UPPSALA UNIVERSITET
Matematiska institutionen
Erik Palmgren

Kompletterande material
Tillämpad logik DV1
2004-03-22

1 Equational logic

1.1 Some notions from universal algebra

In universal algebra properties of general algebraic systems are studied. These systems include the usual, groups, semigroups, monoids, rings, but also systems with operations of arbitrary number of arguments. In algebraic specification theory these operations may describe programs or hardware components. (See Meinke and Tucker 1992, Goguen and Malcolm 1996 and Wechler 1992.)

A signature Σ is a set of function symbols, where each $F \in \Sigma$ takes a fixed number $n(F)$ (the arity) of arguments. 0 -ary function symbols are considered as constant symbols. (Thus a signature is like a description of a first order language but without relation symbols.) A Σ-algebra \mathcal{A} consists of an underlying nonempty set A, and for each function symbol $F \in \Sigma$, an operation

$$
F^{\mathcal{A}}: A^{n(F)} \rightarrow A,
$$

for $n(F)>0$. If $n(F)=0, F^{\mathcal{A}} \in A$.
Homomorphisms, mappings which preserves the operations of an algebra are of central importance. Let \mathcal{A} and \mathcal{B} be Σ-algebras. A (Σ-algebra) homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is function between the underlying sets $\varphi: A \rightarrow B$ which is such that for every function symbol $F \in \Sigma$ of arity n we have for all $a_{1}, \ldots, a_{n} \in A$:

$$
\varphi\left(F^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=F^{\mathcal{B}}\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right) .
$$

If $n=0$, this reads $\varphi\left(F^{\mathcal{A}}\right)=F^{\mathcal{B}}$.
Example 1.1 The embedding $\mathbb{Z} \hookrightarrow \mathbb{Q}$ and the quotient mapping $x \mapsto x \bmod n$: $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ are basic examples of homomorphisms with respect to the signature $\Sigma=\{0,1,+, \cdot\}$.

There is always a trivial homomorphism $\mathcal{A} \rightarrow \mathcal{A}$, the identity homomorphism $\operatorname{id}_{\mathscr{A}}$ defined by $\operatorname{id}_{\mathcal{A}}(x)=x$. A homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is an isomorphism if there is a homomorphism $\psi: \mathcal{B} \rightarrow \mathcal{A}$ such that $\psi \circ \varphi=\mathrm{id}_{\mathcal{A}}$ and $\varphi \circ \psi=\mathrm{id}_{\mathcal{B}}$. We leave the verification of the following result to the reader:

Proposition 1.2 A homomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is an isomorphism iff $\varphi: A \rightarrow B$ is a bijection.

Let $\operatorname{Ter}(\Sigma)$ be the set of terms that can be formed from the function symbols in Σ and variables from a fixed set of variable symbols $\mathbb{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. The set $\operatorname{Ter}(\Sigma)$ is inductively defined by the following clauses
(T1) If $x \in \mathbb{X}$, then $x \in \operatorname{Ter}(\Sigma)$.
(T2) If $F \in \Sigma$ and $n(F)=0$, then $F \in \operatorname{Ter}(\Sigma)$.
(T3) If $F \in \Sigma, n=n(F)>0$ and $t_{1}, \ldots, t_{n} \in \operatorname{Ter}(\Sigma)$, then $F\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Ter}(\Sigma)$.
Since the set $\operatorname{Ter}(\Sigma)$ is inductively defined, we may prove properties of terms by structural induction. We may also define functions on terms by structural recursion. A substitution is a function $\sigma: \mathbb{X} \rightarrow \operatorname{Ter}(\Sigma)$, assigning to each variable symbol a term. The effect t^{σ} of a substitution σ on a term t is defined recursively

$$
\begin{aligned}
x_{i}^{\sigma} & =\sigma\left(x_{i}\right) \\
F^{\sigma} & =F \quad(n(F)=0) \\
F\left(t_{1}, \ldots, t_{n}\right)^{\sigma} & =F\left(t_{1}^{\sigma}, \ldots, t_{n}^{\sigma}\right) \quad(n=n(F))
\end{aligned}
$$

Thus we may extend σ to a function $\operatorname{Ter}(\Sigma) \rightarrow \operatorname{Ter}(\Sigma)$ by $\sigma(t)=t^{\sigma}$. Denote by

$$
\left\{x_{i_{1}}:=t_{1}, \ldots, x_{i_{k}}:=t_{k}\right\},
$$

where $i_{1}<i_{2}<\cdots<i_{k}$, the substitution σ where $\sigma\left(x_{i_{j}}\right)=t_{j}$ for $j=1, \ldots, k$ and $\sigma\left(x_{i}\right)=x_{i}$ for $i \notin\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$.

