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Equational logic, unification
and term rewriting

1 Equational logic

Below we shall largely follow Klop (1992) in the presentation of equational logic
and unification.

1.1 Some notions from universal algebra

In universal algebraproperties of general algebraic systems are studied. These
systems include the usual, groups, semigroups, monoids, rings, but also sys-
tems with operations of arbitrary number of arguments. In algebraic specification
theory these operations may describe programs or hardware components. (See
Meinke and Tucker 1992, Goguen and Malcolm 1996 and Wechler 1992.)

A signatureΣ is a set of function symbols, where eachF ∈ Σ takes a fixed
numbern(F) (thearity) of arguments. 0-ary function symbols are considered as
constant symbols. (Thus a signature is like a description ofa first order language
but without relation symbols.) AΣ-algebraA consists of an underlying nonempty
setA, and for each function symbolF ∈ Σ, an operation

FA : An(F) → A,

for n(F) > 0. If n(F) = 0, FA ∈ A.
Homomorphisms,mappings which preserves the operations of an algebra are

of central importance. LetA andB beΣ-algebras. A(Σ-algebra) homomorphism
ϕ : A → B is function between the underlying setsϕ : A→ B which is such that
for every function symbolF ∈ Σ of arity n we have for alla1, . . . ,an ∈ A:

ϕ(FA(a1, . . . ,an)) = FB(ϕ(a1), . . . ,ϕ(an)).

If n = 0, this readsϕ(FA) = FB .
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Example 1.1 The embeddingZ →֒ Q and the quotient mappingx 7→ xmodn :
Z → Z/nZ are basic examples of homomorphisms with respect to the signature
Σ = {0,1,+, ·}.

There is always a trivial homomorphismA → A , the identity homomorphism
idA defined by idA(x) = x. A homomorphismϕ : A → B is an isomorphismif
there is a homomorphismψ : B → A such thatψ◦ϕ = idA andϕ◦ψ = idB . We
leave the verification of the following result to the reader:

Proposition 1.2 A homomorphismϕ : A → B is an isomorphism iffϕ : A→ B is
a bijection.2

Let Ter(Σ) be the set of terms that can be formed from the function symbols
in Σ and variables from a fixed set of variable symbolsX = {x1,x2,x3, . . .}. The
set Ter(Σ) is inductively defined by the following clauses

(T1) If x∈ X, thenx∈ Ter(Σ).

(T2) If F ∈ Σ andn(F) = 0, thenF ∈ Ter(Σ).

(T3) If F ∈ Σ, n = n(F) > 0 andt1, . . . , tn ∈ Ter(Σ), thenF(t1, . . . , tn) ∈ Ter(Σ).

Since the set Ter(Σ) is inductively defined, we may prove properties of terms by
structural induction. We may also define functions on terms by structural recur-
sion. A substitution is a functionσ : X → Ter(Σ), assigning to each variable
symbol a term. The effecttσ of a substitutionσ on a termt is defined recursively

xσ
i = σ(xi)

Fσ = F (n(F) = 0)

F(t1, . . . , tn)
σ = F(tσ

1 , . . . , tσ
n ) (n = n(F))

Thus we may extendσ to a function Ter(Σ) → Ter(Σ) by σ(t) = tσ. Denote by

{xi1 := t1, . . . ,xik := tk},

wherei1 < i2 < · · · < ik, the substitutionσ whereσ(xi j ) = t j for j = 1, . . . ,k and
σ(xi) = xi for i /∈ {i1, i2, . . . , ik}.

Example 1.3 Let Σ = {0, f ,g}where the arities aren(0)= 0,n( f ) = 1 andn(g) =
2. Then 0, f (0),g(x1, f (x3)) are examples of terms overΣ. For the substitution
σ = {x1 := g(x1,x3),x2 := f (0),x3 := x2} we have

g(x1, f (x3))
σ = g(xσ

1, f (xσ
3)) = g(g(x1,x3), f (x2)). 2
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The set Ter(Σ) can be regarded as aΣ-algebra — in a kind of trivial way — by
defining for eachn-ary function symbolF ∈ Σ, a functionFTer(Σ) by

FTer(Σ)(t1, . . . , tn) = F(t1, . . . , tn).

We call Ter(Σ) the term algebra ofΣ. We may also restrict ourselves to terms
without variables (in case there are constant symbols) The resulting set, Ter0(Σ),
also forms aΣ-algebra.

