UPPSALA UNIVERSITET

Matematiska institutionen Erik Palmgren EXERCISES 2 Tillämpad Logik, ht-07 2007-09-04

Exercises 2, Applied Logic

The first problem is an example of a non-constructive result which is often used (implicitly) in mathematical analysis.

1. (König's lemma). A finite string over the alphabet $\{l, r\}$ is regarded as describing a path in a binary tree, starting from the root. Suppose that *P* is an infinite set of such paths. Show that there is an infinite string

 $d_1 d_2 d_3 \cdots$

such that for every *n*, the string $d_1 d_2 \cdots d_n$ is an initial segment of some path in *P*.

Suppose that there is an algorithm which decides whether a finite path $s \in \{l, r\}^*$ is in *P*. Is there any hope to find an algorithm which for each index *i* computes the value of $d_i \in \{l, r\}$? Discuss.

- 2. Prove the following in intuitionistic propositional logic
 - (a) $A \supset \neg \neg A$,
 - (b) $\neg \neg \neg A \supset \neg A$,
 - (c) $\neg \neg A \supset A, \neg \neg B \supset B \vdash \neg \neg (A \land B) \supset (A \land B),$
 - (d) $\neg \neg B \supset B \vdash \neg \neg (A \supset B) \supset (A \supset B)$,
 - (e) $A \wedge (B \vee C) \vdash (A \wedge B) \vee (A \wedge C)$.

Justify the judgements (a) and (e) by using Kolmogorov's interpretation.

3. Is it possible to justify the following judgement under the Kolmogorov interpretation?

$$\neg (A \land B) \vdash \neg A \lor \neg B$$

- 4. Prove formally in Heyting arithmetic
 - (a) $(\exists y)A(y) \lor (\exists y)B(y) \vdash_X (\exists y)(A(y) \lor B(y))$
 - (b) $A(0), (\forall z)A(\mathsf{s}(z)) \vdash_X (\forall z)A(z)$
 - (c) $(\forall x)(x+0=0+x)$