UPPSALA UNIVERSITET Lecture notes

Matematiska institutionen Applied Logic
Erik Palmgren (Tillampad logik)
2007-11-06

Equational logic, unification
and term rewriting

1 Equational logic

Below we shall largely follow Klop (1992) in the presentatiof equational logic
and unification.

1.1 Some notions from universal algebra

In universal algebrgproperties of general algebraic systems are studied. These
systems include the usual, groups, semigroups, monoidgs,ribut also sys-
tems with operations of arbitrary number of arguments. grehtaic specification
theory these operations may describe programs or hardveanpanents. (See
Meinke and Tucker 1992, Goguen and Malcolm 1996 and WecBig2.)

A signatureZ is a set of function symbols, where eaEhe % takes a fixed
numbem(F) (thearity) of arguments. 0-ary function symbols are considered as
constant symbols. (Thus a signature is like a descripticafokt order language
but without relation symbols.) A-algebra4 consists of an underlying nonempty
setA, and for each function symbél € %, an operation

F2:A"F) A

forn(F) > 0. Ifn(F) =0,F*c A
Homomorphismanappings which preserves the operations of an algebra are
of central importance. Lefl and‘B beZ-algebras. AZ-algebra) homomorphism
¢ : 4 — B is function between the underlying sdts A — B which is such that
for every function symboF € X of arity n we have for allay, ..., a, € A:

O(F(ag,...,an)) = F*(¢(ar),...,0(an)).
If n=0, this read®)(F?) = F%.

Example 1.1 The embeddind. — Q and the quotient mapping+— xmodn :
7. — 7./nZ are basic examples of homomorphisms with respect to thesign
>={0,1,+,-}.

There is always a trivial homomorphisa— 4, the identity homomorphism
id4 defined by id;(x) = x. A homomorphismp : 4 — B is anisomorphismif
there is a homomorphisa : B — 4 such thatpo ¢ =idz andd o = idg. We
leave the verification of the following result to the reader:

Proposition 1.2 A homomorphisnp : 4 — B is an isomorphismifp : A— B is
a bijection.O

Let TenY) be the set of terms that can be formed from the function symbol
in ~ and variables from a fixed set of variable symb¥ls- {x1,X2,%3,...}. The
set Te(X) is inductively defined by the following clauses

(T1) If xe X, thenx € Ter(%).
(T2) If F e Zandn(F) =0, thenF € Ter(%).
(T3) IfF €%, n=n(F) >0andty,...,ty € Ter(Z), thenF (ty, ... ,ty) € Ter(X).

Since the set T€E) is inductively defined, we may prove properties of terms by
structural induction. We may also define functions on terpstouctural recur-
sion. A substitution is a functiono : X — Ter(X), assigning to each variable
symbol a term. The effe¢? of a substitutioro on a ternt is defined recursively

X = o(x)
F = F (n(F) =0)
F(ta,....,tn)° = F(t2,...,t7) (n=n(F))

Thus we may extend to a function TefZ) — Ter(X) by a(t) =t°. Denote by
{Xi, =t1,..., %, =1},

whereiq < iy < --- < ik, the substitutioro whereo(xij) =tjforj=1,...,kand
o(x) =X fori ¢ {is,io,...,ik}.

Example 1.3 LetX> = {0, f,g} where the arities ane(0) = 0,n(f) =1 andn(g) =
2. Then 0f(0),g(x1, f(x3)) are examples of terms ov& For the substitution
0 = {X1 :=09(X1,X3),X%2 := f(0),x3:= %2} we have

9(x1, F(x3))? = 90X, T (3§)) = 9(9(x1,%3), f(x2)). O

2

The set TefZ) can be regarded assaalgebra — in a kind of trivial way — by
defining for eacn-ary function symboF € £, a functionF Te) by

FTe)(ty, ... tn) = F(ty,.. ., tn).

We call Te(XZ) the term algebra ofz. We may also restrict ourselves to terms
without variables (in case there are constant symbols) &belting set, Tex(X),
also forms &-algebra.