Note that any substitutionσ : X → Ter(Σ) extends to aΣ-algebra homomor-
phismσ : Ter(Σ) → Ter(Σ). (Exercise: verify this.)

Let A be aΣ-algebra. Avariable assignmentor environmentin A is a func-
tion ρ : X → A. Given such an assignment, the value[[t]]Aρ of a termt in A is
determined. Define by recursion ont:

[[xi]]ρ = ρ(xi),

[[F(t1, . . . , tm)]]ρ = FA([[t1]]ρ, . . . , [[tm]]ρ).

An equations= t is valid inA (in symbols:A |= s= t) iff for all variable assign-
mentsρ in A : [[s]]Aρ = [[t]]Aρ .

An equational theory overΣ is given by a setE of equationss = t where
s, t ∈ Ter(Σ). The deduction rules of an equational theory essentially only tell how
instances of these equations may be used to calculate insideterms. We denote by
E ⊢eq s= t thats= t is derivable fromE. The deduction rules are more formally

(ax.appl. :) E ⊢eq s= t if s= t ∈ E

E ⊢eq s= t

E ⊢eq sσ = tσ (subst) for every substitutionσ : X → Ter(Σ)

E ⊢eq s1 = t1 · · · E ⊢eq sn = tn
E ⊢eq F(s1, . . . ,sn) = F(t1, . . . , tn)

(cong) for everyF ∈ Σ with n = n(F)

(refl :) E ⊢eq t = t for everyt ∈ Ter(Σ)

E ⊢eq s= t

E ⊢eq t = s
(symm)

E ⊢eq s= v E ⊢eq v = t

E ⊢eq s= t
(trans)
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Example 1.4 The equational theory of groups.Let Σ = {1, ·,( )−1}, where the
arities are 0, 2 and 1 respectively. The equations E are

1 ·x1 = x1, x1 ·1 = x1,

x1 · (x2 ·x3) = (x1 ·x2) ·x3,

x1 ·x
−1
1 = 1, x−1

1 ·x1 = 1.

We give an example of a formal derivation ofx2 ·1−1 = x2 from the axioms ofE:

x2 = x2

x1 ·1 = x1

1−1 ·1 = 1−1 (subst)

1−1 = 1−1 ·1
(symm)

x−1
1 ·x1 = 1

1−1 ·1 = 1
(subst)

1−1 = 1
(trans)

x2 ·1−1 = x2 ·1
(cong) x1 ·1 = x1

x2 ·1 = x2
(subst)

x2 ·1−1 = x2
(trans)

2

A Σ-algebraA is a model of E(in symbols:A |= E) iff A |= s= t, for each
s = t ∈ E. We say thats = t is a (semantic) equational consequence ofE (in
symbols:E |= s=eq t) if for every Σ-algebraA :

A |= E =⇒ A |= s= t.

We now prove Birkhoff’s completeness theorem for equational theories. Let
=E be the relation on Ter(Σ) defined by

s=E t ⇐⇒def E ⊢eq s= t.

This relation ofE-provable equalityis an equivalence relation and a congruence
with respect to the operationsFTer(Σ), according to the rules of the equational
theory. We consider the setT (E) = Ter(Σ)/ =E of equivalence classes[t] of
terms. Thus the following is a well-defined operation

FT (E)([t1], . . . , [tn]) = [F(t1, . . . , tn)]

for anyF ∈ Σ. ThusT (E) is aΣ-algebra.

Theorem 1.5 (Birkhoff) Let Σ be a signature and let E be an equational theory
overΣ. Then

E ⊢eq s= t ⇐⇒ T (E) |= s= t.
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Proof. (⇐) SupposeT (E) |= s= t. Then for the “identical” variable assignment

τ(xi) = [xi ] we get[[s]]T (E)
τ = [[t]]T (E)

τ . Hence[s] = [t], sos=E t and thusE ⊢eq

s= t.
(⇒) Note that each variable assignmentτ : X → T (E) gives rise to a substitu-

tion σ : X → Ter(Σ) where
τ(xi) = [σ(xi)].

