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Constructive logic is based on the leading principle that
(I) proofs are programs.
In constructive type theory it has later been joined withftiiéher principle that
(II) propositions are data types.

The latter is also called th@ropositions-as-types principld he meaning of these
principles is on first sight far from obvious. The purpose loége lectures is
to explain these and their consequences and applicatiasmiputer science. A
particular aim is to provide background for the study of Nfaitof type theory, or
similar theories of dependent types, and for using pro@eking systems based
on such theories. Proofs carried out within constructivgidanay be consid-
ered as programs in a functional language, closely relatedg. ML or Haskell.
The importance of this is the possibility to extract from ams&ence proof (that,
e.g., there are arbitrarily large prime numbers) a prograat tinds or constructs
the purported object, and further obtain a verification thatprogram terminates
(finds some number) and is correct (finds only sufficientlgéaprime numbers).
The combination of construction and verification of progsamas raised consider-
able interestin computer science. Systems supportingtaisnown asmtegrated
program logics.The combination of a program, and proofs of some of its prop-
erties, is callegroof-carrying codeand is of potential importance for improving
the trustworthiness of software in network based programgn(if. Java program-
ming).

*Lecture notes for a course in Applied Logic (Tillampad lodik1, datavetenskapliga pro-
grammet). This is an extension and translation of origires in SwedishKonstruktiv logik,
U.U.D.M. Lecture Notes 2002:LN1. The author is grateful émrrections and suggestions by
Peter Dybjer, Thierry Coquand and Fredrik Dahigren.



Constructive logic has a history well before the advent etebnic comput-
ers. Around the turn of the century 1899-1900 there arisedtfabout the con-
sistency of the axiomatic and logical foundations for thetedrt mathematics that
had started to develop with the support of set theory. Bedtfdaussell had 1903
with his well-known paradox shown that unrestricted fonmabf sets from con-
cepts may lead to outright contradictions$s there a set that consists of all sets
that are not members of themselvesfswer: No.) Also other principles in use,
such as the Axiom of Choice, had been discovered to haveuitwetand unnat-
ural consequences, even though no paradoxes where knowmseédram them.
Ernst Zermelo showed 1908 that the set of real numbers mayehevdered. It
was among many mathematicians considered as a seriousifsciensis of the
subject, known as th&rundlagenkrisis In that mood of time the outstanding
Dutch mathematician, and founder of modern topology, L.Brduwer started a
critical examination and reconstruction of the foundasifor mathematics, which
went further than previous attempts, and included the v@gicland not only the
axioms. By the introduction of higtuitionistic mathematichie wanted to put
mathematics on a secure and intuitive footing. His idea Watdvery proof must
built on a so-calleagnental constructionAt that time (1910) there were of course
no programming languages, and not even a mathematicahnaitelgorithm, but
it turned out that his notion of mental construction couldifterpreted as algo-
rithmic construction in a precise way. This requirement Brduwer to reject a
logical law that had been taken for granted since Aristatiamely thePrinciple
of Excluded Middleor Tertium Non Datur This states that for every proposition
A, eitherAis true orAis false, in logical symbols:

AV A (PEM).

For concrete, finitely checkable, propositions there waeason to doubt the law.
The problematic case, according to Brouwer, is wiAeoontains quantification
over an infinite set, for instance the set of integers. Brausesnonstrated that
it was possible to develop mathematics also without thecjpie of excluded
middle, and that it in many cases lead to more informativeiasigihtful proofs.
The immediate followers of Brouwer were not very numerous] his use of the
theory of choice sequences, which is inconsistent withsatas logic, repelled
many mathematicians from his philosophy. Later develogmehconstructive
mathematics avoid this theory, and its results are immelyiainderstandable and
acceptable to mainstream mathematics (Bishop and Bridg8S, Bridges and
Richman 1987).



1 Non-constructive proofs

We shall illustrate how the principle of excluded middle sed in some non-
constructive existence proofs, and how this may lead todks bf algorithmic
content. Here is a famous standard example, chosen fomidisity rather than
mathematical interest.

Proposition 1.1 There are irrational numbers a and b such th&tis an rational
number.

Proof. The numbenr/2 is irrational (non-rational). Consider the numhéfﬁ.
By the principle of excluded middle it is either rational oraitional. If it is ra-
tional, we may finish the proof by exhibitirg= b = /2. If it is irrational, let

a= \@ﬁ andb = /2. ThenaP is rational, indeed we have

& — (vV2')V2— (V22— 2.0

Note that in this existence proof it was not decided whichha& humbers
a=+2ora= \/Qﬁ, with b= v/2, that actually gives the intended example. One

may actually show, using deeper mathematical theory,\t@a\? is irrational, but
the standard proof requires several pages.

Many classical existence proofs are indirect, and starpff®se that there
IS no objectx such that ...”. The rest of the proof is devoted to show that a
contradiction arises from this assumption. Here is a sinegiemple involving
infinite sequences.

Proposition 1.2 Each infinite sequence of natural numbers

ai, a,as,. .., ;...

has a minimal term, i.e. there is some n such thatay for all k.

Proof. Suppose that there is no minimal term in the sequence. Foy evdexk
we may then findK > k with ax > ay. Letk; = 1. By assumption there is then
ko > ki with ay, > a,. Again, by the assumption, we firkg > ko such thaty, >
ay,. Continuing in this manner we obtain an infinite sequekce k, < ks < ---
such that

Ay > A, > Ay >

This sequence of natural numbers decrease by at least arferuswery step, so
a, <ap—(n—1).
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Puttingn = a; + 2, we thereby find a term in the sequence less than 0, which is
impossible.O

This existence proof gives no information whatsoever wiieeeminimal term
is to be found. Not only the proof of this result is non-couastive, but the result
is essentially non-constructive. Consider for examplegbguence obtained in
the following way: given a description of a Turing machineamn input string,
let ax be O if the machine has terminated aftesteps, and 1 otherwise. If we
would be able to find the minimum of this sequence, algoritathy, we could
also solve the general halting problem algorithmicallywdwger this is known to
be impossible.