Example 1.3 Let $\Sigma=\{0, f, g\}$ where the arities are $n(0)=0, n(f)=1$ and $n(g)=$ 2. Then $0, f(0), g\left(x_{1}, f\left(x_{3}\right)\right)$ are examples of terms over Σ. For the substitution $\sigma=\left\{x_{1}:=g\left(x_{1}, x_{3}\right), x_{2}:=f(0), x_{3}:=x_{2}\right\}$ we have

$$
g\left(x_{1}, f\left(x_{3}\right)\right)^{\sigma}=g\left(x_{1}^{\sigma}, f\left(x_{3}^{\sigma}\right)\right)=g\left(g\left(x_{1}, x_{3}\right), f\left(x_{2}\right)\right) .
$$

The set $\operatorname{Ter}(\Sigma)$ can be regarded as a Σ-algebra - in a kind of trivial way - by defining for each n-ary function symbol $F \in \Sigma$, a function $F^{\operatorname{Ter}(\Sigma)}$ by

$$
F^{\operatorname{Ter}(\Sigma)}\left(t_{1}, \ldots, t_{n}\right)=F\left(t_{1}, \ldots, t_{n}\right) .
$$

We call $\operatorname{Ter}(\Sigma)$ the term algebra of Σ. We may also restrict ourselves to terms without variables (in case there are constant symbols) The resulting set, $\operatorname{Ter}_{0}(\Sigma)$, also forms a Σ-algebra.

Note that any substitution $\sigma: \mathbb{X} \rightarrow \operatorname{Ter}(\Sigma)$ extends to a Σ-algebra homomorphism $\sigma: \operatorname{Ter}(\Sigma) \rightarrow \operatorname{Ter}(\Sigma)$. (Exercise: verify this.)

Let \mathcal{A} be a Σ-algebra. A variable assignment or environment in \mathcal{A} is a function $\rho: \mathbb{X} \rightarrow A$. Given such an assignment, the value $[t]_{\rho}^{\mathcal{A}}$ of a term t in \mathcal{A} is determined. Define by recursion on t :

$$
\begin{aligned}
\llbracket x_{i} \rrbracket_{\rho} & =\rho\left(x_{i}\right), \\
\llbracket F\left(t_{1}, \ldots, t_{m}\right) \rrbracket_{\rho} & =F^{\mathcal{A}}\left(\left[t_{1} \rrbracket_{\rho}, \ldots,\left[t_{m} \rrbracket_{\rho}\right) .\right.\right.
\end{aligned}
$$

An equation $s=t$ is valid in \mathcal{A} (in symbols: $\mathcal{A} \models s=t$) iff for all variable assignments ρ in $\mathcal{A}: \llbracket s \rrbracket_{\rho}^{\mathcal{A}}=\llbracket t \rrbracket_{\rho}^{\mathcal{A}}$.

An equational theory over Σ is given by a set E of equations $s=t$ where $s, t \in \operatorname{Ter}(\Sigma)$. The deduction rules of an equational theory essentially only tell how instances of these equations may be used to calculate inside terms. We denote by $E \vdash_{\mathrm{eq}} s=t$ that $s=t$ is derivable from E. The deduction rules are more formally

$$
\begin{gathered}
\left(\text { ax.appl. :) } \quad E \vdash_{\mathrm{eq}} s=t \quad \text { if } s=t \in E\right. \\
\frac{E \vdash_{\mathrm{eq}} s=t}{E \vdash_{\mathrm{eq}} s^{\sigma}=t^{\sigma}}(\text { subst }) \quad \text { for every substitution } \sigma: \mathbb{X} \rightarrow \operatorname{Ter}(\Sigma) \\
\frac{E \vdash_{\mathrm{eq}} s_{1}=t_{1} \quad \cdots \quad E \vdash_{\mathrm{eq}} s_{n}=t_{n}}{E \vdash_{\mathrm{eq}} F\left(s_{1}, \ldots, s_{n}\right)=F\left(t_{1}, \ldots, t_{n}\right)}(\text { cong }) \quad \text { for every } F \in \Sigma \text { with } n=n(F) \\
(\text { refl }:) \quad E \vdash_{\mathrm{eq}} t=t \quad \text { for every } t \in \operatorname{Ter}(\Sigma) \\
\frac{E \vdash_{\mathrm{eq}} s=t}{E \vdash_{\mathrm{eq}} t=s}(\text { symm }) \\
\frac{E \vdash_{\mathrm{eq}} s=v \quad E \vdash_{\mathrm{eq}} v=t}{E \vdash_{\mathrm{eq}} s=t} \text { (trans) }
\end{gathered}
$$

