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1 Introduction

Intuitionistic logic is a weakening of classical logic by atmg, most promi-
nently, the principle of excluded middle and the reducti@bdurdum rule. As a
consequence, this logic has a wider range of semanticapnetations. The moti-
vating semantics is the so called Brouwer-Heyting-Kolmogadnterpretation of
logic. The proposition#, B,C, ... are regarded as problems or tasks to be solved,
and their proof®, b, c,... as methods or (computer) programs that solves them.

¢ A proof-object, or just proof, foAAB is a pair(a,b) wherea s a proof for
A andb is proof forB.

e A proof for A— B is a functionf which to each proo& of A gives a proof
f(a) of B.

e A proof for AV Bis either an expressidnl(a) wherea is a proof ofA or an
expressiorinr(b) whereb is proof of B.

e There is no proof ofl (falsity).

e A proof of T (truth) is a symbot.

We use lambda-notation for functions. For an expresajahin the variable
X, Ax.a(x) denotes the function which taassigns(t). We also use the equivalent
notationx — a(x), familiar from mathematics.

We use thesequent notation A B for B follows from A We identify proof-
objects forA - B with proof-objects forA — B. Then we may find proof-objects
for the following rules ofintuitionistic propositional logic(IPC) listed below.
Each rule is valid in the sense that if we find proof-objectslie premisses above



the line, then there is a proof-object for the conclusiorowahe line. For exam-
ple the ( E) rule below is verified thus. Suppoges a proof-object oA — B
anda s a proof-object ofA. Thenapply(f,a) is a proof-object oB.

Rules for IPC
A B AAB B
A/\B(/\I) A (AE1) A/\B(/\E2>
Ah
B A>B A
Asg N STE T (0F)

A" B"

Ao VMD) ghg vy AYE =S (VE,hy,ho)
1
~ (LE)

Negation is defined byA= (A— 1 ). To obtain classical propositional logic
CPC we add the rule aéductio ad absurdurfRAA)
—h

1
L (RAAN)

Equivalently we may add, as an axiom, grnciple of excluded middIPEM)

AV -A (PEM).

Exercises

1.1. ProveA — ——Ain IPC.
1.2. ProveA — B — (=B — —A) in IPC.

1.3. Prove that adding all instandesB — —A) — A — B as axioms to IPC makes
RAA provable.

1.4. Prove that over IPC the rule reductio ad absurdum amdipte of excluded
middle are equivalent.



2 Algebraization of logic

Classical propositional logic was first described in an algiebmanner by George
Boole. Aboolean algebras a distributive lattice with a complementation opera-
tion (see Gratzer 2003). The basic example is the poweP &€} of subsets of a
fixed setX, with intersectiom, unionU as the lattice operation®,andX being
the bottom and the top element respectively. The compleatientoperation- is
the complement relative :

A={xeX:x¢A}.

Recall that each finite boolean algebra is isomorphic to sawepsetP({1,...,n})
wheren > 0. However, infinite boolean algebras need not be isomotplpower
sets as the following example shows.

Example 2.1 Consider the s&t which consists of the subse®sf N that are either
finite, or whose compleme&is finite. Notice tha® andN = 0 are members of
C. It is straightforward to check th&t is closed under intersection, union and
complementation. Itis thus a boolean algebra, since thates that hold in the
boolean algebr&(N) also holds irC.

It is rather clear that the elements@©fcan be coded as strings as following
kind

0 -0 011010011 —1011

meaningd, 0 =N, {1,2,4,7,8} and{0,2,3} = {1,4,5,6,...}, respectively. Thus
C is countably infinite. However for any infinite boolean alggelof the power

set form?(M), we must have tha¥l is infinite. Thus?(M) is uncountable and
cannot be isomorphic tG for size reasons.

We have seen that one of the characteristics of intuitimnisgic is that not
every proposition is true or false. For subsets this meaatsibt every subset has
a complement.

Example 2.2 LetLz = {0,{1},{1,2}} C P({1,2}). This is a distributive lattice
with the operations) andU, the bottom element. = 0, and top element =
{1,2}. HoweverA = {1} lacks complement, i.e. there is @oc L3 with

ANC=_1 AUuC=T.

