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1 Equational logic

1.1 Some notions from universal algebra

In universal algebra properties of general algebraic systems are studied. These
systems include the usual, groups, semigroups, monoids, rings, but also sys-
tems with operations of arbitrary number of arguments. In algebraic specification
theory these operations may describe programs or hardware components. (See
Meinke and Tucker 1992, Goguen and Malcolm 1996 and Wechler 1992.)

A signature Σ is a set of function symbols, where each F � Σ takes a fixed
number n

�
F � (the arity) of arguments. 0-ary function symbols are considered as

constant symbols. (Thus a signature is like a description of a first order language
but without relation symbols.) A Σ-algebra A consists of an underlying nonempty
set A, and for each function symbol F � Σ, an operation

FA : An � F ��� A �
for n

�
F �	� 0. If n

�
F ��
 0, FA � A.

Homomorphisms, mappings which preserves the operations of an algebra are
of central importance. Let A and B be Σ-algebras. A (Σ-algebra) homomorphism
ϕ : A � B is function between the underlying sets ϕ : A � B which is such that
for every function symbol F � Σ of arity n we have for all a1 �
�
�
��� an

� A:

ϕ
�
FA � a1 �
�
�
��� an �
��
 FB � ϕ � a1 �����
�
��� ϕ

�
an �
���

If n 
 0, this reads ϕ
�
FA ��
 FB .

Example 1.1 The embedding ��� ��� and the quotient mapping x �� xmodn :
� � ��� n � are basic examples of homomorphisms with respect to the signature
Σ 
�� 0 � 1 �����
 "! .

There is always a trivial homomorphism A � A , the identity homomorphism
idA defined by idA

�
x �#
 x. A homomorphism ϕ : A � B is an isomorphism if

there is a homomorphism ψ : B � A such that ψ $ ϕ 
 idA and ϕ $ ψ 
 idB . We
leave the verification of the following result to the reader:
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Proposition 1.2 A homomorphism ϕ : A � B is an isomorphism iff ϕ : A � B is
a bijection. %

Let Ter
�
Σ � be the set of terms that can be formed from the function symbols

in Σ and variables from a fixed set of variable symbols &'
(� x1 � x2 � x3 ���
�
�)! . The
set Ter

�
Σ � is inductively defined by the following clauses

(T1) If x � & , then x � Ter
�
Σ � .

(T2) If F � Σ and n
�
F ��
 0, then F � Ter

�
Σ � .

(T3) If F � Σ, n 
 n
�
F �*� 0 and t1 �
�
�
��� tn � Ter

�
Σ � , then F

�
t1 �
�
����� tn � � Ter

�
Σ � .

Since the set Ter
�
Σ � is inductively defined, we may prove properties of terms by

structural induction. We may also define functions on terms by structural recur-
sion. A substitution is a function σ : & � Ter

�
Σ � , assigning to each variable

symbol a term. The effect tσ of a substitution σ on a term t is defined recursively

xσ
i 
 σ

�
xi �

Fσ 
 F
�
n
�
F ��
 0 �

F
�
t1 �
�
����� tn � σ 
 F

�
tσ
1 �
�
����� tσ

n �
�
n 
 n

�
F �
�

Thus we may extend σ to a function Ter
�
Σ � � Ter

�
Σ � by σ

�
t ��
 tσ. Denote by

� xi1 : 
 t1 ���
�
��� xik : 
 tk !+�
where i1 , i2 ,  
 
 , ik, the substitution σ where σ

�
xi j �-
 t j for j 
 1 �
���
��� k and

σ
�
xi ��
 xi for i �� � i1 � i2 �
�
�
��� ik ! .

Example 1.3 Let Σ 
.� 0 � f � g ! where the arities are n
�
0 �/
 0, n

�
f ��
 1 and n

�
g ��


2. Then 0 � f � 0 ��� g � x1 � f
�
x3 �
� are examples of terms over Σ. For the substitution

σ 
0� x1 : 
 g
�
x1 � x3 �1� x2 : 
 f

�
0 ��� x3 : 
 x2 ! we have

g
�
x1 � f

�
x3 �
� σ 
 g

�
xσ

1 � f
�
xσ

3 �
��
 g
�
g
�
x1 � x3 ��� f

�
x2 �
���2%

The set Ter
�
Σ � can be regarded as a Σ-algebra — in a kind of trivial way — by

defining for each n-ary function symbol F � Σ, a function F Ter � Σ � by

FTer � Σ � � t1 �
�
����� tn ��
 F
�
t1 �
�
����� tn ���

We call Ter
�
Σ � the term algebra of Σ. We may also restrict ourselves to terms

without variables (in case there are constant symbols) The resulting set, Ter0
�
Σ � ,

also forms a Σ-algebra.
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Note that any substitution σ : & � Ter
�
Σ � extends to a Σ-algebra homomor-

phism σ : Ter
�
Σ � � Ter

�
Σ � . (Exercise: verify this.)