This kind of “information-less” existence proofs are notommon in mathe-
matical analysis. For instance certain results on theexcst of solutions to differ-
ential equations build on such proofs (Cauchy-Peano edstproof). There are
rather simple examples of ordinary differential equatjamisose solutions cannot
computed from the parameters, though there are theorstbations (cf. Beeson
1985)

Constructive mathematics and logic are founded on the itlsiaeixistence is
taken more seriously than in classical mathematics: toegtbat a certain object
exists is the same as giving a method for constructing itrd tsealso the possibil-
ity of further requiring the method to be effective accoglio some complexity
measure (Nelson 1995, Bellantoni and Cook 1992). Such eoatplrestrictions
gives a quite different kind of mathematics, not very wellastigated as of yet.

Exercises

1.1. Recall that an algebraic real number is a real numbectwisi a root of a
polynomial with integer coefficients. Such numbers are edioander the usual
arithmetical operations. Any real number which is not alget is calledtran-
scendentalThe numbergandrtare transcendental. Prove, using only these facts,
thate+ mtor e— 1tis transcendental. (It is unknown which one itis, or if both a
transcendental).

1.2 (Konig's lemma). A finite string over the alphab@tr} is regarded as de-
scribing a path in a binary tree, starting from the root. Siggptha® is an infinite
set of such paths. Show that there is an infinite string

dydpds- - -

such that for every, the stringdi1ds - - - d, is an initial segment of some pathih

1.3 (Brouwer’s Fan Theorem). Consider a set of p&bkach that ifwis in P, then
So is each of its initial segments, i.ewf= uv € P, thenu € P. An infinite path
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d = didods3- - - is said to bebarred by R if there is somen such that; - - -d, ¢ P.
Show that if every infinite patH is barred byP, thenP must be finite.

1.4. Prove thab = 2log, 3 is irrational. Use this to give a constructive proof of
Proposition 1.1.

2 Typed lambda calculus

We give a short introduction to lambda calculus, with emphas those parts
which are useful in making the notion of mental constructitathematically pre-
cise. For a comprehensive presentation of the theory, seiéyiand Seldin 1986
or Barendregt 1992.

The untyped lambda calculus was introduced in 1932 by therfsane logician
Alonzo Church, originally intended as a foundation for neattatics. Soon after
that it came to be used as one of the mathematical modelsfgpuiability. John
McCarthy took this calculus as a starting point when desigtihe programming
language LISP in 1960. Later generations of functional mogning languages,
such as ML and Haskell, incorporated also strict typing oictions. These lan-
guages are closely relatedtygped versionsf the lambda calculus.

We introduce and study a typed lambda calculus. First themalf type is
defined inductively.

Definition 2.1 Types.
() Nisatype (the type of natural numbers).
(i) If AandB are types, thefA x B) is a type (the product ok andB).

(ii) If AandB are types, thefA — B) is a type (the type of functions frodto
B).

(iv) If AandB are types, thefA+ B) is a type (the disjoint union oA andB).

Examples of types are
(N— (NxN)) (N+ (N xN))—N).

To reduce the number of parentheses we use the conventior thads stronger
than+, which in turn binds stronger than-. The above types are accordingly
written

N —-NxN N+NxN— N.

Moreover, we use the convention thatassociates to the right, so thét— N —
N should be rea®N — (N — N) and not(N — N) — N.
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Remark 2.2 The type constructions (i) — (iii) are familiar from ML, buteathere
denotedhat , A * B andA -> B, respectively. In Haskell the product AfandB
is written(A,B) .

Next we define the terms, or “programs”, of lambda calculuse mostimpor-
tant constructions arabstractionAx.b, andapplication,apply(f,a). Abstraction
forms fromb a new functiom\x.b depending on a chosen variable.blhas the
type B andx has the typ&\, then the new function has the type— B. In Ax.b
the variablex is bound. The applicatioapply(f,a) applies a functionf to an
argument. The connection between these constructions is given bfj-tiuée

apply(Ax.b,a) = bfa/x], 1)

where the right hand side means thditas been substituted fain b. A condition
for the validity of the rule is that no variables ambecome bound by performing
the substitution. As for first-order logic, the name of theubd variables are
inessential. This is expressed by theule:

Ax.b = Ay.bly/x], (2)

wherey is a variable not occurring ib. By employing this rule we can ensure that
the B-rule is applicable. In MLAx.b is written as(fn x => b) , and in Haskell
thisis\x > b .

Another important construction igairing: if a has typeA andb has type
B, we may form the pair of thes@,b), which is of typeA x B. There are two
projections, or selectors, that extract the first and secongponent from this pair

#1(<a7 b>) =4, #2(<a7 b>) =b. (3)

The third type construction is the disjoint uniéi- B of two types. Itis intuitively
the union ofA and B, but with a marking of the elements, that indicates from
which of the types the element comes, the left or right typéig may be needed
if A=B.) The type has two constructoird andinr. If a has typeA, theninl(a)
has typeA+ B. If b has typeB, theninr(b) has typeA+ B. To express that
each element has one of these two formiga) or inr(b), we introduce a case
construction, or a discriminatoghen. If f has typeA — C andg has typeB — C,
thenwhen(d, f,g) is of typeC. It obeys the computation rules

when(inl(a), f,g) = apply(f,a),  when(inr(b), f,g) = apply(g,b).  (4)

In ML there is no primitive type construction which behavasta However we
may define the type construction as

datatype ('a,’b) sum = inl of 'a | inr of 'b
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Whereas in Haskell this would be
data Suma b =1Inla|Inrb

The natural numbers are most easily represented using magayion: 0 has
type N; if n has typeN, then its successo§(n), is of the same typ&. The
number 3 is for instance represented by the t&(®(S(0))). Such a term is
called anumeraland is written in3 in brief form. We introduce an operatesc
which allows functions to be defined by a generalised fornrimhive recursion,
or structural recursion. Fof of type A andg of typeN — A — A the following
equations are valid

rec(0,f,g) = f, ©))
rec(S(n),f,g) = g(n)(rec(n7fvg))' (6)

Next the terms are defined formally. We use the abbreviatiof for a being
a term of typeA.

Definition 2.3 Lambda terms.

For each type\ there are infinitely many variableé,y?*, 7%, ... of that type.
If f: A— Banda:A, thenapply(f,a):B.

If XA is a variable andh : B, thenAx”.b: A — B, and the variable® is bound.
If a: Aandb: B, then(a,b) : Ax B.

If c: Ax B, then#(c): Aand #(c) : B.

If a: AandBis a type, therinl(a) : A+B.

If b: BandAis a type, therinr(b) : A+ B.

