UPPSALA UNIVERSITET
Matematiska institutionen
Erik Palmgren

Exercises and Hand-in Problems 3, Tillämpad Logik DV1

Hand-in problems are
1(a), 1(d), 2, 3(c), 5(c), 5(d), 6(c), 7(a).
of the exercises below. Solutions should be handed in by Thursday, May 13, 2004, clearly written and well explained ${ }^{1}$ in Swedish or English. (You may work in groups of three.)

1. Show that the following formulas are unprovable in IPC. This may be done by finding a suitable Heyting algebra and a valuation which give a value $\neq \top$ to the formula. Another strategy is to try to show that the formula implies (in IPC) a formula which is already known to be unprovable.
(a) $\neg(P \rightarrow Q) \rightarrow P \wedge \neg Q$,
(b) $(\neg Q \rightarrow \neg P) \rightarrow(P \rightarrow Q)$,
(c) $(\neg \neg P \rightarrow \neg \neg Q) \rightarrow(P \rightarrow Q)$,
(d) $(P \rightarrow Q \vee R) \rightarrow(P \rightarrow Q) \vee(P \rightarrow R)$.
2. Prove that in a Heyting algebra: if $a \wedge b=\perp, a \vee b=\top$, then $b=\neg a$. Thus every true complement is a pseudo-complement.
3. Prove that the following implications are valid in any Heyting algebra. (These are useful lemmas for the soundness theorem.)
(a) $h \leq a \wedge b$ implies $h \leq a$ and $h \leq b$,
(b) $h \leq a$ or $h \leq b$ implies $h \leq a \vee b$,
(c) $h \leq(a \rightarrow b), h \leq a$ implies $h \leq b$.
4. * Consider the set of open sets of the real line defined Section 10 of Constructive Logic and Type Theory. Compute the open sets (in terms of intervals):
(a) $(2,3) \rightarrow(1,4)$
(b) $(1,4) \rightarrow(2,3)$

[^0](c) $(1,3) \rightarrow(2,4)$
5. Use the tableau method to obtain either a proof or a counterexample to each of the following propositional formulas
(a) $P \rightarrow(Q \rightarrow P)$
(b) $(\neg P \vee \neg Q) \rightarrow(Q \wedge \neg R)$
(c) $((P \rightarrow Q) \wedge(Q \rightarrow R)) \rightarrow(P \rightarrow R)$
(d) $((P \rightarrow Q) \vee(Q \rightarrow R)) \rightarrow(P \rightarrow R)$

For further exercises, see Smullyan, p. 24.
6. Prove by the tableau method each of the following formulas in predicate logic
(a) $(\forall y)[(\forall x) P(x) \rightarrow P(y)]$
(b) $(\forall x) P(x) \rightarrow(\exists x) P(x)$
(c) $(\exists x)(P(x) \wedge Q(x)) \rightarrow(\exists x) P(x) \wedge(\exists x) Q(x)$
7. Determine the Skolem conjunctive normal form for each of the following formulas, and thereby its equivalent set of clauses. P and Q are predicate symbols.
(a) $\forall u[\forall x \neg \exists y P(x, y) \rightarrow \neg \forall x(\exists z P(x, y) \rightarrow \forall y P(u, y))]$.
(b) $\forall x(\exists y P(x, y) \leftrightarrow \exists z Q(z, x))$.

[^0]: ${ }^{1}$ Unsatisfactorily presented solutions may be returned ungraded.