Let A be a Σ-algebra. A variable assignment or environment in A is a func-
tion ρ : & � A. Given such an assignment, the value 3 3 t 4 4 Aρ of a term t in A is
determined. Define by recursion on t:

3 3 xi 4 4 ρ 
 ρ
�
xi ���

3 3 F � t1 ���
�
��� tm ��4 4 ρ 
 FA � 3 3 t1 4 4 ρ �
�
�
�5�63 3 tm 4 4 ρ ���

An equation s 
 t is valid in A (in symbols: A 7 
 s 
 t) iff for all variable assign-
ments ρ in A : 3 3 s 4 4 Aρ 
(3 3 t 4 4 Aρ .

An equational theory over Σ is given by a set E of equations s 
 t where
s � t � Ter

�
Σ � . The deduction rules of an equational theory essentially only tell how

instances of these equations may be used to calculate inside terms. We denote by
E 8 eq s 
 t that s 
 t is derivable from E. The deduction rules are more formally

�
ax � appl � : � E 8 eq s 
 t if s 
 t � E

E 8 eq s 
 t

E 8 eq sσ 
 tσ
�
subst � for every substitution σ : & � Ter

�
Σ �

E 8 eq s1 
 t1  
 
 E 8 eq sn 
 tn
E 8 eq F

�
s1 �
�
�
�5� sn ��
 F

�
t1 �
�
����� tn �

�
cong � for every F � Σ with n 
 n

�
F �

�
refl : � E 8 eq t 
 t for every t � Ter

�
Σ �

E 8 eq s 
 t

E 8 eq t 
 s

�
symm �

E 8 eq s 
 v E 8 eq v 
 t

E 8 eq s 
 t

�
trans �

Example 1.4 The equational theory of groups. Let Σ 
9� 1 �
 :� � ��; 1 ! , where the
arities are 0, 2 and 1 respectively. The equations E are

1  x1 
 x1 � x1  1 
 x1 �
x1  

�
x2  x3 ��


�
x1  x2 �< x3 �

x1  x ; 1
1 
 1 � x ; 1

1  x1 
 1 �

We give an example of a formal derivation of x2  1 ; 1 
 x2 from the axioms of E:
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x2 
 x2

x1  1 
 x1

1 ; 1  1 
 1 ; 1

�
subst �

1 ; 1 
 1 ; 1  1
�
symm � x ; 1

1  x1 
 1

1 ; 1  1 
 1

�
subst �

1 ; 1 
 1

�
trans �

x2  1 ; 1 
 x2  1
�
cong � x1  1 
 x1

x2  1 
 x2

�
subst �

x2  1 ; 1 
 x2

�
trans �

%
A Σ-algebra A is a model of E (in symbols: A 7 
 E) iff A 7 
 s 
 t, for each

s 
 t � E. We say that s 
 t is a (semantic) consequence of E (in symbols: E 7 

s 
 t) if for every Σ-algebra A :

A 7 
 E 
�= A 7 
 s 
 t �
We now prove Birkhoff’s completeness theorem for equational theories. Let


 E be the relation on Ter
�
Σ � defined by

s 
 E t >?= def E 8 eq s 
 t �
This relation of E-provable equality is an equivalence relation and a congruence
with respect to the operations FTer � Σ � , according to the rules of the equational
theory. We consider the set T

�
E �@
 Ter

�
Σ �
�A
 E of equivalence classes 3 t 4 of

terms. Thus the following is a well-defined operation

FT � E � � 3 t1 4B�
�
�
���63 tn 4C��
(3 F � t1 �
�
����� tn �54
for any F � Σ. Thus T

�
E � is a Σ-algebra.