Thus fromE ⊢eq s = t and the substitution rule followsE ⊢eq sσ = tσ. Hence
[sσ] = [tσ]. But [[s]]τ = [sσ] and[[t]]τ = [tσ], and henceT (E) |= s= t, sinceτ was
arbitrary.2

Corollary 1.6 For every equational theory E and any equation s= t over Σ we
have

E |=eq s= t ⇐⇒ E ⊢eq s= t

Proof. (⇐) This is an easy proof by induction on derivations.
(⇒) From Theorem 1.5(⇒) followsT (E) |= E (sinces= t ∈ E impliesE ⊢eq

s= t). SupposeE |=eq s= t. Then in particularT (E) |= s= t. By Theorem 1.5
(⇐) againE ⊢eq s= t. 2

Remark 1.7 In view of Birkhoff’s completeness theorem and the usual complete-
ness theorem for first order logic, we have for equational theoriesE:

E ⊢eq s= t ⇐⇒∀(E) ⊢ ∀(s= t).

For a formulaϕ with free variablesx1, . . . ,xn, the expression∀(ϕ) denotes∀x1 · · ·∀xn ϕ.
For a set of formulasE, then∀(E) = {∀(ϕ) : ϕ ∈ E}. Thus quantifiers and con-
nectives are not necessary when proving an equation from equational axioms.

Example 1.8 The equational theory of Abelian groups.Let Σ = {1, ·,( )−1},
where the arities are 0, 2 and 1 respectively. The equations Eare

1 ·x1 = x1, x1 ·1 = x1,

x1 · (x2 ·x3) = (x1 ·x2) ·x3,

x1 ·x2 = x2 ·x1,

x1 ·x
−1
1 = 1, x−1

1 ·x1 = 1.

The models of this theory are exactly the Abelian groups. Denote byu0 = 1 and
un+1 = u · un for n ∈ N. For n > 0, let u−n = (u−1)n. It is easy to show that
for eacht ∈ Ter(Σ) there are sequencesn1, . . . ,nk ∈ Z−{0}, 1≤ i1 < i2 · · · < ik,
wherek≥ 0, such that

t =E xn1
i1
·xn2

i2
· · · · ·xnk

ik
. (1)
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(In casek = 0, the product is simply 1.) Thus in the modelT (E) the equivalence
classes are represented by elements of the formxn1

i1
·xn2

i2
· · · · ·xnk

ik
. 2

One can in fact show that the sequences(n j), (i j) in (1) are unique. This
can be used to decide when two terms are provably equal. A systematic method
for obtaining such decidability results is provided by the theory ofterm rewriting
systems.

For a signatureΣ with at least one constant symbol, considerT0(E) which is
defined asT (E) but Ter0(Σ) is used instead of Ter(Σ). (Exercise: What isT0(E)
in the case of Example 1.8? If new constants are added?)

Theorem 1.9 Let E be an equational theory over a signatureΣ, which has at least
one constant symbol. Then

(a) T0(E) |= E

(b) if A |= E, there is a unique homomorphismϕ : T0(E) → A .

Proof. (a): This is proved as in the direction(⇒) of Theorem 1.5, but usingT0(E)
instead ofT (E).

(b): Defineϕ : T0(E) → A by ϕ([t]) = [[t]]Aτ whereτ is some fixed variable
assignment (it does not matter which sincet has no variables). It is well-defined
because if[s] = [t], thenE ⊢eq s= t. Now A |= E, soA |= s= t, and hence in
particular[[s]]Aτ = [[t]]Aτ . Furthermoreϕ is a homomorphism, since

ϕ(FT (E)([t1], . . . , [tn])) = ϕ([F(t1, . . . , tn)])

= [[F(t1, . . . , tn)]]
A
τ

= FA([[t1]]
A
τ , . . . , [[tn]]

A
τ )

= FA(ϕ([t1]), . . . ,ϕ([tn])).

Now, if ψ were another homomorphism, it is easily shown thatψ([t]) = ϕ([t]) by
induction ont. 2

Because of this theorem the modelT0(E) is called theinitial model of the
theoryE.

Remark 1.10 For algebraic specification of programs one usually consider Σ-
algebras with many sorts (types). For instance, we may have asort A for an
alphabet and a sortS for a stack. The constants area,b,c : A (the letters of the
alphabet),nil : S (the empty stack), the function symbols arepop : S → S and
push : A×S → S. The equationsE are

pop(nil) = nil,

pop(push(xA, tS)) = tS
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(HerexA, tS indicate variables of the different sorts.) The definitionsand results
above easily extend to many-sortedΣ-algebras.