Example 2.3 A subset of the euclidean line C R is said to beopen if for ev-
ery pointx € A, there is an intervala,b) C A such thatx € (a,b). For instance
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intervals of the form(a,b), (a, ), (—,b) are open sets. However the intervals
[a,b], [a,+), (—o0,b] are not. It can be checked (Exercise) that theXset such
open subsets is a distributive lattice with operations and bottom and top el-
ementsl = 0, T = R. In fact, any union of open sets is an open set. It can be
shown (Exercise) that there are only two element,iwhich have complements,
namelyl andT. Define forA B € O the open set

(A—B)=|J{ue0:UnACB}.
Now (almost) by definition, for all € O
UNACB<«=UC (A—B)
Define thepseudo-complementA of Ato be(A— L). Thus
-A=J{uce0:UnA=0}.

Clearly AN —-A = 1, but not necessarilAU—A = T. For instance, we have
—(1,2) = (—,1)U(2,»), s0(1,2) U—(1,2) is the real line except the numbers 1
and 2. The pseudo-complemeri is the largest open set which does not intersect
A

-A A -A
) )

Definition 2.4 An abstractopologyis a setX together with a se® of subsets of
X (conventionally called thepen set®f the topology) satisfying the conditions

(01) e 0O, X € 0,
(02) ifU,V € O,thenU NV € 0O,
(O3) for any index set, if Uj € Oforalli € I, thenui¢ U; € O.

(Note that (O3) actually implie8 € O by takingl = 0.)
The definitions olU — V and—-U apply to the open sets of any topological
space.

Example 2.5 The euclidean plan&? has the standard topology given ty:C R?
is anopen setff for every pointp = (x,y) € U there is a rectangle

(a,b) x (c,d) CU

which contains the poirp. Then we can, for instance, show that the discy) €
R?:x? +y? < 1} is open (Exercise).



Example 2.6 Let P = (P, <) be a partially ordered set. Declare a sul$et P
to be open, ify € U wheneveix € U andx <y. These setyjpper setsform the
so-calledAlexandrov topologpn P. (Exercise: check O1-3.)

Example 2.7 Every setX can be equipped with thdiscrete topology.In this
topology every subset of X is considered open.

We shall here to some extent follow the presentation of Btoeland van
Dalen 1988.

Definition 2.8 A Heyting algebrds a partially ordered s¢H, <) with a smallest
elementl and a largest elemeritand three operation'sandVv and— satisfying
the following conditions, for alk,y,z€ H

(i) x<T
(i) xAy<x
(i) xAy<y
(iv) z<xandz<yimpliesz<xAy
(v) L<x
(Vi) x<xVy
(vii) y<xvy
(viii) x<zandy < zimpliesxvy<z
(ixX) z< (x—=y)iff zAX<LY.

Define—x= (x— 1).
A distributive lattice L= (L, <,A,V, T, L) is a partial order with operations
that satisfies (i) — (viii) above and the two distributive law
XA (YVZ) =XAYVXAZ XV (YAZ) = (XVY)A(XV2).

The second law is actually a consequence of the first.

Lemma 2.9 Every Heyting algebra is a distributive lattice.



Proof. We have by (vi)yAx <yAxVzAxand hence by (ixX)y < x— yAXVzZAX.
Similarly z<x— yAxV zAX. Hence by (viii):yVvVz<x— yAxVzAxand using

(ix)

(YVZ)AX S YAXVZAX.

Fromy <yVvzandyAx<yandyAx<xfollowsyAx < (yVz) Ax. Similarly
YAX< (YVZ) AX. ThusyAxVzAX < (YVZ) Ax. O

We leave the proofs of the following results to the readed, @mly give some
hints.

Theorem 2.10 Every Boolean algebra is a Heyting algebra.
Proof. Define(x —y) = -xVy. O

Theorem 2.11 Every Heyting algebra, where\xx—x = T for all x, is a Boolean
algebra.