Theorem 1.5 (Birkhoff) Let Σ be a signature and let E be an equational theory
over Σ. Then

E 8 eq s 
 t >D= T
�
E �@7 
 s 
 t �

Proof. ( > ) Suppose T
�
E �E7 
 s 
 t. Then for the “identical” variable assignment

τ
�
xi �	
F3 xi 4 we get 3 3 s 4 4 T � E �τ 
G3 3 t 4 4 T � E �τ . Hence 3 s 4/
G3 t 4 , so s 
 E t and thus E 8 eq

s 
 t.
( = ) Note that each variable assignment τ : & � T

�
E � gives rise to a substitu-

tion σ : & � Ter
�
Σ � where

τ
�
xi ��
(3 σ � xi ��4H�

Thus from E 8 eq s 
 t and the substitution rule follows E 8 eq sσ 
 tσ. Hence
3 sσ 4I
93 tσ 4 . But 3 3 s 4 4 τ 
93 sσ 4 and 3 3 t 4 4 τ 
93 tσ 4 , and hence T

�
E �E7 
 s 
 t, since τ was

arbitrary. %
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Corollary 1.6 For every equational theory E and any equation s 
 t over Σ we
have

E 7 
 s 
 t >?= E 8 eq s 
 t

Proof. ( > ) This is an easy proof by induction on derivations.
( = ) From Theorem 1.5

� =J� follows T
�
E �	7 
 E (since s 
 t � E implies E 8 eq

s 
 t). Suppose E 7 
 s 
 t. Then in particular T
�
E �K7 
 s 
 t. By Theorem 1.5� >J� again E 8 eq s 
 t. %

Remark 1.7 In view of Birkhoff’s completeness theorem and the usual complete-
ness theorem for first order logic, we have for equational theories E:

E 8 eq s 
 t >D= E 8 s 
 t �

Thus quantifiers and connectives are not necessary when proving an equation
from equational axioms.

Example 1.8 The equational theory of Abelian groups. Let Σ 
L� 1 �� :� � �M; 1 ! ,
where the arities are 0, 2 and 1 respectively. The equations E are

1  x1 
 x1 � x1  1 
 x1 �
x1  

�
x2  x3 ��


�
x1  x2 �< x3 �

x1  x2 
 x2  x1 �
x1  x ; 1

1 
 1 � x ; 1
1  x1 
 1 �

The models of this theory are exactly the Abelian groups. Denote by u0 
 1 and
un N 1 
 u  un for n �PO . For n � 0, let u ; n 
 �

u ; 1 � n. It is easy to show that
for each t � Ter

�
Σ � there are sequences n1 ���
�
�5� nk

� �RQS� 0 ! , 1 T i1 , i2  
 � , ik,
where k U 0, such that

t 
 E xn1
i1
 xn2

i2
 I � 
 V xnk

ik
� (1)

(In case k 
 0, the product is simply 1.) Thus in the model T
�
E � the equivalence

classes are represented by elements of the form xn1
i1
 xn2

i2
 W 
 
 W xnk

ik
. %

One can in fact show that the sequences
�
n j � ,

�
i j � in (1) are unique. This

can be used to decide when two terms are provably equal. A systematic method
for obtaining such decidability results is provided by the theory of term rewriting
systems.

For a signature Σ with at least one constant symbol, consider T0
�
E � which is

defined as T
�
E � but Ter0

�
Σ � is used instead of Ter

�
Σ � . (Exercise: What is T0

�
E �

in the case of Example 1.8? If new constants are added?)
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Theorem 1.9 Let E be an equational theory over a signature Σ, which has at least
one constant symbol. Then

(a) T0
�
E �@7 
 E

(b) if A 7 
 E, there is a unique homomorphism ϕ : T0
�
E � � A .

Proof. (a): This is proved as in the direction
� =J� of Theorem 1.5, but using T0

�
E �

instead of T
�
E � .

(b): Define ϕ : T0
�
E � � A by ϕ

� 3 t 4X�	
Y3 3 t 4 4 Aτ where τ is some fixed variable
assignment (it does not matter which since t has no variables). It is well-defined
because if 3 s 4�
Y3 t 4 , then E 8 eq s 
 t. Now A 7 
 E, so A 7 
 s 
 t, and hence in
particular 3 3 s 4 4 Aτ 
Z3 3 t 4 4 Aτ . Furthermore ϕ is a homomorphism, since

ϕ
�
FT � E � � 3 t1 4B�
�
�
�5�63 tn 4X�
�[
 ϕ

� 3 F � t1 ���
�
��� tn ��4C�

 3 3 F � t1 �
�
�
�5� tn �54 4 Aτ

 FA � 3 3 t1 4 4 Aτ �
�
�����63 3 tn 4 4 Aτ �

 FA � ϕ � 3 t1 4C�����
�
�5� ϕ

� 3 tn 4X�
���
Now, if ψ were another homomorphism, it is easily shown that ψ

� 3 t 4C�\
 ϕ
� 3 t 4C� by

induction on t. %
Because of this theorem the model T0

�
E � is called the initial model of the

theory E.

