UPPSALA UNIVERSITET
Matematiska institutionen
Erik Palmgren

EXERCISES 3

Tillämpad Logik, ht-07
2007-09-18

Exercises 3 - Applied Logic

1. Lazy computation in Gödel's T. Reduce each of terms (s 0$)+(\mathrm{s}(\mathrm{s} 0))$ and $(\mathrm{s} 0) \cdot(\mathrm{s}(\mathrm{s} 0))$ to lazy normal form using the fewest possible number of steps/inferences. Use definition of addition and multiplication given in (Coquand, Dybjer, Palmgren: Type-theoretic foundations of constructive mathematics, 2007).
2. Abstract realizability of arithmetic. Find lambda term witnesses to the validity of the following propositions or judgements. Use Heyting Arithmetic with witnesses as decsribed on page 28-30 of (Coquand et al. 2007).
(a) $A \supset \neg \neg A$,
(b) $\neg \neg \neg A \supset \neg A$,
(c) $A \wedge(B \vee C) \supset(A \wedge B) \vee(A \wedge C)$.
(d) $A \wedge B \supset C \vdash_{X} A \supset(B \supset C)$.
(e) $(\exists y) A(y) \vee(\exists y) B(y) \vdash_{X}(\exists y)(A(y) \vee B(y))$
(f) $(\forall y) A(y),(\forall y)(A(y) \supset B(y)) \vdash_{X}(\forall y) B(y)$.
3. The Ackermann function ack: $\mathrm{N} \rightarrow \mathrm{N} \rightarrow \mathrm{N}$ can be defined by the following recursion equations

$$
\begin{aligned}
\operatorname{ack} 0 n & =\mathrm{s} n \\
\operatorname{ack}(\mathrm{~s} m) 0 & =\operatorname{ack} m(\mathrm{~s} 0) \\
\operatorname{ack}(\mathrm{s} m)(\mathrm{s} n) & =\operatorname{ack} m(\operatorname{ack}(\mathrm{~s} m) n)
\end{aligned}
$$

It can be shown that the Ackermann function grows faster than any primitive recursive function. Show that it nevertheless may be defined in Gödel's system T with the help of the recursion operator rec. [Hint: expand the third line of the definition.]
Can you compute a lazy normal form of ack 55 using your definition?
4. Propositions as ordinary sets (p. 35, Coquand et al. 2007). The proposition $(\forall n \in \mathbb{N})[n=0 \vee(\exists m \in \mathbb{N}) n=m+1]$ says that each natural number is 0 or a successor of another natural number. The corresponding set becomes

$$
(\Pi n \in \mathbb{N})\left[E_{n, 0}+(\Sigma m \in \mathbb{N}) E_{n, m+1}\right]
$$

Exercise: show that it contains exactly one element.