Note that any substitutioa : X — Ter(X) extends to &-algebra homomor-
phismo : Ter(Z) — Ter(X). (Exercise: verify this.)

Let 4 be aZ-algebra. Avariable assignmendr environmenin 4 is a func-
tion p: X — A. Given such an assignment, the va[[n%‘ of atermt in A4 is
determined. Define by recursion on

[[Xiﬂp = p(xi)a
[F(t,...tm)]p = F*([tallp..--, [tmllp)-

An equatiors=t is valid in 4 (in symbols:4 = s=t) iff for all variable assign-

mentsp in A: s = [it] -

An equational theory ovek is given by a sekE of equationss =t where
s,t € Ter(X). The deduction rules of an equational theory essentially tefi how
instances of these equations may be used to calculate tesidse. We denote by
E Feqs=t thats=t is derivable fromE. The deduction rules are more formally

(ax.appl :) Eleqs=t ifs=tecE

——(subs for every substitutiom : X — Ter(Z

con for everyF € Z with n=n(F
Eka@mnﬁg:mewmﬂ 9 y (F)

(refl:) Eleqt =t for everyt € Ter(Z)

Eteqs=t
symm
tran
EleqS=t (trang

Example 1.4 The equational theory of groupset > = {1,-,()~1}, where the
arities are 0, 2 and 1 respectively. The equations E are

1'X1:X17 X1'1:X17
X1 (X2-X3) = (X1-X2) - X3,
XX =1, x;toxg =1,

We give an example of a formal derivationof- 1-1 = x, from the axioms oE:

X1-1=x1
171 1= 171 (SUbS) XI]' X1=1
1 (symm) S (subs}
1—-=1""-1 1—--1=1 t
_ — (trang
X2 = X2 1= (cong) X1-1=xq1 b
X2-11=x5-1 X2-1=X (subs)
I (trang
Xo-17"=Xo

O

A Z-algebraq is a model of E(in symbols: 4 = E) iff 4 |=s=t, for each
s=t e E. We say thas=1 is a (semantic) equational consequencddfin
symbols:E |= s=¢qt) if for every Z-algebra4:

AFEE= A4=s=t.

We now prove Birkhoff’s completeness theorem for equatitin@ories. Let
=g be the relation on TéE) defined by

This relation ofE-provable equalitys an equivalence relation and a congruence
with respect to the operatior’s™®), according to the rules of the equational
theory. We consider the séf(E) = Ter(X)/ =g of equivalence classds] of
terms. Thus the following is a well-defined operation

FTE(ta],..., [ta]) = [F(te, .., tn)]
foranyF € 3. Thus7 (E) is aX-algebra.

Theorem 1.5 (Birkhoff) LetZ be a signature and let E be an equational theory
overZ. Then
Etegs=t<= T(E) Es=t.

Proof. («=) Suppose’ (E) = s=t. Then for the “identical” variable assignment
(%) = [x] we get[[s]]?(E) = [[t]];r(E). Hence[s) = [t], sos=g t and thusE F¢q
s=t.
(=) Note that each variable assignmenX — 7 (E) gives rise to a substitu-
tion o : X — Ter(X) where
(%) = [o(x)].

Thus fromE Fe¢qs=t and the substitution rule follows eqs® =t°. Hence
[°] = [t°]. But[s]t = [s°] and[t]; = [t°], and henceT (E) = s=t, sincet was
arbitrary. O

Corollary 1.6 For every equational theory E and any equatioa ¢ overZ we
have

Proof. (<) This is an easy proof by induction on derivations.

(=) From Theorem 1.%=) follows 7 (E) |= E (sinces=t € E impliesE t-¢q
S=1t). Suppose =¢qSs=t. Then in particularZ (E) = s=t. By Theorem 1.5
(«<)againE Fegs=t. O

Remark 1.7 In view of Birkhoff’s completeness theorem and the usual plete-
ness theorem for first order logic, we have for equationadtiesE:

EbeqS=t <= V(E)FV(s=t).