Theorem 2.12 Every finite distributive lattice is a Heyting algebra.

Proof. Let H be a finite distributive lattice. Define
(x—=y)=\/{acH:arx<y}, (1)

and note that the join is finite

The formula (1) is very useful for computing implicationsarfinite lattice.
Note the special case
-x=\/{aceH:aAx< 1}.

Example 2.13 Here are some examples of distributive lattices. The fiestosd
and fourth lattices on the top row are boolean algebrasgvihd other lattices are
not. (Exercise: in each such case find the elements whiclclamplements.)
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Recall that the standard semantics of a formula of classioglgsitional logic
is given by assigning the propositional variables a truahwe inBy = { L, T}
or {0,1} or any other boolean algebra with two elements. Such anrassigt
V:P— {1, T} is called avaluation. (HereP is an infinite set of propositional
variables, which we shall usually den®€Q,R, P'.Q',R,....) It is then extended
to all formulas recursively

V(T) = T

V(1) = L
V(AAB) = V(A)AV(B)
V(AVB) = V(A)VV(B)
V(A= B) = V(A —V(B)

The operations\, v, — on the right hand side are given by the usual truth-tables
for connectives. A formuld is valid if V(A) = T, for all valuationsv : P — B,.
The completeness of propositional logic says tha provable iffA is valid.

We may also replac®, by an arbitrary boolean algebB and extend the
notion of valuation to this algebra. We say theais B-validif V(A) =T, for all
valuationsv : P — B.

By noting that the usual proof of soundness only depends caldbieact prop-
erty we get

Theorem 2.14 For any boolean algebra B, if A is provable in classical prspo
tional logic, then A is B-valid.



Thus we have the following version of the completeness traor

Theorem 2.15 The formula A is provable in classical propositional logicA is
B-valid, for each boolean algebra B.

Of course the usual version of the theorem states that we esayat to check-
ing validity for B = B>, the two-element boolean algebra.

Intuitionistic propositional logic (IPC) is given semargti;n the same way,
but the truth values belong to a Heyting algebtanstead of boolean algebra.
An H-valuation is a functiorV : P — H, extended to all propositional formu-
las according the same recursive equations as above. A l@nig H-valid if
V(A) =T for all H-valuationsV. These notions are extended to sets of formulas
in the obvious way. More generally, we say thdas anH-consequencef (a finite
set of formulas) if V(AT <V(A). We denote this relation by =y A

Lemma 2.16 (Soundness) et H be a Heyting algebra and let VP — H be a
valuation. Ifl = Ain IPC, then

MEn A

Proof. The lemma is proved by induction on the height of derivation&C.
Thus we need to check that the rules of IPC preserve the ofdér Suppose the
last rule in the derivatiol - Awas (\l). ThenA = BAC and we have derivations
M FBandl, - C for subsetd 1,I> C . By induction hypothesis we then have
V(A1) <V(B) andV(AT2) < V(C), whenceV(AT) < V(A1) AV(AT2) <
V(B) AV(C) =V(BAC) by the definition of valuation and meet in a Heyting
algebra. Suppose the last rule applied in the derivatidnteA was (— 1). Then
A=B—Candlr U{B}FCand so

V(AN AV(B)=V(ATuU{B}) <V(C)
by the induction hypothesis. But then by the definition-ein H we have
V(AT) <V(B)—=V(C)=V(B—C),

where the equality holds by the definition of valuation. Foeanore example,
supposd - Ais derived with last rule\(E) so that there is a derivatidn- BV C
with T U{B} - Aandl U{C} F A. Then by induction hypothesis we have

V(A\T)<V(BVC)=V(B)VV(C),

and
V(/\AF)AV(B) <V(A), V(AF)AV(C)<V(A).

8



That is,

VIAT) < V(AN ANV(B)VV(C))
= (V(AD)AV(B)V(V(AT)AV(C))
< V(A).

The other rules are immediately verified using the corredpmnproperties of a
Heyting algebrad

Interestingly, for intuitionistic logic it is not possibte restrict the truth-values
to one fixedfinite Heyting algebra to obtain the completeness. We have

Theorem 2.17 The formula A is provable in IPC iff A is H-valid, for each Hiegt
algebra H.