Remark 1.10 For algebraic specification of programs one usually consider Σ-
algebras with many sorts (types). For instance, we may have a sort ] for an
alphabet and a sort ^ for a stack. The constants are _W��`+�Ba : ] (the letters of the
alphabet), b2ced : ^ (the empty stack), the function symbols are fhgIf : ^ � ^ and
fjilk1m : ]onp^ � ^ . The equations E are

fhgIf � b2cqdr�s
 b2cedq�
f2gIf � fjilk1m � x t-� t uv�
�[
 t u

(Here x t � t u indicate variables of the different sorts.) The definitions and results
above easily extend to many-sorted Σ-algebras.

Exercises

1. Let A w be set of strings over the alfabet A. Describe this set as an algebra
with a binary concatenation operator and an empty set. Let B be another
alfabet. Show that each function f : A � B w extends to a homomorphism
ϕ : A w � B w . (Hint: Letter for string substitution.)
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2. The equational theory of semigroups is given by E1:

1  x1 
 x1 � x1  1 
 x1 �
x1  

�
x2  x3 ��


�
x1  x2 �< x3 �

where Σ 
x� 1 �
 y! . Determine the equivalence classes in T
�
E1 � analogously

to Example 1.8.

3. Try to find simple representatives of equivalence classes in T0
�
E � where E

is as in Remark 1.10.

4. Restricting the equational logic and putting more requirements on the ax-
ioms suggests a proof search strategy. Call an equational theory E over Σ
instantiation closed if

(a) s 
 t � E implies sσ 
 tσ � E for each substitution σ : & � Ter
�
Σ � .

(b) s 
 t � E implies t 
 s � E.

Let 8 r denote the derivation relation which is as 8 eq but where derivations
are restricted to using only (ax.appl.), (cong), (refl) and (trans). Let 8 d be
the further restriction that (trans) is disallowed.

Consider an instantiation closed theory E.

(i) Prove by induction on the height of proofs that for all terms s � t

E 8 r s 
 t 
�= E 8 r t 
 s �

(ii) Prove that for all terms s � t and all substitutions σ

E 8 r s 
 t 
�= E 8 r sσ 
 tσ �

(iii) Conclude that
E 8 eq s 
 t >D= E 8 r s 
 t �

(iv)* Define E 8 n
d s 
 t iff there are terms s1 �
�
�
��� sn ; 1 such that s1 z s

E 8 d s1 
 s2 E 8 d s2 
 s3  
 � E 8 d sn ; 1 
 t �

Prove that

E 8 eq s 
 t >D= for some n U 1: E 8 n
d s 
 t �
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Hint: transform the proofs so that transitvity applications appear at the
end. Use transformations of the following kind, where D � D {X� D {|{X� are
proof trees.

D
s 
 t

D {
a 
 b

D {|{
b 
 c

a 
 c
�
trans �

f
�
s � a ��
 f

�
t � c �

�
cong �

}

D
s 
 t

D {
a 
 b

f
�
s � a ��
 f

�
t � b �

�
cong � t 
 t

�
refl � D {|{

b 
 c
f
�
t � b ��
 f

�
t � c �

�
con �

f
�
s � a ��
 f

�
t � c �

�
trans �

1.2 Unification of terms

Unification is an important tool in term rewriting, automatic theorem proving, and
is fundamental for logic programming (Prolog). Unification of terms amount to
equation solving in the term algebra Ter

�
Σ � .

Example 1.11 Let Σ 
~� f � g ! with arities 2 and 1 respectively. Find a solution in
Ter

�
Σ � to the equation

f
�
x1 � g

�
f
�
x2 � x1 �
�
��
 f

�
g
�
x2 �1� x3 ���

A solution: x1 : 
 g
�
x2 �1� x3 : 
 g

�
f
�
x2 � g

�
x2 �
��� .

As in ordinary equation solving we are often interested in a general solution.
Over the term algebra such a solution is called a most general unifier. Indeed,
in the example above any other solution can be gotten from the one provided, by
instantiating the variables.