Example 1.4 The equational theory of groups. Let $\Sigma=\left\{1, \cdot,()^{-1}\right\}$, where the arities are 0,2 and 1 respectively. The equations E are

$$
\begin{aligned}
& 1 \cdot x_{1}=x_{1}, \quad x_{1} \cdot 1=x_{1}, \\
& x_{1} \cdot\left(x_{2} \cdot x_{3}\right)=\left(x_{1} \cdot x_{2}\right) \cdot x_{3}, \\
& x_{1} \cdot x_{1}^{-1}=1, \quad x_{1}^{-1} \cdot x_{1}=1 .
\end{aligned}
$$

We give an example of a formal derivation of $x_{2} \cdot 1^{-1}=x_{2}$ from the axioms of E :

A Σ-algebra \mathcal{A} is a model of E (in symbols: $\mathcal{A}=E$) iff $\mathcal{A} \models s=t$, for each $s=t \in E$. We say that $s=t$ is a (semantic) consequence of E (in symbols: $E \models$ $s=t$) if for every Σ-algebra \mathcal{A} :

$$
\mathcal{A} \models E \Longrightarrow \mathcal{A}=s=t
$$

We now prove Birkhoff's completeness theorem for equational theories. Let $={ }_{E}$ be the relation on $\operatorname{Ter}(\Sigma)$ defined by

$$
s={ }_{E} t \Longleftrightarrow{ }_{\mathrm{def}} E \vdash_{\mathrm{eq}} s=t .
$$

This relation of E-provable equality is an equivalence relation and a congruence with respect to the operations $F^{\operatorname{Ter}(\Sigma)}$, according to the rules of the equational theory. We consider the set $\mathcal{T}(E)=\operatorname{Ter}(\Sigma) /=_{E}$ of equivalence classes $[t]$ of terms. Thus the following is a well-defined operation

$$
F^{\mathcal{T}(E)}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[F\left(t_{1}, \ldots, t_{n}\right)\right]
$$

for any $F \in \Sigma$. Thus $\mathcal{T}(E)$ is a Σ-algebra.
Theorem 1.5 (Birkhoff) Let Σ be a signature and let E be an equational theory over Σ. Then

$$
E \vdash_{\mathrm{eq}} s=t \Longleftrightarrow \mathcal{T}(E) \models s=t .
$$

Proof. (\Leftarrow) Suppose $\mathcal{T}(E) \models s=t$. Then for the "identical" variable assignment $\tau\left(x_{i}\right)=\left[x_{i}\right]$ we get $\llbracket s \rrbracket_{\tau}^{\mathcal{T}(E)}=\llbracket t \rrbracket_{\tau}^{\mathcal{T}(E)}$. Hence $[s]=[t]$, so $s=_{E} t$ and thus $E \vdash_{\mathrm{eq}}$ $s=t$.
(\Rightarrow) Note that each variable assignment $\tau: \mathbb{X} \rightarrow \mathcal{T}(E)$ gives rise to a substitution $\sigma: \mathbb{X} \rightarrow \operatorname{Ter}(\Sigma)$ where

$$
\tau\left(x_{i}\right)=\left[\sigma\left(x_{i}\right)\right] .
$$

Thus from $E \vdash_{\mathrm{eq}} s=t$ and the substitution rule follows $E \vdash_{\mathrm{eq}} s^{\sigma}=t^{\sigma}$. Hence $\left[s^{\sigma}\right]=\left[t^{\sigma}\right]$. But $\left[[s]_{\tau}=\left[s^{\sigma}\right] \text { and } \llbracket t\right]_{\tau}=\left[t^{\sigma}\right]$, and hence $\mathcal{T}(E) \models s=t$, since τ was arbitrary.

Corollary 1.6 For every equational theory E and any equation $s=t$ over Σ we have

$$
E \models s=t \Longleftrightarrow E \vdash_{\mathrm{eq}} s=t
$$

Proof. (\Leftarrow) This is an easy proof by induction on derivations.
(\Rightarrow) From Theorem $1.5(\Rightarrow)$ follows $\mathcal{T}(E) \models E$ (since $s=t \in E$ implies $E \vdash_{\text {eq }}$ $s=t$). Suppose $E=s=t$. Then in particular $\mathcal{T}(E) \vDash s=t$. By Theorem 1.5 (\Leftarrow) again $E \vdash_{\text {eq }} s=t$.