For aformulap with free variables, . . ., Xy, the expressio¥(¢) denotes/x; - - - Vxn .
For a set of formulag, thenV(E) = {V¥(¢) : ¢ € E}. Thus quantifiers and con-
nectives are not necessary when proving an equation froratemnal axioms.

Example 1.8 The equational theory of Abelian groupset = = {1,-,()71},
where the arities are 0, 2 and 1 respectively. The equaticars E

1'X1:X13 Xl'llev

X1 (X2 X3) = (X1 X2) - X3,

X1 X2 = X2 X1,

x1~xI1:1, xIl~x1:1.
The models of this theory are exactly the Abelian groups. debyu® = 1 and
u™l =u.-u"forne N. Forn>0, letu™ = (u)" It is easy to show that
for eacht € Ter(Z) there are sequences,...,nx € Z — {0}, 1 <i1 <iz--- <,
wherek > 0, such that

m Nk

t:Exll'Xinzz"”‘Xuk- (1)

5

(In casek = 0, the product is simply 1.) Thus in the modE(E) the equivalence
classes are represented by elements of the fgkmx2 - --- - x*. O

One can in fact show that the sequen¢eg, (ij) in (1) are unique. This
can be used to decide when two terms are provably equal. &megsic method
for obtaining such decidability results is provided by thedry ofterm rewriting
systems.

For a signatur& with at least one constant symbol, considg(E) which is
defined asZ (E) but Tep(Z) is used instead of T€X). (Exercise: What islp(E)
in the case of Example 1.8? If new constants are added?)

Theorem 1.9 Let E be an equational theory over a signatditevhich has at least
one constant symbol. Then

(@) B(E) =E
(b) if 4 = E, there is a unigue homomorphigm 75(E) — 4.

Proof. (a): Thisis proved as in the directidr>) of Theorem 1.5, but usingo(E)
instead of7 (E).

(b): Defined : To(E) — 4 by d([t]) = [t]# wheret is some fixed variable
assignment (it does not matter which sirtdeas no variables). It is well-defined
because ifs| = [t], thenE Feqgs=t. Now 4 = E, so4 |=s=t, and hence in
particular[[s]{ = [t]#. Furthermorep is a homomorphism, since

OFTE ([t [t)) = O([F(ts,..,tn)))
= [Fta,--,)]
= FA(Muld,.. [t
= FA([ul),....o([t])-

Now, if were another homomorphism, it is easily shown thdt]) = ¢([t]) by
induction ont. O

Because of this theorem the modgJ(E) is called theinitial model of the
theoryE.

Remark 1.10 For algebraic specification of programs one usually comside
algebras with many sorts (types). For instance, we may hasertaA for an

alphabet and a sof for a stack. The constants aseb,c : A (the letters of the
alphabet),nil : S (the empty stack), the function symbols arep : S — S and

push: A xS — S. The equationg are

pop(nil) = nil,
pop(push(x*,t%)) = t°

(Herex*,t5 indicate variables of the different sorts.) The definitiamsl results
above easily extend to many-sortedlgebras.
Exercises

1. Let A" be set of strings over the alfab&t Describe this set as an algebra
with a binary concatenation operator and an empty set.BlLie¢ another
alfabet. Show that each functidn: A — B* extends to a homomorphism
¢ : A* — B* . (Hint: Letter for string substitution.)

2. The equational theory of semigroups is giverlhy

1-X1:X1, X1-1:X1,
X1 (X2 X3) = (X1-X2) - X3,

whereX = {1,-}. Determine the equivalence classe¥ifE;) analogously
to Example 1.8.

3. Try to find simple representatives of equivalence classég(E) whereE
is as in Remark 1.10.

4. Restricting the equational logic and putting more reguients on the ax-
ioms suggests a proof search strategy. Call an equatioeahtk over
instantiation closedf

(a) s=t € E impliess® =t° € E for each substitution : X — Ter(Z).
(b) s=t € Eimpliest=s<E.

