencel * = A* in intuition-
istic logic. O

Now for T = 0this is just Theorem 1.2. We are interested in theories fackwh
T F T* holds in intuitionistic predicate logic. A formula iskorn formulaif it
has the form

(VX1) -+ (YXm)B  or  (¥X1) - (VXm)(ALA--- AAy D B)

whereAs,..., Ay, B are atomic formulae. We leave the proof of the following
lemma as an easy exercise:

Lemma 1.5 If Ais a Horn formula, then
ADA"
IS provable in intuitionistic logic.

For a theoryT consisting of Horn formulae (&lorn theory we thus have
T F A* intuitionistically whenevell = A* classically. Another important example



is T = PA the first-order theory of natural numbers, knowrnPa&no arithmetic.
It has the following axioms:

(VX)=S(x) =0

(") (W)[S(X) = 5(y) = x=V]

(VX)x+0=Xx

(V%) (Vy) X+ S(y) = S(x+Y)

(VX)x-0=0

(V%) (Vy) X-S(y) = Xy +x

(VX1,...,%)(C[0/Z] A (VX)(C[x/Z] — C[S(X)/2]) — (V2)C).

Here C is an arbitrary formula in the arithmetical language, whEM(C) C
{X1,...,%n, Z}. Using intuitionistic logic this is justeyting arithmetiovhich was
introduced earlier.

Theorem 1.6 If PAF A is provable in classical logic, then its translatiori Ais
also provable in Heyting arithmetic.

Proof. Suppose that has been proved classically in Peano arithmetic. Then for
some arithmetical axiomAy, ..., A, we have a proof of

A, ....AnFx A
in classical logic. So by Theorem 1.2 there is a proof in tndaistic logic of
AL Ay A
If we can find some set of axionfisfrom PA so that
M Ex A (4)

is provable for each=1,... ninintuitionistic logic, then we are done. In ca&ge
is a Horn formula, we includg; in " and get (4) by Lemma 1.5. The only axioms
that are not Horn formulae are the instances of the industtbreme. Suppose

A = (VX1,...,%)(C[0/Z A (¥X)(C[x/2] — C[S(X)/Z]) — (Vz)C).
Then
AF = (VX1,...,%)(C*[0/Z] A (VX)(C*[x/7) — C*[S(X)/Z]) — (Vz)C").

But this is also an instance of the induction scheme, whichhue include in".
The so constructel is a subset of PA which satisfies (4).
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The above result shows that classical arithmetic is cagrsist intuitionistic
arithmetic is consistent. It was an important philosophigativation for Godel to
show that intuitionistic logic per se does not add to thetgadéthe foundations.
The situation has however turned out to be different forrgiey axiom systems
than arithmetic.

Itis possible to prove the following important result usfngher proof-theoretic
techniques:

Theorem 1.7 Let A= (V¥x)(3y)P(x,y) be aformula of arithmetic where P is quan-
tifier free. If PAF A is provable classically, then A is also provable in Heyting
arithmetic.

Proof. See Troelstra and van Dalen (1988).

SinceA in the theorem above has the format of a program specificaiti@
possible to use this, and similar results, to extract pnogrérom classical proofs
(see Schwichtenberg 1999).

Exercises

1. LetP(x) be a predicate symbol and consides (3x) P(x) V (V¥x)—P(x). Prove
the Godel-Gentzen translated formélain intuitionistic logic.

2. Prove the following in intuitionistic logic.

@F-—-L>1,

(b) +-——=-B > B,

(c) —AD A -—BDOBF--(AAB) D AAB,
(d)y* ——-B>BF-—(ADB)> (ADB),
e)* (vx)(=—A D A) F ——(Vx)A D (VX)A.
3. Prove Lemma 1.5 using contraposition and the followireptm of intution-
istic logic

Fx ==~(AAB) DC -—AA—--B.

4.(*) This exercise gives an extension of Lemma 1.5. A cldseahula

(VX1) -+ (VX)) (AL A -~ AAm D BV -+ VBy)



is a called aclausg if the A; andB;j are all atomic. Show thal > C* is provable
in intuitionistic logic for any clause.

5. Give a proof in Heyting arithmetic thaky(x = yV —-x=Yy). Conclude that each
non-existential aritmetical formullis equivalent to its negative interpretatidh
in Heyting arithmetic. Hence by Theorem 1.6, we have thatramy-existential
formula A classically provable in Peano arithmetic, is also provableleyting
arithmetic.