Remark 1.7 In view of Birkhoff's completeness theorem and the usual completeness theorem for first order logic, we have for equational theories E :

$$
E \vdash_{\mathrm{eq}} s=t \Longleftrightarrow E \vdash s=t .
$$

Thus quantifiers and connectives are not necessary when proving an equation from equational axioms.

Example 1.8 The equational theory of Abelian groups. Let $\Sigma=\left\{1, \cdot,()^{-1}\right\}$, where the arities are 0,2 and 1 respectively. The equations E are

$$
\begin{aligned}
& 1 \cdot x_{1}=x_{1}, \quad x_{1} \cdot 1=x_{1}, \\
& x_{1} \cdot\left(x_{2} \cdot x_{3}\right)=\left(x_{1} \cdot x_{2}\right) \cdot x_{3}, \\
& x_{1} \cdot x_{2}=x_{2} \cdot x_{1}, \\
& x_{1} \cdot x_{1}^{-1}=1, \quad x_{1}^{-1} \cdot x_{1}=1 .
\end{aligned}
$$

The models of this theory are exactly the Abelian groups. Denote by $u^{0}=1$ and $u^{n+1}=u \cdot u^{n}$ for $n \in \mathbb{N}$. For $n>0$, let $u^{-n}=\left(u^{-1}\right)^{n}$. It is easy to show that for each $t \in \operatorname{Ter}(\Sigma)$ there are sequences $n_{1}, \ldots, n_{k} \in \mathbb{Z}-\{0\}, 1 \leq i_{1}<i_{2} \cdots<i_{k}$, where $k \geq 0$, such that

$$
\begin{equation*}
t={ }_{E} x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdots \cdots x_{i_{k}}^{n_{k}} . \tag{1}
\end{equation*}
$$

(In case $k=0$, the product is simply 1.) Thus in the model $\mathcal{T}(E)$ the equivalence classes are represented by elements of the form $x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdots \cdots x_{i_{k}}^{n_{k}}$.

One can in fact show that the sequences $\left(n_{j}\right),\left(i_{j}\right)$ in (1) are unique. This can be used to decide when two terms are provably equal. A systematic method for obtaining such decidability results is provided by the theory of term rewriting systems.

For a signature Σ with at least one constant symbol, consider $\mathcal{I}_{0}(E)$ which is defined as $\mathcal{T}(E)$ but $\operatorname{Ter}_{0}(\Sigma)$ is used instead of $\operatorname{Ter}(\Sigma)$. (Exercise: What is $\mathcal{T}_{0}(E)$ in the case of Example 1.8? If new constants are added?)

Theorem 1.9 Let E be an equational theory over a signature Σ, which has at least one constant symbol. Then
(a) $\mathcal{T}_{0}(E) \models E$
(b) if $\mathcal{A} \models E$, there is a unique homomorphism $\varphi: \mathcal{T}_{0}(E) \rightarrow \mathcal{A}$.

Proof. (a): This is proved as in the direction (\Rightarrow) of Theorem 1.5, but using $\mathcal{T}_{0}(E)$ instead of $\mathcal{T}(E)$.
(b): Define $\varphi: \mathcal{T}_{0}(E) \rightarrow \mathcal{A}$ by $\varphi([t])=\llbracket t \rrbracket_{\tau}^{\mathcal{A}}$ where τ is some fixed variable assignment (it does not matter which since t has no variables). It is well-defined because if $[s]=[t]$, then $E \vdash_{\text {eq }} s=t$. Now $\mathcal{A} \models E$, so $\mathcal{A} \models s=t$, and hence in particular $\llbracket s \rrbracket_{\tau}^{\mathcal{A}}=\llbracket t \rrbracket_{\tau}^{\mathcal{A}}$. Furthermore φ is a homomorphism, since

$$
\begin{aligned}
\varphi\left(F^{\mathcal{T}(E)}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)\right) & =\varphi\left(\left[F\left(t_{1}, \ldots, t_{n}\right)\right]\right) \\
& =\left[\left[F\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\tau}^{\mathcal{A}}\right.\right. \\
& \left.=F^{\mathfrak{A}}\left(\left[t_{1}\right]_{\tau}^{\mathcal{A}}, \ldots,\left[t_{n}\right]\right]_{\tau}^{\mathcal{A}}\right) \\
& =F^{\mathfrak{A}}\left(\varphi\left(\left[t_{1}\right]\right), \ldots, \varphi\left(\left[t_{n}\right]\right)\right) .
\end{aligned}
$$

Now, if ψ were another homomorphism, it is easily shown that $\psi([t])=\varphi([t])$ by induction on t.