Proof. (=) If Ais provable in IPC, this means there is a derivatior & Hence
T <V(A) for anyH-valuationV, by Lemma 2.16. ThuA is H-valid.

(«=) (Outline of proof). Construct the following Heyting algebi_etF be the
set of IPC-formulas. Define an equivalence relatiori-doy

(A~B) <= A+ BinIPC.

LetH =F/ ~ be the set of equivalence class@s= {B € F : A~ B} with respect
to ~. Partially ordeH by

[A] < [B] <= FA—BinIPC.
Setly =[Ll]andTy = [T]. Define operations by
AN [Bl=[AAB]  [AJvu[B]=[AVB]  [A]—H [B]=[A— B

Now one can check thaH, <, An,VH,—H,LH, TH) iS @ Heyting algebra. For
example we verify the left to right direction of conditiorx)iin the definition of
Heyting algebra: Suppog@| A [B] < [C], i.e. [AAB] <[C], i.e. HFAAB— C.
Then we have a derivation

AAB"

C

AANB—=C (=1.h)



which we can change into a derivation
~h1  sh
A~ B
ANB (Al
_C_
B—~C
A— (B—C)

(—> |,h2)
(—) |,h1)

Thatis- A— (B—C), or[A] < [B— C| = [B] — [C].
Now, we may define a valuatiah: P— H by V (Q) = [Q]. Thus, by induction,
for any formula
V(A) =[A].

If now V(A) = Th, we have that A<» T and thus- Ain IPC.O

A formula A is intutionistically validif A is H-valid for each Heyting algebra
H.

There is a sharpening of Theorem 2.17 which is useful fortetihg counter-
models.

Theorem 2.18 The formula A is provable in IPC iff A is H-valid, for each fmit
Heyting algebra H.

Proof. See Troelstra and van Dalen 1988.

Thus to prove that a particul&formula is unprovable in IPC, we may search
for a finite Heyting algebrél and a valuatioV : P — H such tha¥/ (A) # T. The
pairH,V will then be a counter-model tA.

A crude decision method for intuitionistic validity of progitional formulas
is thus to look in parallel for proofs, or finite counter-mésjevhich may both be
generated systematically. In fact, the decision problemrfwitionistic validity
is much harder than for the classical case. We refer to (3t@end van Dalen
1988) and (Troelstra and Schwichtenberg 2000) for furteading.

Example 2.19 The formulaP \ =P is not provable in IPC. Consider the latticg
of Example 2.2. Assigi (P) = {1}. We haveV (—P) = —-{1} =0, so

V(PV-P)={1}U0= {1} # {1,2} = T.

Thus by the soundness part of the completeness theorengrthal& cannot be
provable in IPC.
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The same assignment shows also that
V(=—P = P)=V(——P) =V(P) =T =V(P)=V(P) # T
Thus——P — P is not provable in IPC either. Note however that
V(-PV-=P)=0UT=T.
In fact, for any choice okfs-valuationV, this holds. Hence.:PV ——P is Lz-valid.

Example 2.20 Let Lg be the first lattice on the second row in Example 2.13. In
this lattice there is an elemeatwith —aVv ——a# T. This shows thatPVv ——P
is notLg-valid, and thus not provable in IPC.

Example 2.21 The two elementa andb just abovel in Lg satisfies
—(anb) =T # —av -h.
Thus—(PAQ) < (-PVv —=Q) is unprovable in IPC.

Exercises

2.1. Do the exercise in Example 2.13.

2.2. For each latticél in Example 2.13 find a finite s&and a subseé¥l C P(S)
such that the Hasse diagram(M, C) is the same as that &f. The third lattice
in the first row corresponds to the set and subset given in Rlkai?2.

2.3. Prove that in a Heyting algebra:ainb= 1,avb= T, thenb= —a. Thus
every true complement is a pseudo-complement.

2.4*. Prove that the set of open sets, as defined in Exampl&o28 a distributive
lattice. Prove that the union of any set of open sets is opemclGde thatO is
Heyting algebra.