Let - denote the derivation relation which is lagy but where derivations
are restricted to using only (ax.appl.), (cong), (refl) atrdr(s). Let—4 be
the further restriction that (trans) is disallowed.

Consider an instantiation closed thed@y
(i) Prove by induction on the height of proofs that for allrteys;t
EFfsS=t—EHt=s
(i) Prove that for all terms,t and all substitutione
EFis=t=EF " =t°.
(i) Conclude that

Ebtegs=t<= EF/s=t.

7

(iv)* Define E -]} s=tiff there are termsy, ...,s,—1 such thas; = s
Ergsi=s EFgs=s3 -+ EFgsia=t.
Prove that
EleqS=t<«=forsomen>1: EFjs=t.

Hint: transform the proofs so that transitivity applicatsoappear at
the end. Use transformations of the following kind, whéren’, D",
are proof trees.

Q)/ Q)//
D — —
S—1 a g:% C(;r(]trang
f(s,a) = f(t,c)
NS
@ @/ @//
s=t a=b g(refl) b=c
— (cong) — (con)
f(S,a) _ f(t7?) f(t7b) _ f(t,C) (tran$

(s,a) = f(t,c)

1.2 Unification of terms

Unification is an important tool in term rewriting, autonwatineorem proving, and
is fundamental for logic programming (Prolog). Unificatiohterms amount to
equation solving in the term algebra TE}.

Example 1.11 Let > = { f,g} with arities 2 and 1 respectively. Find a solution in
Ter(Z) to the equation

f(x1,9(f(x2,x1))) = F(9(%2), X3)-

A solution: X3 :=g(X2),X3 := g(f(x2,9(x2))).

As in ordinary equation solving we are often interested ireaagal solution.
Over the term algebra such a solution is callechast general unifier Indeed,
in the example above any other solution can be gotten fronotleeprovided, by
instantiating the variables.

As explained in Section 1.1 substitutions can be regarded-agebra ho-
momorphisms : Ter(X) — Ter(X) determined by their values on the S&tof
variables. A substitution that is given by a permutationhef variables is called

arenaming substitutionTwo substitutions : Ter(X) — Ter(X) ando : Ter(X) —
Ter(Z) may be composedot as follows

(GoT)(t) = o(t(t)) = (t')°.

We writeto forooT.

Example 1.12 Let ~ = {f,g} with arities 2 and 1 respectively. Consider the
substitutionso = {X2 := g(X1),%3 := g(X3)} and 1 = {X; := f(x2,X2)}. Then
(10)(x1) = 0(1(x1)) = 0(f (X2, %2)) = f(0(X2),0(%2)) = f(9(x1),9(x1)), (10) (X2) =
g(x1) and(10)(xs) = g(xs). Hence

10 = {x1:= f(g(x1),9(x1)), % = 9g(X1), %3 = d(X3) }.

On the other hand, by a similar computation,

ot = {X1 := f(X2,%2),%2 :=0(f(X2,%2)), X3 :=9Q(x3) }. O

Generalising this example we have = {x, :=t1,...,%, :=ty} andt =
{Xi; ==51,..., %, =%, Xj; '=T1,...,Xj, :="m}, Where the indices, ... ,in, j1,..., jm
are all distinct, that

. T . T . .
ot = {X, '=1t1,...., %, =1, Xj; :=T1,..., Xjpp :=m}

We say that one substitutiom is more generalthan another substitutiop iff
p = ot for some substitution. In this case we write < p.

Exercise 1.13
(i) Check that the relatior is reflexive and transtive.

(i) Prove that ifo < p andp < g, then there is a renaming substitutiosuch
thatp = ot. O

A unifierof a set of term& = {ty,...,t,} is substitutioro which makes all these
terms equal, i.etf = --- =tJ. A unifier o of 7 is amost general unifier (mgu),
if o < p for any unifierp of 7. By Exercise 1.13 any two mgus anda’ of
7 are the same up to a renaming substitution (.e= o't for some renaming
substitutior).