Ifd: A+B, f: A— Candg:B— C, thenwhen(d, f,g) : C.

Ifa:N, f: Aandg: N — A — A, thenrec(a, f,g) : A.

We shall often omit type information from variables, or atbkerms, when it may
be inferred from the context. The expressigsply(f,a) is abbreviatedf (a).
The abtractiom\x. binds most loosely, whence the expressionf(a) is read
Ax.apply(f,a), whileapply(Ax.f,a) is written (Ax.f)(a).

Lambda calculus is aaquational theoryi.e. a theory where only equalities
between terms are dealt with. Then logical formulae are éxpsessions of the
form s=1t, wheres andt are terms of the same type. As axioms we assume
all instances of the equalities (1), (2), (3), (4), (5), (6da =t. The rules of
derivation are

1=t 1=t th=t3

to=1 t1 =13



1=1 th=1 th=1
ty[t/X] = to[t/X] t[t1/y] = t[t2/y] MA L = AxAty
whose only purpose is to make calculations possible in quiession. Using these
one may calculate as expected.

Example 2.4 Composition of functiond.et
comp =def A FETC NGB AR (g(x)).

This term has typéB — C) — (A— B) — A — C. We havecomp(f)(g)(x) =
f(9(x)).

Example 2.5 The predecessor functigrd : N — N is defined by
pd =def AX.rec(X, 0,AN.Ay.n).

We have
pd(0) = rec(0,0,An.Ay.n) =0

and

pd(S(x)) = rec(S(x),0,An.Ay.n)
= (An.Ay.n)(X)(rec(x,0,An.Ay.n))
= (Ay.X)(rec(x,0,An.Ay.n))
= X

Example 2.6 Multiplication by 2.Define
double =gef AX.rec(x,0,AN.Ay.S(S(y))).
We havedouble(0) = 0 anddouble(S(x)) = S(S(double(x))).

Example 2.7 Representation of integerket Z = N+ N and letinl(m) symbolise
the negative number (m+ 1) while inr(n) symbolises the non-negative number
n. One easily checks that this term changes sign of an integer:

neg =def AZwhen(z, Au.inr(S(u)),AV.rec(Vv,inr(0),An.Ay.inl(n))).

That is we haveeg(inl(m)) =inr(S(m)), neg(inr(0)) = inr(0) andneg(inr(S(m))) =
inl(m).



Example 2.8 Define a lambda terrh of type (A — A) — N — (A — A) which
has the property that if applied to a numenahs follows, then

L) (M) = A F(F( (X))
Here the number of’s in the right hand side is. Observe that the right hand side
corresponds to the composition dfwith itself n times. To achieve this we use
the recursion operator

| =gef A f.AN.rec(n,Ax.X, Am.Ag.comp(f,Q)).

Remark 2.9 It is natural to regard the equalities) as computation relations, or
reduction relations, directed from left to right, such tfaatexample #((a,b)) =a

is read #((a, b)) computes to aln this manner we may regard the typed lambda
calculus as a programming language. It has the unusualpydpatall programs
terminate To prove this formally is very complicated, see for instartindley
and Seldin 1986, for a proof concerning a simplified calcultiee fact that all pro-
grams terminate implies that a programming language is nohd complete, i.e.
there is a Turing machine computable function which canmotoe represented
as a lambda term. (Cf. Exercise 2.5 below.) However, theubadccontains all
computable functions that can peoved to terminateén the first order theory of
Peano arithmetic.

Remark 2.10 In pure untyped lambda calculdke only programming construc-
tions are abstraction and application. It has, as the nadieates, no types so
each term may be applied to any term whatsoever, includieddhm itself. For
example, (Ax.X(x))(Ax.x(X)) is a well-formed term. Employing thg-rule the
same term is obtained in one computation step! This meandhéee are non-
terminating programs in the calculus. Despite its extremmpbcity the untyped
calculus is Turing complete. It is however not easy to dertrates this, and its
was first done by Turing in 1936, building on results of S.Ceéle.

Exercises

2.1 Verify the equalities in Examples 2.6, 2.7 and 2.8.
2.2 Construct a lambda tere1 N — N — N such that

&0)(0) = S(0)



This is thus a function which may be used to decide whethemnatoral numbers
are equal.

2.3 Show that each primitive recursive function may be sated by a lambda
term.

2.4 1tis known that the Ackermann functian N x N — N, defined by

a(o,n) = S(n)
a(S(m),0) = a(m>5(0))
a(S(m)7S(n)) = a(m,a(S(m),n)),

grows to quickly for being a primitive recursive functionroe that it neverthe-
less may be defined in the typed lambda calculus with the Hetlpeorecursion
operatorrec. [Hint 1: expand the definition cd(S(m), n) in the third line of the
definition. Hint 2: define a functiob : N — N — N such tha&(m,n) = b(m)(n).
Example 2.8 may also be useful.]

2.5 (a) Letf : Nx N — N and letg(n) = f(n,n) + 1. Prove that there is nm such
that f(m,n) = g(n) for all n. This is the archetypical diagonialisation argument.

(b) Prove thag is computable, iff is computable.

(c) Suppose that the lambda terms contain sufficient infaonao deter-
mined their type in a unique way. This may be done by furnigltiive operators
apply, when, rec,inl andinr with type information:apply g, whena g c, reca,inla g
andinrapg (see Definition 2.3). Argue informally that the followingrfction is
totally defined and computable

of typeN — N, andk is the value ot (n).

k if min base 2 is a character-code for a lambda term
f(mn) =
0 otherwise.

Use the fact that(x) always terminate with a numeral as value wheis a nu-
meral. (We presuppose that special symbols. are character coded in some
appropriate way.)

(d) Show using (a) — (c) that there is a computable functiorckvibannot be
computed by a term in the typed lambda calculus (presentédschapter).

3 Constructive interpretation of the logical constants

According to Brouwer’s idea every mathematical theor®must rest on a (men-
tal) constructiora. The constructiom may be regarded aswitnessto the truth
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of A. We shall here use the lambda terms which were introducechapt@r 2

as such constructions. This basic constructive interpogtavas further clarified
by A. Heyting (a student of Brouwer) and by A.N. Kolmogoroki€tfounder of

modern probability theory). Hence it is called tBeouwer-Heyting-Kolmogorov-
interpretation,or BHK-interpretation for short.