2.5. Show that the following formulas are unprovable in IPGisTmay be done
by finding a suitable Heyting algebra and a valuation whicte @i value£ T to
the formula. Another strategy is to try to show that the folarimplies (in IPC) a
formula which is already known to be unprovable.

(@ —(P—Q) = PA-Q,

(b) (Q——-P) = (P—Q),

© (-=P—=-Q —(P—Q),

d (P-QVR) = (P—=Q)V((P—R).

2.6* Complete the proofs of Lemma 2.16 and Theorem 2.17.
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3 Kripke semantics

Kripke semanticer possible worlds semanti@s another complete semantics for
intuitionistic logic (van Dalen 1997; Troelstra and van &al1988). It can be
obtained as a special case of the Heyting-valued semasticdi@ws.

First we show how a partial order generates a Heyting algélates = (S <)
be a partially ordered set. Farc Sdefine

at={beS:a<b},

i.e. the set of elements aboee We say that a subsét of Sis upper closed
if att CU for anya € U. For any partially ordered s&the setUC(S) of upper
closed subsets &ordered by inclusion form a Heyting algebra. Herandu are
meet and join operations respectively. PoB € UC(S) define the upper closed
set

A—B={xeS: (xt)NACB}.

Then— satisfies 2.8.(viii): FoA,B,C € UC(S),
CC(A—B) & (eC)(xT)NACB
& (WeC)(VWeA(x<y=yeB)
& (™xeCnA)(xeB)
< CNACB

The third equivalence follows sinéeis upper closed.
Now several of the lattices encountered can be reconsthageUC(S), Q)
for some suitable chosen partial orcger

Example 3.1 1. The rightmost lattice in the top row of Example 2.13 is isom
phic to
UC({1,2,3},<)={0,{3},{2,3},{1,2,3} }.

Here< is the usual order of natural numbers.
2. The leftmost lattice in the bottom row is isomorphic to

UC({0,a,b}, <) ={0,{a}, {b},{a,b},{0,a b}}.
Here 0< a and 0< b and no other relations hold except reflexivity.

Next, for a first order formulaA and a valuatioV : P — UC(S) define the
forcing relation
PlIFA<=qetp€V(A).
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ThusA is valid under the valuatio¥ iff pll- Afor all pe S SinceV(A) is upper
closed we have the so-calletbnotonicity property

pllFAandp<qg=qllF A

Note that if S has a smallest elemepb then validity unde is equivalent to
po IF A, due to this property.

Remark 3.2 An intuitive reading of the above is to think 8fas the set of possible
worlds and the relatiom II- A asA is true in world p. The judgemenp < g
indicates thaty is accessible fronp. A further suggestive reading is to think of
worlds asstates of knowledgend thenp < qindicates that] is a state of greater
knowledge tham. This is in accordance with the monotonicty property.

Remark 3.3 The relationllF is most often writtenit-, but we use this notation
to distinguish from the notation for the Kripke models fapdal logicsin Huth
and Ryan (2004). Their notion of model is more general sinee'dlacessibility
relation” between worlds may be an arbitrary relation.

The logical connectives are then interpreted as follows.

Theorem 3.4 The forcing relation(ll-) = (ll-y) for a given valuation V satisfies
the conditions:

(i) pli-Piff peV(P) for propositional variables P.
(i) plIF L never holds.
(i) p IF AABIff pll- A and pi- B

(iv) plFAVBIff pli-Aor pl-B

(v) pli-A— Biff (Vg> p)(qll- A— qll-B).

Proof. (i) is immediate by the definition. For (ii) note thptl- L is equivalent to
peV(L)=0. (iii) and (iv) follows sinceV (AAB) =V (A)NV(B) andV (AVB) =
V(A)UV(B). To prove (v): We have I A — B iff

PTNV(A) SV (B)
iff
(Va=p)(qeV(A)—qeV(B)).
Then (v) follows by definition of the forcing relation

The following are especially noteworthy consequences kkxplains why
negation does not have the classical meaning in Kripke nsodel
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Corollary 3.5 (i) pllF=Aiff forall g > p, qll- A is false.