Note thatF (sq,...,sn)° = F(t1,...,tn)% iff S =t° foralli=1,...,n. Hence
in order to solve one equation in the term algebra, we may teselve a system
of equations.

The unification algorithm of Martelli-Montanari. The algorithm starts with
a finite set of equation& = {s; =t1,...,5, = ty}, and outputs a most general
unifier o for this set (regarded as an mgu of the §€{(sy,...,s),F(t1,...,th)}
whereF is a function symbol), if there is any unifier, or reports taé otherwise.
The algorithm is non-deterministic and applies certairugtin rules to the finite
sets and stops at the empty B}t (©Or with a failure (denoted #). Along the way
the answer substitutiom is built up. From a successful computation

Gy — Gp =g, Gz — G4 — Gg —q, Gg — 0.

we extracto = 010>, the answer substitution. For a $8t= {s; =t1,...,5 =1tn}
we writeG® = {s] =t7,..., 5] =tJ}.

The Martelli-Montanari reduction rules are the following

1. GU{F(t1,...,tn) = F(s1,...,%)} — GU{t1 = s1,...,th = S} provided
F(ty,...,th) = F(s1,...,S) is not an element db. (“Function decomposi-
tion”)

2. GU{t =t} — G providedt =t is not an element d&.

3. GU{t =x} — GU{x=t}, providedt is not a variable, and that= x is not
an element o6G.

4. GU{x =t} —c_yy G, providedx is a variablex does not occur i
and thatx =t is not an element d&. (“Variable elimination”)

5. GU{F(t1,...,tn) =H(s1,...,Sm)} — #, if F andH are different function
symbols.

6. GU{x=t} — #, providedx # t andx occurs int. (“Occur check”)

Example 1.14 We compute the mgu off(x1,9(f (x2,X1))) and f(g(x2),%3) using
the algorithm.

{f(x1,9(f(x2,x1))) = (9(x2),X3)} — {x1=9(x2),9(f(x2,x1)) = X3}
7 {x:=0(%2)} {g(f(XZa (2)) }
— {x3=09(f(x2,9(x2)))}

— (xa=g(f (x2.0(x)))} O

The answer substitution = {x1 := g(X2), X3 :=g(f(x2,9(x2)))}. O

10

Example 1.15 The termsf (g(x1),x1) and f(x2,9(x2)) are not unifiable.

{f(9(x),x1) = f(x2,9(%2))} — {o(x1) = x2,x1 = g(x2)}
7 {x1=0(x%2)} {g((X)) X }
— ixz: 9(9(x2))}

This computation fails by occur check, sirngeoccurs ing(g(xz)). O

We state the following important result without proof:

Theorem 1.16 (Unification Theorem) A set of equations & {s; =tj,...,5 =
tn} has an mgu iff it has some unifier. Moreover, if G has an mguMbsdelli-
Montanari algorithm finds it, otherwise it stops and repdegure to find a unifier.

1.2.1 Pattern matching

Pattern matching may be regarded as a special case of uoificawvariable free
termsis matched to theattern term tif there is a unifiero with

s=g =19,

For a terms containing variables, we may first replace each varialgh a new
constant ¢, and then match the modified teghtot. The new constants occuring
in the resulting unifier may then be restored to variablesraga

Example 1.17 The termf(0,9(2)) is matched tof (u,v) by 0 = {u:=0,v =
9(2)}.

The term f(x,g(u)) is matched tof (u,v) by T = {u:=x v:=g(u)}. The
intermediate step is to consider the variable free té(oy,g(cy)), and the unifier
T = {u:=c¢,v:=9g(cy)}. Note thatr is nota unifier of f(x,g(u)) and f (u,v).

Howeverf (x,g(u)) cannot be matched ti(g(u), V) since ¢ andg(u) are not
unifiable.