It should be pointed out that the class of constructions tslinoted to the
lambda terms that we have introduced so far, but may be estewthen further
construction methods are discovered (cf. Remark 3.4). &aer some limits. One
may be lead to think that this is a construction

f(n) = 1 there aren consecutive 7’s in the decimal expansiormpf
~ | 0 otherwise.

This is, a priori, not a constructive function as no one has)(fpund an algorithm
that can decide whether there areonsecutive 7’s in the decimal expansiorrof
or not. Case distinction is allowed only if it can be decidédatively which case
IS true, for given parameters.

BHK-interpretation. We explain what it means thatis awitnessto the truth
of the propositiorA, by induction on the form oA. This will be expressed more
briefly asa is a witness to Aor thata testifies A

e | has no witnesses.

e ptestifiess=t iff p= 0 andsandt are computed to the same thing. (Here
s andt are supposed to be natural numbers, or some similar finitegng
mathematical objects.)

e ptestifiesAABIff pis a pair(a,b) wherea testifiesA andb testifiesB.

e p testifiesA — B iff pis a function which to each witnessto A gives a
witnessp(a) to B.

e p testifiesAV B iff p has the formnl(a), in which casea testifiesA, or p
has the forminr(b), in which case testifiesB

e p testifies(¥Vx € S)A(X) iff p is a function which to each elemedte S,
provides a witnesg(d) to A(d).

e ptestifies(3Ix € S)A(X) iff pis a pair(d,q) consisting ol € Sand a witness
qto A(d).
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A propositionA is valid under the BHK-interpretatiomgr is constructively
true, if there is a constructiop such thatp testifiesA.

Note that this use of the word “witness” extends its usagdassical logic
about existence statements. One may say that 2 is a witn€sg)id = 4 being
true. The established standard terminology is rather tdlsatyp is aprooffor A,
and the constructiop is calledproof-object.But to avoid confusion with formal
derivations we use here, for pedagogical reasons, the wibngss

Here follows some examples of BHK-interpretations. We wusgstructions from
typed lambda calculus.

Examples 3.11. p = Ax.xis a witness to the truth & — A. This is clear, since
p(a) = (Ax.X)(a) = aand ifa testifiesA, then so doeg(a).

2. Awitness tAAAB — BAAs given by the constructioh= Ax.(#(X), #1(X)).

3. Consider the proposition — A. A witness to this is an arbitrary function
f such asf (x) = 42: Suppose thatis a witness tal. But according to the BHK-
interpretationl. has no witness, so we have a contradiction. By the absuedity |
anything follows, in particular that 42 is a withessAo

Negation igdefinedas—A =gef (A — L). To prove—A amounts to proving that
Aleads to a contradiction. As usual we defe- Bto be(A— B)A(B— A).

Example 3.2 The contraposition lawA — B) — (=B — —A) is valid in under
the BHK-interpretation. Suppose thiatestifiesA — B. We wish to find a witness
to (-B — —A),i.e.(B— L) — (A— 1). Suppose therefore thgttestifies—B
anda testifiesA. Therebyf(a) is a witness td, and henceg(f(a)) is a witness
to L. The constructioa.g(f(a)) thus testifies-A. Abstracting org it is clear
thatAg.Aa.g(f(a)) testifies=B — —A. The construction

Af.agAag(f(a))
is finally the witness to the law of contrapositiof.

Suppose that we have a witngsto the truth of the proposition
(Vxe S (Tye T)AXY). (7)

Then we have for each € Sthat p(a) testifies(3y € T)A(a,y). But p(a) is a
pair (c,q) wherec € T andq testifiesA(a,c). It follows that #(p(a)) testifies
A(a,#1(p(a))). Hencef(x) = #1(p(x)) defines a function such thak.#>(p(x))
testifies(Vx € S) A(x, f(x)). This gives a method for computirygfrom x.

A proposition of the form (7) may for instance be a specifmanf a program,
whereSis the type of input datd; is the type of output data, adx,y) describes
the desired relation between input and output. The witpessv gives a program
f which satisfies the specificatign
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Remark 3.3 The Principle of Excluded MiddigPEM)
AV -A

is not obviously valid under the BHK-interpretation, sivee would need to find a
method, which given the parametersAndecides whethek is valid or not. If we
restrict the possible constructions to computable fumstjove may actually show
that PEM is not constructively true. It is known that thera igrimitive recursive
functionT such thafT (e,x,t) = 1 in caset describes a terminating computation
(tis, so to say, the complete “trace” of the computation) ferTlaring machine

with inputx, and having the valu& (e, x,t) = 0 otherwise. By a suitable coding,
the arguments td may be regarded as natural numbers. The halting problem for
e andx may now be expressed by the formula

H(eX) =qef (3t € N) T (e, x,1) = 1.
According to PEM
(Vee N)(vxe N)H(e,x) vV -H(eX).

If this proposition were to have a computable witness, thercauld decide the
halting problem, contrary to Turing’s well-known resulattthis is algorithmically
undecidable. The principle of indirect proogéductio ad absurdurtRAA)

can be shown to be equivalent to PEM within intuitionistigity so it is not valid
under the BHK-interpretation either

We have seen that a witness to the truth of a proposition manederded
as a program, by letting the constructions be lambda termsthé following
chapter we show how proofs of a propositidrcarried out following the rules of
intuitionistic logicalways gives rise to a withess0 A,

The second leading idea, to consider propositions as dpé&stys realised in the
following limited sense. If the witnesses to the truth of positionA have typeS,
the witnesses tB have typeT, and the witnesses ©(x) have typeJ, then

e the witnesses t& A B have typeSx T,
e the witnesses td — B have typeS— T
e the witnesses td\ B have typeS+T,

¢ the witnesses t@vx € N)C(x) have typeN — U,
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e the witnesses t¢3x € N)C(x) have typeN x U

The witnesses te=t have typeN. Sincel has no witnesses, we could formally
let these have typH as well. Conceptually there are good reasons to introduce a
specialempty typeExtend Definition 2.1 with

0is type.

The empty typd) has no elements. The constructign D — Ais used to express
that0 is at least as empty as any other type, namel§),hiis an elemert, then
every other typé\ has an elemenj[c).

According to the above it is clear that a ty@ecorresponding to a proposition
A may contain terms that are not withessesAtoFor instance, the proposition
A1 = (Vn € N)n = n? has corresponding tydg — N. It contains the termix.0,
which is not a witness téy;.