Because of this theorem the model $\mathcal{T}_{0}(E)$ is called the initial model of the theory E.

Remark 1.10 For algebraic specification of programs one usually consider Σ algebras with many sorts (types). For instance, we may have a sort A for an alphabet and a sort S for a stack. The constants are $\mathrm{a}, \mathrm{b}, \mathrm{c}: \mathrm{A}$ (the letters of the alphabet), nil : S (the empty stack), the function symbols are pop: $S \rightarrow S$ and push : A $\times \mathrm{S} \rightarrow \mathrm{S}$. The equations E are

$$
\begin{aligned}
\operatorname{pop}(\text { nil }) & =\text { nil, } \\
\operatorname{pop}\left(\operatorname{push}\left(x^{\mathrm{A}}, t^{\mathrm{S}}\right)\right) & =t^{\mathrm{S}}
\end{aligned}
$$

(Here $x^{\mathrm{A}}, t^{\mathrm{S}}$ indicate variables of the different sorts.) The definitions and results above easily extend to many-sorted Σ-algebras.

Exercises

1. Let A^{*} be set of strings over the alfabet A. Describe this set as an algebra with a binary concatenation operator and an empty set. Let B be another alfabet. Show that each function $f: A \rightarrow B^{*}$ extends to a homomorphism $\varphi: A^{*} \rightarrow B^{*}$. (Hint: Letter for string substitution.)
2. The equational theory of semigroups is given by E_{1} :

$$
\begin{aligned}
& 1 \cdot x_{1}=x_{1}, \quad x_{1} \cdot 1=x_{1}, \\
& x_{1} \cdot\left(x_{2} \cdot x_{3}\right)=\left(x_{1} \cdot x_{2}\right) \cdot x_{3},
\end{aligned}
$$

where $\Sigma=\{1, \cdot\}$. Determine the equivalence classes in $\mathcal{T}\left(E_{1}\right)$ analogously to Example 1.8.
3. Try to find simple representatives of equivalence classes in $\mathcal{T}_{0}(E)$ where E is as in Remark 1.10.
4. Restricting the equational logic and putting more requirements on the axioms suggests a proof search strategy. Call an equational theory E over Σ instantiation closed if
(a) $s=t \in E$ implies $s^{\sigma}=t^{\sigma} \in E$ for each substitution $\sigma: \mathbb{X} \rightarrow \operatorname{Ter}(\Sigma)$.
(b) $s=t \in E$ implies $t=s \in E$.

Let \vdash_{r} denote the derivation relation which is as $\vdash_{\text {eq }}$ but where derivations are restricted to using only (ax.appl.), (cong), (refl) and (trans). Let \vdash_{d} be the further restriction that (trans) is disallowed.

Consider an instantiation closed theory E.
(i) Prove by induction on the height of proofs that for all terms s, t

$$
E \vdash_{\mathrm{r}} s=t \Longrightarrow E \vdash_{\mathrm{r}} t=s
$$

(ii) Prove that for all terms s, t and all substitutions σ

$$
E \vdash_{\mathrm{r}} s=t \Longrightarrow E \vdash_{\mathrm{r}} s^{\sigma}=t^{\sigma} .
$$

(iii) Conclude that

$$
E \vdash_{\mathrm{eq}} s=t \Longleftrightarrow E \vdash_{\mathrm{r}} s=t
$$

(iv)* Define $E \vdash_{\mathrm{d}}^{n} s=t$ iff there are terms s_{1}, \ldots, s_{n-1} such that $s_{1} \equiv s$

$$
E \vdash_{\mathrm{d}} s_{1}=s_{2} \quad E \vdash_{\mathrm{d}} s_{2}=s_{3} \quad \cdots \quad E \vdash_{\mathrm{d}} s_{n-1}=t
$$

Prove that

$$
E \vdash_{\mathrm{eq}} s=t \Longleftrightarrow \text { for some } n \geq 1: E \vdash_{\mathrm{d}}^{n} s=t .
$$

Hint: transform the proofs so that transitvity applications appear at the end. Use transformations of the following kind, where $\mathcal{D}, \mathcal{D}^{\prime}, \mathcal{D}^{\prime \prime}$, are proof trees.

