
UPPSALA UNIVERSITET EXERCISES
Matematiska institutionen BONUS PROBLEMS 2
Erik Palmgren Applied Logic, Fall 2009

2009-09-14

Constructive logic

CLTT refers to the March 2004 version of the handout Constructive

Logic and Type Theory, by Erik Palmgren. (Available on the webpage of
the course.) The BONUS PROBLEMS are marked (+) below. Solutions of
these are to be handed in at the latest on 21 September. Maximum bonus
for this set is 2.5%.

1. * Exercise 1.1 in CLTT.

2. The following lemma is an example of a non-constructive result which
is often used (implicitly) in mathematical analysis (and in computer
science!) when reasoning about infinite processes.

(König’s lemma). A finite string over the alphabet {l, r} is regarded
as describing a path in a binary tree, starting from the root. Suppose
that P is an infinite set of such paths. Show that there is an infinite
string

d1d2d3 · · ·

such that for every n, the string d1d2 · · · dn is an initial segment of some
path in P .

Suppose that there is an algorithm which decides whether a finite path
s ∈ {l, r}∗ is in P . Is there any hope to find an algorithm which for
each index i computes the value of di ∈ {l, r}? Discuss.

3. Exercise 2.1 in CLTT.

4. Exercise 2.2 in CLTT.

5. (+) Define a lambda term H : N → (N → N) → N so that

H(n)(f) = f(0) + · · · f(n − 1)

for f : N → N and numerals n : N.



6. * (+) Use the recursive formula for binomial coefficients to define a
lambda term f : N → N → N so that

f(n)(k) =

(

n

k

)

,

for 0 ≤ k ≤ n.

7. * (+) The Ackermann function ack : N → N → N can be defined by
the following recursion equations

ack(0)(n) = S(n)

ack(S(m))(0) = ack(m)(S(0))

ack(S(m))(S(n)) = ack(m)(ack(S(m))(n))

It can be shown that the Ackermann function grows faster than any
primitive recursive function. Show that it nevertheless may be defined
in Gödel’s system T (or the typed lambda calculus described in Chapter
2 of CLTT) with the help of the recursion operator rec. [Hint: expand
the third line of the definition.]

8. Exercises 3.1 (a-c,e) in CLTT.

9. Exercises 3.1 (h) in CLTT.

10. (+) Exercises 3.1 (j) in CLTT.

11. * Exercises 3.1 (d,i) in CLTT.

12. * (+) Exercises 3.1 (f,k) in CLTT.

13. * Exercise 3.2 (a,c) in CLTT.

14. (+) Exercise 3.2 (b) in CLTT.

15. Exercise 3.3.(a)

16. Do selected parts of Exercise 4.1 in CLTT (compare with Ex 3.1).

17. Three variants of the induction scheme for natural numbers:

(IND) A(0) ∧ (∀x)(A(x) → A(S(x))) → (∀x)A(x)

(C-IND) (∀x)[(∀y)(y < x → B(y)) → B(x)] → (∀x)B(x)



(LNP) ¬(∀x)C(x) → (∃x)[¬C(x) ∧ (∀y)(y < x → C(y))]

Here y < x is defined as the formula (∃z)(y+S(z) = x). These induction
principles are all equivalent in Peano arithmetic with classical logic.

(a) Prove (C-IND) from (IND) using only intuitionistic logic and the
assumptions

(H1) (∀y)¬(y < 0),

(H2) (∀x)(∀y)(y < S(x) ↔ y = x ∨ y < x),

(H3) (∀x)(x < S(x)),

(H4) (∀x)(∀y)(x = y ∧ P (x) → P (y)), where P (·) is a formula.

Hint: consider some A(x) of the form (∀y)(y < x → · · · ).

(b) (+) Prove the Least Number Principle (LNP) from (C-IND) using
only classical logic.

———