As explained in Section 1.1 substitutions can be regarded as Σ-algebra ho-
momorphisms σ : Ter

�
Σ � � Ter

�
Σ � determined by their values on the set & of

variables. A substitution that is given by a permutation of the variables is called
a renaming substitution. Two substitutions τ : Ter

�
Σ � � Ter

�
Σ � and σ : Ter

�
Σ � �

Ter
�
Σ � may be composed σ $ τ as follows

�
σ $ τ � � t �\
 σ

�
τ
�
t ���\
 �

tτ � σ �

We write τσ for σ $ τ.
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Example 1.12 Let Σ 
Y� f � g ! with arities 2 and 1 respectively. Consider the
substitutions σ 
�� x2 : 
 g

�
x1 ��� x3 : 
 g

�
x3 �1! and τ 
�� x1 : 
 f

�
x2 � x2 �1! . Then�

τσ � � x1 ��
 σ
�
τ
�
x1 �
��
 σ

�
f
�
x2 � x2 �
��
 f

�
σ
�
x2 ��� σ

�
x2 �
��
 f

�
g
�
x1 ��� g

�
x1 �
� ,

�
τσ � � x2 ��


g
�
x1 � and

�
τσ � � x3 ��
 g

�
x3 � . Hence

τσ 
�� x1 : 
 f
�
g
�
x1 ��� g

�
x1 ����� x2 : 
 g

�
x1 ��� x3 : 
 g

�
x3 �1!+�

On the other hand, by a similar computation,

στ 
0� x1 : 
 f
�
x2 � x2 ��� x2 : 
 g

�
f
�
x2 � x2 �
�1� x3 : 
 g

�
x3 �1!+�2%

Generalising this example we have for σ 
(� xi1 : 
 t1 �
�
����� xin : 
 tn ! and τ 

� xi1 : 
 s1 ���
�
��� xin : 
 sn � x j1 : 
 r1 ���
�
��� x jm : 
 rm ! , where the indices i1 �
�
�
��� in � j1 �
�
�
�5� jm
are all distinct, that

στ 
�� xi1 : 
 tτ
1 ���
�
��� xin : 
 tτ

n � x j1 : 
 r1 �
���
��� x jm : 
 rm !

We say that one substitution σ is more general than another substitution ρ iff
ρ 
 στ for some substitution τ. In this case we write σ T ρ.

Exercise 1.13

(i) Check that the relation T is reflexive and transtive.

(ii) Prove that if σ T ρ and ρ T σ, then there is a renaming substitution τ such
that ρ 
 στ. %

A unifier of a set of terms T 
0� t1 �
�
�
��� tn ! is substitution σ which makes all these
terms equal, i.e. tσ

1 
9 � 
 2
 tσ
n . A unifier σ of T is a most general unifier (mgu),

if σ T ρ for any unifier ρ of T . By Exercise 1.13 any two mgu’s σ and σ { of
T are the same up to a renaming substitution (i.e. σ 
 σ { τ for some renaming
substitution τ).

Note that F
�
s1 �
���
��� sn � σ 
 F

�
t1 �
���
��� tn � σ iff sσ

i 
 tσ
i for all i 
 1 ���
�
��� n. Hence

in order to solve one equation in the term algebra, we may have to solve a system
of equations.

The unification algorithm of Martelli-Montanari. The algorithm starts with
a finite set of equations G 
F� s1 
 t1 �
�
�
�5� sn 
 tn ! , and outputs a most general
unifier σ for this set (regarded as an mgu of the set � F � s1 �
�
�
��� sn ��� F

�
t1 �
�
�
�5� tn �1!

where F is a function symbol), if there is any unifier, or reports failure otherwise.
The algorithm is non-deterministic and applies certain reduction rules to the finite
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sets and stops at the empty set ( /0), or with a failure (denoted #). Along the way
the answer substitution σ is built up. From a successful computation

G1 � G2 � σ1 G3 � G4 � G5 � σ2 G6 � /0 �
we extract σ 
 σ1σ2, the answer substitution. For a set G 
�� s1 
 t1 ���
�
��� sn 
 tn !
we write Gσ 
�� sσ

1 
 tσ
1 �
�
�
�5� sσ

n 
 tσ
n ! .