Exercises

1. Let A∗ be set of strings over the alfabetA. Describe this set as an algebra
with a binary concatenation operator and an empty set. LetB be another
alfabet. Show that each functionf : A → B∗ extends to a homomorphism
ϕ : A∗ → B∗ . (Hint: Letter for string substitution.)

2. The equational theory of semigroups is given byE1:

1 ·x1 = x1, x1 ·1 = x1,

x1 · (x2 ·x3) = (x1 ·x2) ·x3,

whereΣ = {1, ·}. Determine the equivalence classes inT (E1) analogously
to Example 1.8.

3. Try to find simple representatives of equivalence classesin T0(E) whereE
is as in Remark 1.10.

4. Restricting the equational logic and putting more requirements on the ax-
ioms suggests a proof search strategy. Call an equational theory E overΣ
instantiation closedif

(a) s= t ∈ E impliessσ = tσ ∈ E for each substitutionσ : X → Ter(Σ).

(b) s= t ∈ E impliest = s∈ E.

Let ⊢r denote the derivation relation which is as⊢eq but where derivations
are restricted to using only (ax.appl.), (cong), (refl) and (trans). Let⊢d be
the further restriction that (trans) is disallowed.

Consider an instantiation closed theoryE.

(i) Prove by induction on the height of proofs that for all termss, t

E ⊢r s= t =⇒ E ⊢r t = s.

(ii) Prove that for all termss, t and all substitutionsσ

E ⊢r s= t =⇒ E ⊢r sσ = tσ.

(iii) Conclude that
E ⊢eq s= t ⇐⇒ E ⊢r s= t.
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(iv)* Define E ⊢n
d s= t iff there are termss1, . . . ,sn−1 such thats1 ≡ s

E ⊢d s1 = s2 E ⊢d s2 = s3 · · · E ⊢d sn−1 = t.

Prove that

E ⊢eq s= t ⇐⇒ for somen≥ 1: E ⊢n
d s= t.

Hint: transform the proofs so that transitivity applications appear at
the end. Use transformations of the following kind, whereD,D ′,D ′′,
are proof trees.

D
s= t

D ′

a = b
D ′′

b = c
a = c (trans)

f (s,a) = f (t,c)
(cong)

⇓

D
s= t

D ′

a = b
f (s,a) = f (t,b)

(cong) t = t (refl)
D ′′

b = c
f (t,b) = f (t,c)

(con)

f (s,a) = f (t,c)
(trans)

1.2 Unification of terms

Unification is an important tool in term rewriting, automatic theorem proving, and
is fundamental for logic programming (Prolog). Unificationof terms amount to
equation solving in the term algebra Ter(Σ).

Example 1.11 Let Σ = { f ,g} with arities 2 and 1 respectively. Find a solution in
Ter(Σ) to the equation

f (x1,g( f (x2,x1))) = f (g(x2),x3).

A solution:x1 := g(x2),x3 := g( f (x2,g(x2))).

As in ordinary equation solving we are often interested in a general solution.
Over the term algebra such a solution is called amost general unifier. Indeed,
in the example above any other solution can be gotten from theone provided, by
instantiating the variables.

As explained in Section 1.1 substitutions can be regarded asΣ-algebra ho-
momorphismsσ : Ter(Σ) → Ter(Σ) determined by their values on the setX of
variables. A substitution that is given by a permutation of the variables is called
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a renaming substitution. Two substitutionsτ : Ter(Σ) → Ter(Σ) andσ : Ter(Σ) →
Ter(Σ) may be composedσ◦ τ as follows

(σ◦ τ)(t) = σ(τ(t)) = (tτ)σ.

We writeτσ for σ◦ τ.

Example 1.12 Let Σ = { f ,g} with arities 2 and 1 respectively. Consider the
substitutionsσ = {x2 := g(x1),x3 := g(x3)} and τ = {x1 := f (x2,x2)}. Then
(τσ)(x1) = σ(τ(x1)) = σ( f (x2,x2)) = f (σ(x2),σ(x2)) = f (g(x1),g(x1)), (τσ)(x2) =
g(x1) and(τσ)(x3) = g(x3). Hence

τσ = {x1 := f (g(x1),g(x1)),x2 := g(x1),x3 := g(x3)}.