$$
\begin{gathered}
\frac{\mathcal{D}}{\frac{s=t}{f(s, a)=f(t, c)}} \frac{\frac{\mathcal{D}^{\prime}}{a=b}}{a=c} \frac{\mathcal{D}^{\prime \prime}}{b=c} \\
\text { (cong) } \\
\Downarrow \\
\frac{\frac{\mathcal{D}}{s=t}}{\frac{\mathcal{D}^{\prime}}{a=b}}(\text { cons }) \quad \frac{\overline{t=t}(\text { refl }) \quad \frac{\mathcal{D}^{\prime \prime}}{b=c}}{f(t, b)=f(t, c)} \text { (tran) } \\
f(s, a)=f(t, c)
\end{gathered}
$$

1.2 Unification of terms

Unification is an important tool in term rewriting, automatic theorem proving, and is fundamental for logic programming (Prolog). Unification of terms amount to equation solving in the term algebra $\operatorname{Ter}(\Sigma)$.

Example 1.11 Let $\Sigma=\{f, g\}$ with arities 2 and 1 respectively. Find a solution in $\operatorname{Ter}(\Sigma)$ to the equation

$$
f\left(x_{1}, g\left(f\left(x_{2}, x_{1}\right)\right)\right)=f\left(g\left(x_{2}\right), x_{3}\right)
$$

A solution: $x_{1}:=g\left(x_{2}\right), x_{3}:=g\left(f\left(x_{2}, g\left(x_{2}\right)\right)\right)$.
As in ordinary equation solving we are often interested in a general solution. Over the term algebra such a solution is called a most general unifier. Indeed, in the example above any other solution can be gotten from the one provided, by instantiating the variables.

As explained in Section 1.1 substitutions can be regarded as Σ-algebra homomorphisms $\sigma: \operatorname{Ter}(\Sigma) \rightarrow \operatorname{Ter}(\Sigma)$ determined by their values on the set \mathbb{X} of variables. A substitution that is given by a permutation of the variables is called a renaming substitution. Two substitutions $\tau: \operatorname{Ter}(\Sigma) \rightarrow \operatorname{Ter}(\Sigma)$ and $\sigma: \operatorname{Ter}(\Sigma) \rightarrow$ $\operatorname{Ter}(\Sigma)$ may be composed $\sigma \circ \tau$ as follows

$$
(\sigma \circ \tau)(t)=\sigma(\tau(t))=\left(t^{\tau}\right)^{\sigma} .
$$

We write $\tau \sigma$ for $\sigma \circ \tau$.

Example 1.12 Let $\Sigma=\{f, g\}$ with arities 2 and 1 respectively. Consider the substitutions $\sigma=\left\{x_{2}:=g\left(x_{1}\right), x_{3}:=g\left(x_{3}\right)\right\}$ and $\tau=\left\{x_{1}:=f\left(x_{2}, x_{2}\right)\right\}$. Then $(\tau \sigma)\left(x_{1}\right)=\sigma\left(\tau\left(x_{1}\right)\right)=\sigma\left(f\left(x_{2}, x_{2}\right)\right)=f\left(\sigma\left(x_{2}\right), \sigma\left(x_{2}\right)\right)=f\left(g\left(x_{1}\right), g\left(x_{1}\right)\right),(\tau \sigma)\left(x_{2}\right)=$ $g\left(x_{1}\right)$ and $(\tau \sigma)\left(x_{3}\right)=g\left(x_{3}\right)$. Hence

$$
\tau \sigma=\left\{x_{1}:=f\left(g\left(x_{1}\right), g\left(x_{1}\right)\right), x_{2}:=g\left(x_{1}\right), x_{3}:=g\left(x_{3}\right)\right\} .
$$

On the other hand, by a similar computation,

$$
\sigma \tau=\left\{x_{1}:=f\left(x_{2}, x_{2}\right), x_{2}:=g\left(f\left(x_{2}, x_{2}\right)\right), x_{3}:=g\left(x_{3}\right)\right\} .
$$

Generalising this example we have for $\sigma=\left\{x_{i_{1}}:=t_{1}, \ldots, x_{i_{n}}:=t_{n}\right\}$ and $\tau=$ $\left\{x_{i_{1}}:=s_{1}, \ldots, x_{i_{n}}:=s_{n}, x_{j_{1}}:=r_{1}, \ldots, x_{j_{m}}:=r_{m}\right\}$, where the indices $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}$ are all distinct, that

$$
\sigma \tau=\left\{x_{i_{1}}:=t_{1}^{\tau}, \ldots, x_{i_{n}}:=t_{n}^{\tau}, x_{j_{1}}:=r_{1}, \ldots, x_{j_{m}}:=r_{m}\right\}
$$

We say that one substitution σ is more general than another substitution ρ iff $\rho=\sigma \tau$ for some substitution τ. In this case we write $\sigma \leq \rho$.