(i) plIF —=—Aiff for each g> p there exists P> g so that ril- A.

Remark 3.6 The common approach to Kripke models is to take the condition
()—(v) as a definition op I A by recursion on the formul&. Note thatv (P) de-
termines in which “worlds” the propositional varialias true. Under the reading
as states-of-knowledgé(P) tells at which states of knowleddris known to be
true.

Example 3.7 A Kripke model may be specified by drawing a Hasse diagram
decorated with the propositional letters which are trueiféérént nodes. Below

is the Kripke model with partial ord&8= {0, a, b} as in Example 3.1.2, and where
V(P) = {b} andV(Q) = {a,b}.

a Q b P, Q

0

A formula A is thus valid in this model iff OF A. We note the following:
0)F Q, OlF =Q, OllF =—Q. Thus 0OlF =QV ——Q but OIF QV —-Q. We have
0l =P and Olf- =—P, so Ol =PV =—P.

In the style of Huth and Ryan (2004) the above model is graphipeesented

as follows.
O

0

Remark 3.8 The Kripke models presented here and those of Huth and Ryan
(2004) may be related as follows. Define the labelling fuorcasL (x) = {P € P:
xe€V(P)}. Define a translation of IPC formulas into modal formulasdgursion:

A* = Afor A propositional variableA = 1. orA= T,
(AAB)* = A* A B,

14



(AVB)* = A* VB,
(A— B)* =O(A* — BY).
As examples of translation, note that
(-PVP)*=0(-P)VP (-P— Q)*=0(0(-P) = Q).
The following is easily proved by induction on formulaf IPC.

Theorem 3.9 xII- A'if, and only if, X- A*

Exercises
3.1* Let Sbe a partially ordered set. Show th&E(S) is a boolean algebra iff the
partial order satisfiep = q whenevemp < g.

3.2* Does each finite distributive lattice have the fotii(S) for some partial
orderS?

4 Complete Heyting algebras

Existential and universal quantification over a set may ganded as a (possibly)
infinitary generalisation of the disjunction and conjuaatioperations. This is
easy to describe algebraically.

A Heyting algebra is completg/cHA) if each of its subsets has a supremum,
that is if for anyA C H there is\/ A € H such that for alb € H:

\/A<b<«= (vacA)a<h

(ForA={a :i€l}wewrite\;,a=VA)
Note that the supremum 6fn a Heyting algebra i, and forA={ay, ..., an},
VA=V a =aV---Van Thus each finite distributive lattice is a cHA.

Theorem 4.1 The open sets of a topolog@¥(, O) form a complete Heyting alge-
bra, where inclusion is the order and

Vui=Ju uUav=Unv (U-=V)={JWeo:WnUCV}.O

i€l i€l
Proposition 4.2 In a cHA the infimum of a set A is given by

N\A=\/{xeH:(vacAx<a}.
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Proof. Exercise.d

For complete Heyting algebras there is an infinitary gersatabn of the dis-
tributive law

Proposition 4.3 For a subset A of an cHA and any element b
bA(\/A) =\/{bra:acA}. (2)

Proof. (>) follows sincebA (\VA) > bAaforanya e A
(<): To show the inequality

bA(\/A) <\/{bra:acA},
note that it is equivalent to
(VA < (b—\/{bra:acA}),

by the—-axiom. This is in turn equivalent to

(vacA)a< (b—\/{bra:acA}),
which by the—-axiom is equivalent to

(vacA)(aAb<\/{bra:acA}).
This is however obviously true, so we are donke.

There is also a converse: any complete lattieatisfying the infinite distribu-
tive law (2) becomes a cHA by letting

(a—b)=\/{xeX:xAa<b}.

This law is used to show that< a — b impliesc A a < b (Exercise).

Exercises

4.1. Prove Proposition 4.2. (It is easier if one notes thatré@sult holds for any
partial order which is complete in the sense that each ofilisets has supremum.)

4.2. Prove Theorem 4.1.
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