On the other hand, by a similar computation,

στ = {x1 := f (x2,x2),x2 := g( f (x2,x2)),x3 := g(x3)}. 2

Generalising this example we have forσ = {xi1 := t1, . . . ,xin := tn} andτ =
{xi1 := s1, . . . ,xin := sn,x j1 := r1, . . . ,x jm := rm}, where the indicesi1, . . . , in, j1, . . . , jm
are all distinct, that

στ = {xi1 := tτ
1, . . . ,xin := tτ

n,x j1 := r1, . . . ,x jm := rm}

We say that one substitutionσ is more generalthan another substitutionρ iff
ρ = στ for some substitutionτ. In this case we writeσ ≤ ρ.

Exercise 1.13

(i) Check that the relation≤ is reflexive and transtive.

(ii) Prove that ifσ ≤ ρ andρ ≤ σ, then there is a renaming substitutionτ such
thatρ = στ. 2

A unifierof a set of termsT = {t1, . . . , tn} is substitutionσ which makes all these
terms equal, i.e.tσ

1 = · · · = tσ
n . A unifier σ of T is amost general unifier (mgu),

if σ ≤ ρ for any unifierρ of T . By Exercise 1.13 any two mgu’sσ andσ′ of
T are the same up to a renaming substitution (i.e.σ = σ′τ for some renaming
substitutionτ).

Note thatF(s1, . . . ,sn)
σ = F(t1, . . . , tn)σ iff sσ

i = tσ
i for all i = 1, . . . ,n. Hence

in order to solve one equation in the term algebra, we may haveto solve a system
of equations.
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The unification algorithm of Martelli-Montanari. The algorithm starts with
a finite set of equationsG = {s1 = t1, . . . ,sn = tn}, and outputs a most general
unifier σ for this set (regarded as an mgu of the set{F(s1, . . . ,sn),F(t1, . . . , tn)}
whereF is a function symbol), if there is any unifier, or reports failure otherwise.
The algorithm is non-deterministic and applies certain reduction rules to the finite
sets and stops at the empty set (/0), or with a failure (denoted #). Along the way
the answer substitutionσ is built up. From a successful computation

G1  G2 σ1 G3  G4  G5 σ2 G6  /0.

we extractσ = σ1σ2, the answer substitution. For a setG = {s1 = t1, . . . ,sn = tn}
we writeGσ = {sσ

1 = tσ
1 , . . . ,sσ

n = tσ
n}.

The Martelli-Montanari reduction rules are the following

1. G∪ {F(t1, . . . , tn) = F(s1, . . . ,sn)}  G∪ {t1 = s1, . . . , tn = sn} provided
F(t1, . . . , tn) = F(s1, . . . ,sn) is not an element ofG. (“Function decomposi-
tion”)

2. G∪{t = t}  G providedt = t is not an element ofG.

3. G∪{t = x}  G∪{x = t}, providedt is not a variable, and thatt = x is not
an element ofG.

4. G∪{x = t} {x:=t} G{x:=t}, providedx is a variable,x does not occur int
and thatx = t is not an element ofG. (“Variable elimination”)

5. G∪{F(t1, . . . , tn) = H(s1, . . . ,sm)}  #, if F andH are different function
symbols.

6. G∪{x = t}  #, providedx 6= t andx occurs int. (“Occur check”)

Example 1.14 We compute the mgu off (x1,g( f (x2,x1))) and f (g(x2),x3) using
the algorithm.

{ f (x1,g( f (x2,x1))) = f (g(x2),x3)}  {x1 = g(x2),g( f (x2,x1)) = x3}
{x1:=g(x2)} {g( f (x2,g(x2))) = x3}
 {x3 = g( f (x2,g(x2)))}
{x3:=g( f (x2,g(x2)))} /0

The answer substitution isσ = {x1 := g(x2),x3 := g( f (x2,g(x2)))}. 2
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Example 1.15 The termsf (g(x1),x1) and f (x2,g(x2)) are not unifiable.

{ f (g(x1),x1) = f (x2,g(x2))}  {g(x1) = x2,x1 = g(x2)}
{x1:=g(x2)} {g(g(x2)) = x2}
 {x2 = g(g(x2))}
 #

This computation fails by occur check, sincex2 occurs ing(g(x2)). 2

We state the following important result without proof:

Theorem 1.16 (Unification Theorem)A set of equations G= {s1 = t1, . . . ,sn =
tn} has an mgu iff it has some unifier. Moreover, if G has an mgu, theMartelli-
Montanari algorithm finds it, otherwise it stops and reportsfailure to find a unifier.