The Martelli-Montanari reduction rules are the following

1. G ��� F � t1 ���
�
�5� tn ��
 F
�
s1 ���
�
��� sn �1! � G �R� t1 
 s1 �
���
��� tn 
 sn ! provided

F
�
t1 �
�
�
��� tn ��
 F

�
s1 �
�
�
�5� sn � is not an element of G. (“Function decomposi-

tion”)

2. G �D� t 
 t ! � G provided t 
 t is not an element of G.

3. G ��� t 
 x ! � G �p� x 
 t ! , provided t is not a variable, and that t 
 x is not
an element of G.

4. G �?� x 
 t ! �G� x: � t � G � x: � t � , provided x is a variable, x does not occur in t
and that x 
 t is not an element of G. (“Variable elimination”)

5. G ��� F � t1 �
�
�
�5� tn �	
 H
�
s1 �
�
����� sm �1! � #, if F and H are different function

symbols.

6. G �D� x 
 t ! � #, provided x �
 t and x occurs in t. (“Occur check”)

Example 1.14 We compute the mgu of f
�
x1 � g

�
f
�
x2 � x1 �
��� and f

�
g
�
x2 �1� x3 � using

the algorithm.

� f
�
x1 � g

�
f
�
x2 � x1 ���
��
 f

�
g
�
x2 ��� x3 �1! � � x1 
 g

�
x2 ��� g

�
f
�
x2 � x1 �
��
 x3 !

�F� x1: � g � x2 �X� � g � f � x2 � g
�
x2 �
�
��
 x3 !

� � x3 
 g
�
f
�
x2 � g

�
x2 �
���1!

�F� x3: � g � f � x2 � g � x2 �����X� /0

The answer substitution is σ 
0� x1 : 
 g
�
x2 ��� x3 : 
 g

�
f
�
x2 � g

�
x2 �
�
�1! . %

Example 1.15 The terms f
�
g
�
x1 ��� x1 � and f

�
x2 � g

�
x2 �
� are not unifiable.

� f
�
g
�
x1 �1� x1 ��
 f

�
x2 � g

�
x2 �
�1! � � g � x1 ��
 x2 � x1 
 g

�
x2 �1!

�F� x1: � g � x2 �X� � g � g � x2 ����
 x2 !
� � x2 
 g

�
g
�
x2 �
�1!

� #

This computation fails by occur check, since x2 occurs in g
�
g
�
x2 �
� . %

We state the following important result without proof:
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Theorem 1.16 (Unification Theorem) A set of equations G 
�� s1 
 t1 �
�
�
��� sn 

tn ! has an mgu iff it has some unifier. Moreover, if G has an mgu, the Martelli-
Montanari algorithm finds it, otherwise it stops and reports failure to find a unifier.

1.2.1 Pattern matching

Pattern matching may be regarded as a special case of unification: a variable free
term s is matched to the pattern term t if there is a unifier σ with

s 
 sσ 
 tσ �

For a term s containing variables, we may first replace each variable x with a new
constant cx, and then match the modified term s w to t. The new constants occuring
in the resulting unifier may then be restored to variables again.

Example 1.17 The term f
�
0 � g � 2 �
� is matched to f

�
u � v � by σ 
F� u : 
 0 � v : 


g
�
2 �1! .

The term f
�
x � g � u �
� is matched to f

�
u � v � by τ 
G� u : 
 x � v : 
 g

�
u �1! . The

intermediate step is to consider the variable free term f
�
cx � g

�
cu �
� , and the unifier

τ w 
0� u : 
 cx � v : 
 g
�
cu �1! . Note that τ is not a unifier of f

�
x � g � u �
� and f

�
u � v � .

However f
�
x � g � u �
� cannot be matched to f

�
g
�
u ��� v � since cx and g

�
u � are not

unifiable.

Exercises

1. Let Σ 
�� a � f � g � h � p � q ! where a is a constant, f � g has arity 1, h � p has arity
2 and q has arity 3. For each of the following pair of terms compute an mgu
or show that no unifier exist.

(a) p
�
f
�
a ��� g � x �
� , p

�
y � y �

(b) p
�
f
�
x ��� a � , p

�
y � f � w �
�

(c) p
�
x � x � , p

�
y � f � y ���

(d) q
�
a � x � f � g � y ���
� , q

�
z � h � z � w ��� f � w �
�

(e) p
�
f
�
f
�
x �
��� h � g � x ��� f � a �
�
� , p

�
f
�
u ��� h � v � f � w �
��� .

2. In which cases (a) – (e) in Exercise 1 does the first term match the pattern
of the second term?
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