Exercise 1.13

(i) Check that the relation \leq is reflexive and transtive.
(ii) Prove that if $\sigma \leq \rho$ and $\rho \leq \sigma$, then there is a renaming substitution τ such that $\rho=\sigma \tau$.

A unifier of a set of terms $\mathcal{T}=\left\{t_{1}, \ldots, t_{n}\right\}$ is substitution σ which makes all these terms equal, i.e. $t_{1}^{\sigma}=\cdots=t_{n}^{\sigma}$. A unifier σ of \mathcal{T} is a most general unifier (mgu), if $\sigma \leq \rho$ for any unifier ρ of \mathcal{T}. By Exercise 1.13 any two mgu's σ and σ^{\prime} of \mathcal{T} are the same up to a renaming substitution (i.e. $\sigma=\sigma^{\prime} \tau$ for some renaming substitution $\tau)$.

Note that $F\left(s_{1}, \ldots, s_{n}\right)^{\sigma}=F\left(t_{1}, \ldots, t_{n}\right)^{\sigma}$ iff $s_{i}^{\sigma}=t_{i}^{\sigma}$ for all $i=1, \ldots, n$. Hence in order to solve one equation in the term algebra, we may have to solve a system of equations.

The unification algorithm of Martelli-Montanari. The algorithm starts with a finite set of equations $G=\left\{s_{1}=t_{1}, \ldots, s_{n}=t_{n}\right\}$, and outputs a most general unifier σ for this set (regarded as an mgu of the set $\left\{F\left(s_{1}, \ldots, s_{n}\right), F\left(t_{1}, \ldots, t_{n}\right)\right\}$ where F is a function symbol), if there is any unifier, or reports failure otherwise. The algorithm is non-deterministic and applies certain reduction rules to the finite
sets and stops at the empty set (Ø), or with a failure (denoted \#). Along the way the answer substitution σ is built up. From a successful computation

$$
G_{1} \mapsto G_{2} \mapsto \sigma_{1} G_{3} \mapsto G_{4} \mapsto G_{5} \mapsto_{\sigma_{2}} G_{6} \mapsto \emptyset .
$$

we extract $\sigma=\sigma_{1} \sigma_{2}$, the answer substitution. For a set $G=\left\{s_{1}=t_{1}, \ldots, s_{n}=t_{n}\right\}$ we write $G^{\sigma}=\left\{s_{1}^{\sigma}=t_{1}^{\sigma}, \ldots, s_{n}^{\sigma}=t_{n}^{\sigma}\right\}$.

The Martelli-Montanari reduction rules are the following

1. $G \cup\left\{F\left(t_{1}, \ldots, t_{n}\right)=F\left(s_{1}, \ldots, s_{n}\right)\right\} \mapsto G \cup\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\}$ provided $F\left(t_{1}, \ldots, t_{n}\right)=F\left(s_{1}, \ldots, s_{n}\right)$ is not an element of G. ("Function decomposition")
2. $G \cup\{t=t\} \longmapsto G$ provided $t=t$ is not an element of G.
3. $G \cup\{t=x\} \mapsto G \cup\{x=t\}$, provided t is not a variable, and that $t=x$ is not an element of G.
4. $G \cup\{x=t\} \longmapsto\{x:=t\} G^{\{x:=t\}}$, provided x is a variable, x does not occur in t and that $x=t$ is not an element of G. ("Variable elimination")
5. $G \cup\left\{F\left(t_{1}, \ldots, t_{n}\right)=H\left(s_{1}, \ldots, s_{m}\right)\right\} \rightharpoondown \#$, if F and H are different function symbols.
6. $G \cup\{x=t\} \longmapsto \#$, provided $x \neq t$ and x occurs in t. ("Occur check")

Example 1.14 We compute the mgu of $f\left(x_{1}, g\left(f\left(x_{2}, x_{1}\right)\right)\right)$ and $f\left(g\left(x_{2}\right), x_{3}\right)$ using the algorithm.