1.2.1 Pattern matching

Pattern matching may be regarded as a special case of unification: avariable free
terms is matched to thepattern term tif there is a unifierσ with

s= sσ = tσ.

For a termscontaining variables, we may first replace each variablex with a new
constant cx, and then match the modified terms∗ to t. The new constants occuring
in the resulting unifier may then be restored to variables again.

Example 1.17 The term f (0,g(2)) is matched tof (u,v) by σ = {u := 0,v :=
g(2)}.

The term f (x,g(u)) is matched tof (u,v) by τ = {u := x,v := g(u)}. The
intermediate step is to consider the variable free termf (cx,g(cu)), and the unifier
τ∗ = {u := cx,v := g(cu)}. Note thatτ is nota unifier of f (x,g(u)) and f (u,v).

However f (x,g(u)) cannot be matched tof (g(u),v) since cx andg(u) are not
unifiable.

Exercises

1. LetΣ = {a, f ,g,h, p,q} wherea is a constant,f ,g has arity 1,h, p has arity
2 andq has arity 3. For each of the following pair of terms compute anmgu
or show that no unifier exist.

(a) p( f (a),g(x)), p(y,y)

(b) p( f (x),a), p(y, f (w))

(c) p(x,x), p(y, f (y))
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(d) q(a,x, f (g(y))), q(z,h(z,w), f (w))

(e) p( f ( f (x)),h(g(x), f (a))), p( f (u),h(v, f (w))).

2. In which cases (a) – (e) in Exercise 1 does the first term match the pattern
of the second term?

12



2 Term rewriting systems

We shall be very brief and sketchy on this subject. We refer toBaader and Nipkow
(1999) or to Klop (1992) for a full account of the basic theory.

A term rewriting system (TRS) is essentially a way of assigning directions to
the equations of an equational theoryE, and then applying the equations only in
the prescribed directions. In some circumstances a TRS can be deviced forE so
that it can be decided whetherE ⊢eqs= t holds by making “mindless” applications
of the directed equations to the termss and t respectively and when no further
applications are possible check whether the end results arethe same. We shall
explain what “mindless application” means below.

First we give an example of a TRS. Consider the equational theory of semi-
groups (Exercise 1.2). The language isΣ = {1, ·}. The equations

1 ·x = x

x·1 = x

x· (y·z) = (x·y) ·z

may be given the natural directions

1 ·x → x

x·1 → x

x· (y·z) → (x·y) ·z

These are calledrewrite rules.
Consider the following applications of the directed equations, so calledreduc-

tions. We underline the subterms to which the rewrite rules have been applied

1 · (x2 ·x3)
(3)
−→ (1 ·x2) ·x3

(1)
−→ x2 ·x3

1 · (x2 ·x3)
(1)
−→ x2 ·x3.

(x2 ·1) ·x3
(2)
−→ x2 ·x3.

It is not possible to apply any further rules tox2 · x3 sincex2 andx3 are variables
and stand for arbitrary objects.

Let Σ be an arbitrary signature. Arewrite ruleoverΣ is a pair(s, t)∈ Ter(Σ)2,
written s→ t, so thats is not a variable andFV(t) ⊆ FV(s). A term rewriting
systemoverΣ is a finite set of rewrite rules overΣ.
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Example 2.1 Σ1 = {1, ·} andR1 = {1 · x1 → x1,x1 ·1 → x1,x1 · (x2 · x3) → (x1 ·
x2) ·x3} is the TRS for semigroups above.

We allow variable namesx,y,z,u,v,was well as the official variablesx1,x2,x3, . . .
of the setX.

Example 2.2 A term rewriting system for addition and multiplication:Σ2 =
{0,+, ·, s} andR2 consists of the following rules

x+0 → x

x+ s(y) → s(x+y)

x·0 → 0

x· s(y) → x·y+x

Let R be a TRS overΣ. For two termst1, t2 ∈ Ter(Σ) we say thatt2 has been
obtained by one-step reduction from t1 using R, in symbols

t1 →R t2

if t1 = C{z:=sσ}, t2 = C{z:=tσ] for some rule(s, t) ∈ R, some variablez, some sub-
stitutionσ and some termC with exactly one occurence ofz.

We write →∗ for the reflexive and transitive closure of→. We say thats
reduces to tif s→∗

R t.
We call a termt ∈ Ter(Σ) is callednormalwith respect toR if there is no term

s such thatt →R s.

Note that variables are normal with respect to any TRS.