Exercises

1. Letz = {a, f,g,h, p,q} whereais a constantf,g has arity 1h, p has arity
2 andq has arity 3. For each of the following pair of terms computerayu
or show that no unifier exist.

@ p(f(a),9(x)), p(y,y)
(b) p(f(x),a), p(y, f(w))
(©) p(x,x), p(y; f(y))

11

(d) a(ax f(9(y)), a(z h(zw), f(w))
(€) p(f(f(x)),h(g(x), f(a))), p(f(u),h(v, f(w))).

2. In which cases (a) — (e) in Exercise 1 does the first term méiee pattern
of the second term?

12

2 Term rewriting systems

We shall be very brief and sketchy on this subject. We ref@&aader and Nipkow
(1999) or to Klop (1992) for a full account of the basic theory

A term rewriting system (TRS) is essentially a way of assigrdirections to
the equations of an equational thed&yand then applying the equations only in
the prescribed directions. In some circumstances a TRS ealeliced forE so
that it can be decided whethigt-¢qSs=t holds by making “mindless” applications
of the directed equations to the termsndt respectively and when no further
applications are possible check whether the end resultthareame. We shall
explain what “mindless application” means below.

First we give an example of a TRS. Consider the equationalryhef semi-
groups (Exercise 1.2). The languag&is- {1,-}. The equations

1-x = X
X-1 = X
x-(y-2) = (xy)-z

may be given the natural directions
1.x —

x-1

x-(y-2)

l

l

(x-y)-z

These are calletewrite rules.
Consider the following applications of the directed equiadi, so callededuc-
tions We underline the subterms to which the rewrite rules haen applied

1-(X2-X3) ﬂ (1~x2)-x3ﬁ>x2~x3

1
1~(X2~X3) QX2~X3.

2
(X2~1)~X3Q>X2~X3.

It is not possible to apply any further rulesxg- x3 sincex, andxsz are variables
and stand for arbitrary objects.

Let = be an arbitrary signature. Fewrite ruleoverZ is a pair(s,t) € Ter(Z)?,
written s — t, so thats is not a variable andV (t) C FV(s). A term rewriting
systenoverZ is a finite set of rewrite rules ovér.

13

Example 2121 = {1, } and Ry = {1~X1 — X1,X1* 1— X1,X1 - (X2-X3) — (X]_ .
X2) - X3} is the TRS for semigroups above.

We allow variable namesy, z u,v,was well as the official variableg, X2, X3, . ..
of the setX.

Example 2.2 A term rewriting system for addition and multiplicatiork; =
{0,+,-,s} andR; consists of the following rules

X+0 — X
X+s(y) — s(x+y)
x-0 — O
X-s(y) — X-y+x

Let Rbe a TRS oveE. For two termdj,ty € Ter(Z) we say that, has been
obtained by one-step reduction fropusing R in symbols

t1 =Rt

if t1 = C{Z=5"} 1, = C{Z=t°] for some rule(s;t) € R, some variable, some sub-
stitutiono and some terr® with exactly one occurence af

We write —* for the reflexive and transitive closure ef. We say thats
reduces to if s—4t.

We call a ternt € Ter(Z) is callednormalwith respect tdR if there is no term
ssuch that —rs.

Note that variables are normal with respect to any TRS.
Example 2.3 For TRSR;: 1 is normal. Each expression of the form
(' e ((Xil) Xiz) 'Xis) e Xin)
wheren > 1, is normal. In fact these are all the normal terms.

Example 2.4 For TRSRy: The numerals 3(0),s(s(0)),... are normal.x; + X
andxz - X2 are normal. (Exercise: determine all normal terms)

A TRS R is said to beconfluentif for any termsr,s;, s, with r —* s and
r —* s there is a ternt such thas; —*t ands, —* t.

We note that if a termsis normal and—*t, thens=t. Using this observation
have the following simple but important result.

14

Lemma 2.5 If R is a confluent TRS, then normal forms are unique if thestexi
i.e. for any term r and normal termg, s, with r —* 5 and r —* s, it holds that

S1 = S.