$$
\begin{array}{rlrl}
\left\{f\left(x_{1}, g\left(f\left(x_{2}, x_{1}\right)\right)\right)=f\left(g\left(x_{2}\right), x_{3}\right)\right\} & & & \left\{x_{1}=g\left(x_{2}\right), g\left(f\left(x_{2}, x_{1}\right)\right)=x_{3}\right\} \\
& \mapsto\left\{x_{1}:=g\left(x_{2}\right)\right\} & \left\{g\left(f\left(x_{2}, g\left(x_{2}\right)\right)\right)=x_{3}\right\} \\
& \longmapsto & \left\{x_{3}=g\left(f\left(x_{2}, g\left(x_{2}\right)\right)\right)\right\} \\
& \mapsto\left\{x_{3}:=g\left(f\left(x_{2}, g\left(x_{2}\right)\right)\right)\right\}
\end{array}
$$

The answer substitution is $\sigma=\left\{x_{1}:=g\left(x_{2}\right), x_{3}:=g\left(f\left(x_{2}, g\left(x_{2}\right)\right)\right)\right\}$.
Example 1.15 The terms $f\left(g\left(x_{1}\right), x_{1}\right)$ and $f\left(x_{2}, g\left(x_{2}\right)\right)$ are not unifiable.

$$
\begin{array}{rll}
\left\{f\left(g\left(x_{1}\right), x_{1}\right)=f\left(x_{2}, g\left(x_{2}\right)\right)\right\} & \mapsto & \left\{g\left(x_{1}\right)=x_{2}, x_{1}=g\left(x_{2}\right)\right\} \\
& \longmapsto\left\{x_{1}:=g\left(x_{2}\right)\right\} & \left\{g\left(g\left(x_{2}\right)\right)=x_{2}\right\} \\
& \longmapsto & \left\{x_{2}=g\left(g\left(x_{2}\right)\right)\right\} \\
& \longmapsto & \#
\end{array}
$$

This computation fails by occur check, since x_{2} occurs in $g\left(g\left(x_{2}\right)\right)$.
We state the following important result without proof:

Theorem 1.16 (Unification Theorem) A set of equations $G=\left\{s_{1}=t_{1}, \ldots, s_{n}=\right.$ $\left.t_{n}\right\}$ has an mgu iff it has some unifier. Moreover, if G has an mgu, the MartelliMontanari algorithm finds it, otherwise it stops and reports failure to find a unifier.

1.2.1 Pattern matching

Pattern matching may be regarded as a special case of unification: a variable free term s is matched to the pattern term t if there is a unifier σ with

$$
s=s^{\sigma}=t^{\sigma} .
$$

For a term s containing variables, we may first replace each variable x with a new constant c_{x}, and then match the modified term s^{*} to t. The new constants occuring in the resulting unifier may then be restored to variables again.

Example 1.17 The term $f(0, g(2))$ is matched to $f(u, v)$ by $\sigma=\{u:=0, v:=$ $g(2)\}$.

The term $f(x, g(u))$ is matched to $f(u, v)$ by $\tau=\{u:=x, v:=g(u)\}$. The intermediate step is to consider the variable free term $f\left(\mathrm{c}_{x}, g\left(\mathrm{c}_{u}\right)\right)$, and the unifier $\tau^{*}=\left\{u:=\mathrm{c}_{x}, v:=g\left(\mathrm{c}_{u}\right)\right\}$. Note that τ is not a unifier of $f(x, g(u))$ and $f(u, v)$.

However $f(x, g(u))$ cannot be matched to $f(g(u), v)$ since c_{x} and $g(u)$ are not unifiable.

Exercises

1. Let $\Sigma=\{a, f, g, h, p, q\}$ where a is a constant, f, g has arity $1, h, p$ has arity 2 and q has arity 3 . For each of the following pair of terms compute an mgu or show that no unifier exist.
(a) $p(f(a), g(x)), p(y, y)$
(b) $p(f(x), a), p(y, f(w))$
(c) $p(x, x), p(y, f(y))$
(d) $q(a, x, f(g(y))), q(z, h(z, w), f(w))$
(e) $p(f(f(x)), h(g(x), f(a))), p(f(u), h(v, f(w)))$.
2. In which cases (a) - (e) in Exercise 1 does the first term match the pattern of the second term?

References

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press 1999.
N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In: J. van Leeuwen (ed.) Handbook of Theoretical Computer Science. North-Holland 1990.
J.A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programming Languages. MIT Press, 1996.
W. Klop: Term Rewriting Systems. In: S. Abramsky et al. (eds.) Handbook of Logic in Computer Science, Vol 2. Oxford University Press 1992.
K. Meinke and J.V. Tucker. Universal Algebra. In: S. Abramsky et al. (eds.): Handbook of Logic in Computer Science, Vol. 1. Oxford University Press 1992.
W. Wechler. Universal Algebra for Computer Scientists. Springer 1992.