It would be desirable to be able to identify propositionshwdata types in such
way that a propositioA has a witness if, and only if, it is non-empty regarded as
a data type. The logician H.B. Curry realised that for (iiuiistic) propositional
logic a formula could be made to correspond exactly with a&typ introducing
type variables,Y, ... that may stand for arbitrary types, empty or non-empty; see
Curry and Feys 1958. W.A. Howard extended, in 1969, Curgésito universally
quantified propositions. The propositions-as-types [jpleds sometimes called
the Curry-Howard isomorphisnfin particular, if further relations hold between
the reduction rules of the proofs and the programs; see Simsra000). A fully
fledged version of the propositions-as-types principle €amly with the intro-
duction in 1971 of the type theory of Per Martin-L6f. In thisdalater work it
emerged how this principle could be generalised to manyrdtiggcal construc-
tion, even those belonging to higher set theory.

For propositions containing individual variables the assi®d types becomes
much more complicated. In the example above the proposition = n® should
be a empty typ&, = 0 for n > 2 and a type containing 0, for instan§g= {0},
whenn = 0,1. This requires so calledependent typeslhe typeS, depends on
n e N, an element in another type. We return to type theory in Ghrapt

Remark 3.4 It is also possible to use untyped terms as constructionsimAn
portant method is Kleene’s recursive realisability intetption, where the con-
structions are indices (codes) for partial recursive fiomg (cf. Troelstra och van
Dalen 1988). These indices may be regarded as programs forgTmachines.
It may be argued that construction methods beyond thesesaessary if one ac-
cepts the Church-Turing thesis on computability. While¢bastructions in typed
lambda calculus, or Martin-L6f type theory, may be undesdtdirectly and in-
dependently of other theories, the properties of the urttygmastructions need to
justified within some meta-theory.
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Exercises

3.1 Prove that the following propositions are valid under BHK-interpretation
(a AAB— AandAANB—B
(b) A— (B— AAB)
(c) A—AvBandB— AVvB
(d) (A—C) —((B—C) — (AVB—C))
(e) A— (B—A)
() (A~ (B—C))— (A—B)— (A—C))
@ L—A
(h) A(t) — (Ix e D)A(X)

(i) (vxe D)(A(x) — B) — ((Ix € D)A(x) — B)), wherex does not occur free
in B

() (¥x € D)A(X) — A(t)

(k) (vxeD)(B— A(x)) — (B— (¥x € D)A(x)), wherex does not occur free
in B.

These are the logical axioms for (first-order) intuitioragogic. In addition there
are the modus ponens rule, and the generalisation rule: Aaterive(Vx € D)A.

3.2 Show that the following are constructively true:
@ —A—-A
(b) =(AVB) < -AA—B.
() ~(3xe D)A(X) « (Vx € D)—A(X)

3.3 Does any of the following (classical valid) proposisdrave constructive wit-
nesses? Discuss!

(@) —(¥xe D)A(X) — (Ix € D)—-A(X).
(b) =(AAB) — —-AV -B.

15



4 Intuitionistic logic
We assume that the reader is familiar with some system ofaladeduction for

predicate logic; see van Dalen 1997, Huth and Ryan 2000 osé¢iah997. Here
is one such system based on derivation trees.

Derivation rules:

A B AANB ANB
5 () SOS(AEL) REE(AED)
AN
B A—B A
m(* I,h) — B (—E)
A gh
A B AvB C
AVE (VI1) AVE (VI2) c (VE,hy, hy)
N

1 1
A (LE) —a (RAAN)

This is the propositional part of the rules. Note that a disghd assumptioA is

denotedd” in the derivation, wheré is a symbol that identifies those assumptions
which are discharged at the same time. The symbol is plasedéthe rule which
does the discharging, and has to be unique.

(YX)A (v) Alt/X] (VE)
A
Alt/X (IX)A C
A (an) c (3E,h)



The rules for the quantifiers have certain restrictions. (%) the condition
is thatx may not be free in undischarged assumptions alfovdhis blocks a
derivation of
X=0— (¥X)x=0. (8)

For (E) the restriction is thax may not be free il or in undischarged assump-
tions other than those marked with This blocks derivations of

(IX)A — (VX)A. 9)

The above rules constitute a system ¢tassical predicate logi¢with equality).
If the rule RAA is omitted, we get a system fmtuitionistic predicate logic.

Validity under the BHK-interpretation. We show that the rules of thatu-
itionistic subsystem are valid under the BHK-interpretation, thatfigye have
witnesses for the propositions above derivation bar therwaveconstruct a wit-
ness for the proposition below the derivation bar. The noted : A is used to
express that is a witness toA. We presuppose that the quantification domain
is D. To make an assumptioh is interpreted as making the assumption that a
variablex is a witness t@\, i.e.x: A.

a:A b:B c:AANB c:AAB

(a,b): AANB (A1) #1(c): A (nEL) #(c):B (nE2)
XA
b:B c:A—B a:A

Ax.b:A— B(—> 1) apply(c,a): B (—E)
a:A b:B
n@ - AvE Y wmave (V12
hy hy

XA y:B

c:AvB d:C e:C
when(c,Ax.d,Ay.e) : C

(VE,ha,h2)

17



c:_ L

I(c): A (LE)
a:A c: (Y™)A
Axa: (Vx)A () apply(c,t) : Alt/X] (VE)
ﬁh
a: Alt/x c:(30A  d:C
(t,a): (Ix)A 3 d[#1(c),#(c)/x,y] : C (3E,h)

We have shown

Theorem 4.1 The rules for intuitionistic logic are valid under the BHKterpretation.

Example 4.2 We derive the contraposition law in intuitionistic logic

—h3 —h
hy LBA (- E)
(—E)

= (=1,

(_>|7h2)
-B — —A

and then do the BHK-interpretation:

hs a:A

f:A—B

g:-B ha f(a):B
o(f(a): L

Aag(f(a)):—-A

AgAag(f(a)): —-B— —A

Af.AgAag(f(a)): (A— B) — (-B— —A)

h
(—E)
(—E)
(—1,hy)
(—1,hp)

(—1,h3)

Example 4.3 We derive and then make a BHK-interpretation(6k) (AAB) —
AN (3x) B. Herex is not free inA.

