UPPSALA UNIVERSITET
Matematiska institutionen
Erik Palmgren

EXERCISES 1
Tillämpad Logik, ht-07
2007-08-30

Exercises 1, Applied Logic

1. Some review exercises in predicate logic to do (if necessary):
2.1: 1,3
2.2: 3,4
2.3: 2,3,4,7,13
2.4: 2,6,11,12
of the textbook (Huth and Ryan 2004).
2. Solve Post's correspondence problem for the sequence of pairs

$$
(001,0),(01,011),(01,101),(10,001) .
$$

(Hint: Not so easy if one gets started in the wrong way. One solution gives a binary string of total length 154 . Use a computer program if it gets too tedious ...)
3. (Definability) Let \mathcal{M} be a model for the language L and let $A=|\mathcal{M}|$ be its universe. A subset $S \subseteq A^{n}$ is (first-order) definable in \mathcal{M} if there is an L-formula φ with free variables among x_{1}, \ldots, x_{n} such that

$$
S=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}: \mathcal{M} \models \ell \varphi \text { and } \ell\left(x_{1}\right)=a_{1}, \ldots, \ell\left(x_{n}\right)=a_{n}\right\}
$$

A relation $R \subseteq A^{n}$ is definable in \mathcal{M} if the corresponding subset R is definable. A function $f: A^{n} \rightarrow A$ is definable in \mathcal{M} if its graph

$$
\text { graph } f=\left\{\left(a_{1}, \ldots, a_{n}, b\right) \in A^{n+1}: f\left(a_{1}, \ldots, a_{n}\right)=b\right\}
$$

is a definable subset in \mathcal{M}.
Show that the subsets, relations or functions in (a) - (h) below are definable in $\mathcal{N}=\langle\mathbb{N} ;+, \cdot, 0,1\rangle$ using as simple formulas as seems possible.
For instance the set of even numbers is defined by

$$
\left\{m \in \mathbb{N}: \mathcal{N} \models_{\ell}(\exists x) x+x=y \text { and } \ell(y)=m\right\}
$$

This also shows that the predicate x is even is definable. The function $f(x)=$ x^{2} is defined by

$$
\left\{(m, n) \in \mathbb{N}^{2}: \mathcal{N} \models \ell x \cdot x=y \text { and } \ell(x)=m, \ell(y)=n\right\} .
$$

(a) x is odd
(b) $y=x(x+1) / 2$
(c) $x \leq y$
(d) x divides y
(e) x is the sum of two prime numbers
(f) $z=\max (x, y)$
(g) ** $y=x$!. [Look up and use Gödel's technique of the β-function and the Chinese remainder theorem.]
(h) $y=2^{2^{2^{2^{2}}}}$
\triangleright Let L be a first-order language with finitely many symbols. A structure \mathcal{M} for L is called decidable, if there is an algorithm which for every closed first order formula φ in the language L decides whether $\mathcal{M} \models \varphi$ holds or not. A well-known example of an undecidable structure is the structure of natural numbers $\mathcal{N}=\langle\mathbb{N},+, \cdot, 0,1\rangle$.
4. (Definability and decidability) Recall that in automata theory one studies languages as subsets of strings over a fixed alfabet. Let $\Sigma=\{a, b\}$ be an alfabet, and let Σ^{*} be the set of finite strings. Thus

$$
\Sigma^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}
$$

Here ε is the empty string. Let $\&$ denote concatenation of strings, so $b a b a \& b b a=$ $b a b a b b a$. We may now regard $\left\langle\Sigma^{*} ; \&\right\rangle$ as a first-order structure with concatenation as the only operation. Find elementary propositions (formulas) over $\left\langle\Sigma^{*} ; \&\right\rangle$ that definies the following properties (note that = may be used)
(a) x is a substring of y
(b) x is an empty string (you may not mention ε)
(c) x is a string of length 1 (you may not mention 0 or 1) (Hint: use (a) and (b). How many substrings can such a string have?)
(d) x is a string of length 4 .

Consider now an extended structure $\left\langle\Sigma^{*} ; \&, *, a, b, \varepsilon\right\rangle$ where a, b, ε are constants (so they may be mentioned in elementary propositions) and moreover there is a "string duplicator" $*$ that satisfies the following

$$
\begin{aligned}
u * \varepsilon & =\varepsilon & & \text { (erase) } \\
u *(a \& v) & =u * v & & \text { (take a pause) } \\
u *(b \& v) & =(u * v) \& u & & \text { (make a copy) }
\end{aligned}
$$

Thus $a b * b a b=a b a b$ and $a b * a a=\varepsilon$.
(e) Prove that the structure $\langle\Sigma ; \&, *, a, b, \varepsilon\rangle$ is undecidable, by showing that if it was decidable, then we could decide $\langle\mathbb{N},+, \cdot, 0,1\rangle$ as well, contradicting a well-known theorem.
$(f){ }^{* *}$ If we remove the duplication operation from the structure in (e), does it become decidable? I.e. is the structure $\langle\Sigma ; \&, a, b, \varepsilon\rangle$ decidable?