Example 2.3 For TRSR1: 1 is normal. Each expression of the form

(· · ·((xi1 ·xi2) ·xi3) · · · ·xin)

wheren≥ 1, is normal. In fact these are all the normal terms.

Example 2.4 For TRSR2: The numerals 0, s(0), s(s(0)), . . . are normal.x1 +x2

andx1 ·x2 are normal. (Exercise: determine all normal terms)

A TRS R is said to beconfluentif for any termsr,s1,s2 with r →∗ s1 and
r →∗ s2 there is a termt such thats1 →

∗ t ands2 →
∗ t.

We note that if a terms is normal ands→∗ t, thens= t. Using this observation
have the following simple but important result.
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Lemma 2.5 If R is a confluent TRS, then normal forms are unique if they exist,
i.e. for any term r and normal terms s1,s2 with r →∗ s1 and r→∗ s2, it holds that
s1 = s2.

A TRS R is weakly normalisingif any term reduces to a normal term. It is
strongly normalisingthere are is no infinite sequence of terms such that

t1 → t2 → ·· · → tn → ·· ·

For a strongly normalising TRS any sequence of choices of subterms and ap-
plicable rules will thus eventually lead to a normal term. E.g. any “mindless”
application of the directed equation will give the result.

Moreover, this means that any strongly normalising TRS is weakly normalis-
ing.

Example 2.6 Let Σ3 = {0,1,2,3}. Consider TRSs given by the following rules
overΣ3.

R3,1 = {1→ 0,1→ 2} is strongly normalising but not confluent.
R3,2 = {1→ 0,1→ 2,2→ 1,2→ 3} is weakly normalising but not strongly

normalising.
R3,3 = {1→ 0,1→ 2,2→ 1} is weakly normalising and confluent.
R3,4 = {1→ 0,1→ 2,0→ 0,2→ 2} is neither weakly normalising nor con-

fluent.

For a TRSR let =R be the reflexive, symmetric and transitive closure of the
one-step rewrite relation→R. Thuss=R t if and only if s can be gotten fromt by
a series of one-step reductions possibly applying certain of them backwards.

A TRS iscompleteif it is confluent and strongly normalising. The importance
of complete TRSs is given by the following result.

Theorem 2.7 Let R be a complete TRS. Then the relation s=R t is decidable.

Proof. We note that by the confluence propertys=R t is equivalent to the existence
of somer with s→∗

R r and t →∗
R r. To decide the equalitys =R t we compute

normal formss′, t ′ with s→∗
R s′ andt →∗

R t ′ using the strong normalisation property
and thatR is finite. If s′ = t ′ then equality holds. Suppose thats′ 6= t ′ but thats=R t
still holds. Then for somer with s→∗

R r andt →∗
R r. Using confluence we finds′′

andt ′′ with

s′ →∗
R s′′

r →∗
R s′′

r →∗
R t ′′

t ′ →∗
R t ′′
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Now sinces′ andt ′ are normal we haves′ = s′′ andt ′ = t ′′ by confluence. But this
means thatr reduces to two different normal forms, which is impossible.Hence
actually,s=R t is false.2

Let E be an equational theory overΣ. Let Rbe a TRS overΣ. We say thatR is
a TRS for Eif for all s, t

E ⊢eq s= t ⇐⇒ s=R t.

A main result is now:

Corollary 2.8 Suppose E be an equational theory overΣ. Let R be a complete
TRS for E. Then the provability relation

E ⊢eq s= t

is decidable.

Proof. This follows sinceE ⊢eq s= t is equivalent tos=R t, which is decidable.
2

A complete TRS does not always exists for a given equational theoryE. How-
ever one can sometimes use theKnuth-Bendix completionprocedure to obtain a
complete TRS.

We say that a wellfounded partial order< on Ter(Σ) is areduction orderif

(a) sσ < tσ whenevers< t andσ is a substitution,

(b) C{z:=s} <C{z:=t} whenevers< t andC is a term with exactly one occurence
of z.

The Knuth-Bendix completion procedure (see Klop 1992) takes E an equa-
tional theory overΣ and a reduction order< on Ter(Σ). It may then produce a
complete TRS forE, or report that that it is not possible to orient the equations of
E, or it may go on forever searching for a TRS.

A main obstacle for the existence of complete TRS of a given equational the-
ory is the presence of commutativity axioms like

x·y = y·x.

They tend to be impossible to orient.
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