18



y:AAB
m*& | #2<y):B<AE2|>
h, M)A (X #(y)) 1 (3x)B (A1)
2:(X)(AAB) *  (A(Y). (x#2(¥))) (AA(IB '
(22 (D Faa(2) (AN B )

N2 (1 (a(2)), (#(2) B2} - ((ANB) — A (KB

(What does the witness on the last line do?)

Remark 4.4* To indicate what open assumptions there are available ateng
position in a proof tree one usesquent notationThe expression

Al ANmL-B

states thaB is proved under the open assumptidys. .., A,. The order of these
assumption does not matter, and the same formula may oceerraséimes, but
the markershs,...,h, have to be distinct. See Troelstra and Schwichtenberg
1996 for a formulation of natural deduction using this niotat Under the BHK-
interpretation the marker becomes superfluous and may lecegpby variables

X1 AL .. Xt AnE b B. (10)

Model theory of intuitionistic logic.* We have seen that the intuitionistic deriva-
tion rules are valid under the BHK-interpretation. Howewer this kind of se-
mantics there is no completeness theorem (van Dalen andstreo&988). Intu-
itionistic logic is complete for Beth-Kripke-Joyal semigst see van Dalen 1997
for an introduction. This semantics has the same functiomaaski semantics
for classical logic and is very useful for demonstratingt thdogical formula is
unprovable in intuitionistic logic. (For instance one magky give negative so-
lutions to Exercise 3.3.)

Non-logical axioms: induction. The BHK-semantics has only been applied to
pure logic above. Itis also possible to verify some nondataxioms to be valid,
for instance the induction scheme for natural numbers. Therme may also be
stated as an elimination rule. We now assume that the donaueamtification is

N. The induction rule
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(induction h)

A(t)
may easily be given a BHK-interpretation with the help of tbeursion operator:

h

y : A(X

g

b: A(0) c: A(:S X))

rec(t, b, AX.Ay.C) : A(t) (induction h).

Exercises

4.1 Deduce 3.1 (a)—(k) in intuitionistic logic. (Use the sdoess theorem and
compare to the constructions you obtained in Exercise 3.1.)

4.2 Deduce 3.2 in intuitionistic logic.

4.3* Prove———A < —An intuitionistic logic.

4.4 Show that the false formulae (8) and (9) are provablehafrestrictions on
quantifiers rules are removed.
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5 Brouwerian counter examples

In this section we present a common way to show that a praposg construc-
tively unprovable. There are certain simple logical prples, that are trivially true
in classical logic, but which have no constructive proofse3e are therinciples

of omniscienceoncerning infinite binary sequences

1001100010--.

An (infinite) binary sequencis formally a functiona : N — {0,1}. We consider
here two such principles, tHanited principle of omnisciencand thelesser lim-
ited principle of omniscience

(LPO) For all binary sequenceseitherdna, =1 orvna, = 0.

(LLPO) Leta be a binary sequence with at most one occurrence of 1. Yhep, =
O orvnaoy1 =0.

It may easily be shown, constructively, that
LPO= LLPO.

In a recursive realisability interpretation LLPO is falss;d hence so is LPO
(Troelstra and van Dalen 1988). One may also convince onagahtuitive con-
siderations that LLPO does not have a constructive proot oLbe the binary
sequence defined lmy, = 1 if nis the first position in the decimal expansionrof
commencing a run of 100 consecutive 7s, apd= 0 in other cases. A construc-
tive proof of LLPO would immediately give a method for decigiwhether the
run is never started at an odd position, or is never started avven position.

If Pis a theorem in classical mathematics whose constructivk we doubt,
we may try to show tha® implies of one the principles LPO or LLPO. In case we
succeed in this, we should give up looking for a construgbngef of P.

Exercises

5.1 Establish the implication LP&> LLPO in intuitionistic logic, in particular
without using PEM or RAA.

5.2 Prove using intuitionistic logic that Theorem 1.2 ineglLPO.
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6 Classical and intuitionstic proofs

We have seen that proofs in intuitionistic logic have theadmble property that
programs may be extracted from them. Most naturally ocogrproofs, in mathe-
matical text books or journals, rely as they stand on sometslassical logic. A
natural question is whether there is some mechanical médrdranslating clas-
sical proofs to constructive proofs. It is clear that suchhrods must have some
limitations in view of the counter examples of the previongputers. Kurt Godel
and Gerhard Gentzen showed that there is a method for pagisal proofs, and
certain simple theories, if the proposition prow&anay be substituted by a clas-
sically equivalent propositioA*. This substitute may not have the same meaning
from a constructive point of view.

In classical logic, the logical constants (connectives gquiahtifiers)d andV
are actually unnecessary, since we have the following jevequivalences

AVB < —(-AA-B) (11)
(IX)C «— —(¥x)—C (12)

for arbitrary formulaeA,B,C. The fact is that if we take the right hand sides as
definitions of the corresponding logical constants, ang oske RAA,(_LE) and
the introduction and elimination rules fer, — andV, then we get a complete
system for classical predicate logic (see e.g. van Dale@1¥9formula of pred-
icate logic where the only logical constants used are, — andV, is called a
non-existential formula(We think of AV B as a form of existence statement.)

Define theGddel-Gentzen negative translation® by recursion on non-existential
formulae:

o 1 ¥=1,

e R(t1,...,tn)" = ==R(ty,...,t) , if Ris a predicate symbol,
e (AAB)" = A* AB,

e (A—B)"=A" — B,

e ((VX)C)* = (¥x)C*.

It should be clear that the only thing this translation acégeis to insert two
negation sign in front of every predicate symbol. Obvioualis provably equiv-
alent toA* using RAA.

Example 6.1 Let R be a binary predicate symbol. The formula
A= (VX)(3y)(R(xy) VR(Y, X))
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is classically equivalent t8 = (Vx)—(Vy)——(=R(x,y) A =R(Y,x)). The Godel-
Gentzen translatioB* is

(V%)= (7y) 2= (===R6y) A ===R(Y; X))

Theorem 6.2 Let A be a non-existential formula. If A is provable in classi
predicate logic, then Ais provable in intuitionistic predicate logic.

Proof. A formal proof goes by induction on derivations. Since thegfrrules are
identical for the systems, save for RAA, one needs only tegro

A A (13)

in intuitionistic predicate logic, for each non-existaftiormulaA. This is done
by induction on the formuld, using the following theorems of intuitionistic logic.
F—a-l — 1,
F—=—=--B — ——B,
--A— A -—-B—BF--(AAB) — AAB,
--B—BF--(A—B)— (A— B),
(VX)(—!—!A—> A) F —|—|(VX)A — (VX)A.