A TRS R is weakly normalisingf any term reduces to a normal term. It is
strongly normalisinghere are is no infinite sequence of terms such that

For a strongly normalising TRS any sequence of choices daksuis and ap-
plicable rules will thus eventually lead to a normal termg.Eany “mindless”
application of the directed equation will give the result.

Moreover, this means that any strongly normalising TRS iaklyenormalis-
ing.

Example 2.6 Let 33 = {0,1,2 3}. Consider TRSs given by the following rules
overza.

Rs1={1— 0,1 — 2} is strongly normalising but not confluent.

Rso={1—0,1—2,2— 1,2 — 3} is weakly normalising but not strongly
normalising.

Rs3={1—0,1— 22— 1} is weakly normalising and confluent.

Rsa={1—0,1—2,0— 0,2— 2} is neither weakly normalising nor con-
fluent.

For a TRSR let =R be the reflexive, symmetric and transitive closure of the
one-step rewrite relationrr. Thuss=grt if and only if scan be gotten fronh by
a series of one-step reductions possibly applying certitinemm backwards.

A TRS iscompletef it is confluent and strongly normalising. The importance
of complete TRSs is given by the following result.
Theorem 2.7 Let R be a complete TRS. Then the relatiessd is decidable.

Proof. We note that by the confluence propestyrt is equivalent to the existence
of somer with s — r andt —;r. To decide the equalitg =gt we compute
normal formss',t’ with s—j s andt —4t’ using the strong normalisation property
and thaRis finite. If § =t’ then equality holds. Suppose tisag t’ but thats=g
still holds. Then for some with s —jr andt —&r. Using confluence we fingl’
andt” with

* /
Sl HR S/
* !
r —&
E t//

* /!
R &

15

Now sinces’ andt’ are normal we havé = s’ andt’ =t” by confluence. But this
means that reduces to two different normal forms, which is impossilience
actually,s=rt is false.O

Let E be an equational theory ovEr LetRbe a TRS oveE. We say thaR s
aTRS for Ef for all st

A main result is now:

Corollary 2.8 Suppose E be an equational theory o¥erLet R be a complete
TRS for E Then the provability relation

is decidable.

Proof. This follows sinceE -¢qs =1 is equivalent tes =r t, which is decidable.
a

A complete TRS does not always exists for a given equatidvearyyE. How-
ever one can sometimes use #euth-Bendix completioprocedure to obtain a
complete TRS.

We say that a wellfounded partial orderon Ter(X) is areduction ordeiif

(@) s° <t°wheneves < t ando is a substitution,

(b) C{z=st < c{z=t} wheneves < t andC is a term with exactly one occurence
of z

The Knuth-Bendix completion procedure (see Klop 1992)sdkean equa-
tional theory overz and a reduction order. on TerX). It may then produce a
complete TRS foE, or report that that it is not possible to orient the equatioh
E, or it may go on forever searching for a TRS.

A main obstacle for the existence of complete TRS of a giveragqgnal the-
ory is the presence of commutativity axioms like

X-Yy=Y-X

They tend to be impossible to orient.

16

References

F. Baader and T. Nipkowlerm Rewriting and All ThatCambridge Univer-
sity Press 1999.

N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In:nJLeauwen
(ed.)Handbook of Theoretical Computer Scienserth-Holland 1990.

J.A. Goguen and G. MalcolnAlgebraic Semantics of Imperative Program-
ming LanguagesMIT Press, 1996.

W. Klop: Term Rewriting Systems. In: S. Abramsé&yal. (eds.)Handbook
of Logic in Computer Sciencepl 2. Oxford University Press 1992.

K. Meinke and J.V. Tucker. Universal Algebra. In: S. Abramsk al.
(eds.):Handbook of Logic in Computer Science, VolQxford University
Press 1992.

W. Wechler.Universal Algebra for Computer Scientis&pringer 1992.