We leave their proofs as exercises for the reader.

A non-existential formul& is callednegativeif every predicate symbol if is
immediately preceded by a negation. For such a formula guegicate symbol
in the corresponding translatiok” will be preceded by three negations. Intu-
itionistically, it holds that-——-B < —B. Consequently, every negative formula is
equivalent to its own Gddel-Gentzen interpretation. Weehav

Corollary 6.3 Let A be a negative, non-existential formula. If A is proeaiol
classical predicate logic, then it is also provable in intonistic predicate logic.

Theorem 6.2 may be extended to some thedrriesuch that ifA is provable in
classical predicate logic using axioms frdmthenA* is provable in intuitionistic
predicate logic from the axioms d@f. (T = 0 is thus the theorem proved above.)
An important example i$ = PA, the first-order theory of natural numbers, known
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as,Peano arithmeticlt has the following axioms:

(VX)X =X

() (Vy)[x=y—y=X

(M) (VYY) (V2 [x=yAy=2—Xx=17

(V) (Vy) [x =y — S(¥) = S(y)]
(VX)(VY)(V2)(YU)[X=ZAYy=U— X+Y=Z+U]
(VX)(VY)(Vz)(Yu)[x=zAy=U— X-y = Z- U]
(VX)=S(x) =0

(VX)(VY)[S(X) = S(y) — x=Y]

(VX)x+0=x

(V%) (7y) X+ S(y) = S(x+Y)

(VX)x-0=0

(V%) (7y) x- S(y) = x-y+x

A0) A (VX)AX) = AS())] = (V%) A(X).

HereA(x) is an arbitrary formula in the languade-,0,S, +, - }.
For quantifier-fred® we have an additional result: if

A= (VX)(3FyY)P(x,y)

is provable fromPA using classical logic, theA is already provable using in-
tuitionistic logic from the axioms (see Troelstra and varldbal988). SinceA
has the format of a program specification, it is sometimesiptesto use this,
and similar results, to extract programs from classicabfgdsee Schwichtenberg
1999).

Exercises

6.1. LetP(x) be a predicate symbol and considee= (3x) P(x) V (Vx)=P(X).
Eliminate all occurrences of and3 with the help of (11). Then prove the Gddel-
Gentzen translated formula in intuitionistic logic.

6.2. Prove the following in intuitionistic logic.
@ F-L—1,
(b) F ==—=-B — ——B,
(c) =—A — A, ——B — B+ -—~(AAB) — AAB,
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(d)* --B—BF--(A—B)— (A—B),
©e)* (VX)(—A— A) F —(VX)A — (VX)A.

6.3.* Suppose thal is a theory such that,
(&) T provesAV —A, for every atomidA, using only intuitionistic logic,
(b) T provesB* using intuitionistic logic, for every axiorB of T.

Then show that if a non-existentialis provable classically iit, then it is already
provable intuitionistically.

6.4.* Prove that PA satisfies the conditions in 6.3. Hint: (@yuse induction on
natural numbers.

7 Martin-Lof type theory

The type theory of Martin-Lof 1984 has several notions naspnt in simple
lambda calculus, such as dependent typesypes and-types. These were in-
troduced to realise the full propositions-as-types pplei

7.1 Set-theoretic constructions: sums and products.

To explainl1— andZ-types we present some less common set-theoretic construc-
tions. Letl be a set, and led; be a set for eache |. We say tha#y; (i €1) is a
family of sets Thedisjoint union, or sunof this family is a set of pairs

(ZiehA ={(i,a)|iel,ae A}.
(Two alternative notationsy ;| A andUic| Ay — note the dot.)
Example 7.1 LetJ = {1,2,3} andB; = {0}, B, ={0,1}, B3 ={1,2}. Then

(2] €J3)B; ={(1,0),(2,0),(2,1),(3,1),(3,2)}.

Example 7.2 LetC,={me N:m<n}, forne N. Then

(ZneN)Ch={(n,m) e NxN|m<n}.
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Consider once more afamify (i € 1) of sets. Theartesian producof this family
is a set of functions

(Mie DA ={f:1 = UagA | (vi e f(i) e A}

(Alternative symbolism{TJic; Ai.) This is thus the set of functiorfsdefined onl,
where for each € | the valuef (i) belongs toA;. The range, or codomaiy; de-
pend on the argumentTherefore the construction is sometimes catlegendent
function space

Example 7.3 Let Bj (j € J) be a family of sets as in Example 7.1. Th@hj ¢
J)B; consists of four different functions, g, h, andk, where

f(1)=0 g(1)=0 h(1)=0 k(1)=0
f(2)=0 g(2)=0 h(2)=1 k() =1
f(3)=1 g(3)=2 h(3)=1 k(3)=2

Example 7.4 LetC, (n € N) be as in Example 7.2. Note that.nCh = N. So
MeN)C={f:N->N|(VneN)f(n)eCy}={f:N—=N|(VneN)f(n) <
n}.

Remark 7.5 (Binary sums and products.) Lét={0,1} andCy = A, C; = B.

Then
(Ziel)C={(0,a):ac AfU{(1,b):be B},

is a disjoint union ofA andB. We denote this set as+ B. Furthermore
(Miel)CG={f:1 -CUCy| f(0) € Cy, f(1) € Cq}.

Since functions with a two-element domais- {0,1} may be regarded as pairs,
we see thafli € 1)C; is a binary cartesian produétx B.

Remark 7.6 Suppose that; = Afor alli € I. Then we obtairfXi € | )Aj = (I xA)
and(Mi € I'A = (I — A). Therefore we may rega@ andll as generalisations
of the constructions and—.

7.2 Propositions as sets

We now investigate how these constructions may be used &igigrpretations
of propositions asets.Define a seEp,, depending om, n € N, by:

E {0} ifm=n
M=) 0  ifm#n.

ThenEn n is nonempty exactly whem = n.

26



Example 7.7 The propositior{3n € N) m= 2nis true if, and only if mis an even
natural number. Consider now the $t= (Zn € N) En2n. The only possibility
for it to be non-empty is thain, 0) € Sy, for somen, which is true whemm = 2n.
We get that

Sn#0< (Ine N)m=2n.

Example 7.8 The proposition(¥n € N)(n+ k)2 = n?+4n+ 4 is true if, and only
if, k=2. Form the sefly = (NMn € N)Ey, )2 i24an+4- This set is non-empty
if, and only if, the functionf(n) = 0 belongs to the set, i.e. if for ail € N:
Eniiznzania = {0}, i.e.(n+Kk)? =n+4n+4. Hence:

(neN)(n+k2=n’+4n+4 < T #0.

Example 7.9 The propositior{Vn € N)[n= 0V (Ime N)n=m+1] says that each
natural number is 0 or a successor of another natural nunibercorresponding
set becomes

(MneN)[Eno+ (Zme N)Eqmy1]-

Exercise: show that this contains exactly one element.

7.3 The type theory

In the preceding section we gaveet-theoretiaescription of dependent type con-
structions, and thereby achieved a version of principle However we have no
guarantee that an element of a set correspond to an algacidomstruction. That
is, we still have to achieve principle (I). To realise bothdhd (I) algorithmic
counterpart to dependent types must be defined. This is dodeantin-Lof type
theory,which is a typed lambda calculus which generalise the cagcubm Chap-
ter 2 by introducing dependent types. This system is sirtolarBHK-interpreted
version of natural deduction system for intuitionisticio¢gsee Chapter 4). What
is derived in type theory anerdgement®f the forma: A, which may be read as
() a has type Aor (ii) a is a witness to the proposition A& turns out that this idea
of identifying propositions with types also leads to cortc@psimplifications:A
andd may be unified in the constructid) while — andV man be unified in the
M-construction. The disjunction is given by the type construction.

A novelty of this system is that types may depend on otherdypEhat a
type B depends orz: A means essentially that the varialal@ccurs free in the
type expressioB. This dependence may be nested, there may yet anotheCtype
depending oty : Bandz: A, etc. These dependencies are written
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Bis atype(z: A),
Cisatype(z: Ay:B).

We may also say thditis an element oB depending orz: A. This is written
b:B(z:A),

Thus fora: A, we havebla/Z] : Bla/Z].
Certain aspects of the formal treatment of dependent typkdevomitted
here (see however Section 7.4 below).

M-types.Let B be a type depending otx A. The introduction rule fof1 is this:

X: A

b:B
AX.b: (I'Ix:A)B(

M)

The elimination rule is
f:(MNx:A)B a:A
apply(f,a) : Bla/x]

(ME)

The associated computation ruleaisply(Ax.b,a) = b[a/x] : B[a/x], often called
theB-rule.

For a typeB which is independent of, we see that this becomes the BHK-
interpretation of the rules+¢ 1) and (— E) respectively, for intuitionistic logic.

If Ais considered as the quantification domain, the rules andesita those for
V. In single sorted intuitionistic logic the judgementsA anda : A are hidden,
since all variables and terms automatically have the typ&hefquantification
domain.

>-types. Let B be a type depending ot A. The introduction foz is

a:A b: Bla/X]
(a,b): (2x:A)B

(21)

If Ais regarded as the quantification domain & regarded as a proposition,
we see thatZl) may be read as the ru(él).

In caseB is independent of, so thatB[a/x| = B, we see that the rule&l ) has
the same shape &sl). (Set-theoretically it holds in this case théEx € A)B =
A x B, see Remark 7.6.)
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The elimination rule foZ is the following: suppose thétis a type depending on
z: (Zx:A)B.

x:A y:B
c:(2x:A)B d:Ct(x,:y)/z]
split(c,Ax.Ay.d) : C[c/Z]
The associated computation rulesgdit((a,b),g) = g(a)(b) : C[(a,b)/Z.

(2E)

If C does not depend on and the “hidden” judgements for the quantification
domain are taken into account, then the &) is in accordance witfi3E).
If Bis independent of, C = A andd = x we have that

split((a, by, AxAy.x) = (Ax.Ay.x)(a)(b) = a.

We may considesplit(z, AX.Ay.X) as the first projection#z), and henc¢ AE1) is
generalised. (Exercise: how may(#) be defined in terms ablit?)

Remark 7.10 In versions of type theory suitable for computer implem&atg
for instance Agda or Alf, the terms are provided with comelstpe information.
For instance, the expressieplit(c, Ax.Ay.d) is written as

split(A, (X)B, (2)C,c,Ax.Ay.d),
where(x)B indicates thaB is a family of types depending on
+-types. The introduction rule for the binary sum is
a:A b:B
inl(a) : A+B (+12) inr(b) : A+B (+12)

LetC be a type depending at A+ B. The elimination rule is given by

XA y:B

cC:A+B d:C[in:I(x)/z] e:C[in:r(x)/z]
when(c,Ax.d,Ay.e) : C[c/Z| (+E)

The computation rule is identical with (4).
We leave it to the reader to show how these rules generakseutés forv.

Remark 7.11 Functional programming and dependent typ&$e typing disci-
pline in a programming language has the well-known advanthgt many pro-
gramming errors may be detected already by the compilereBegnt types make
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it possible to sharpen this discipline, and to make furtiveors detectable at
an early stage. An example of a functional language usingr#gnt types is
Cayenne (Augustsson 1998).

Suppose that we wish to write a prograinfor multiplying two matricesA
andB. For the matrix producAB to be well-defined the number of columns in
A must be the same as the number of row8inDenote byM(r, k) the type of
r x k-matrices. We will thus havaB: M(r,k) for A: M(r,n) andB: M(n,k). One
could imagine designinfi(A, B) to take a special error value when the dimensions
of the matrices are mismatching. This would however meatdin@ension errors
would not be discovered at the compilation stage. By usiqgeddent types it is
possible to letf have the type

(Mr:N)(Mn: N)(Nk: N)[M(r,n) x M(n,k) — M(r,k)],

in which case it becomes impossible to write a well-typedypaan which uses
and make a dimension error.

An important application okE-types is to form modules. There is no need for
a special construction as in ML. A module specification isgetgf the form

(zfl : Al) (an : An) P(f].?"'? fn)a
where fq,..., fy are functions, or operations, am{fy,..., fy) is regarded as a
proposition describing their mutual relations and effeéts element
<gl,~-~7<gn,q>"'>
of this type is an implementation of the module.

Basic types and recursive typesWe give the rules for the typdsandN. There
is no introduction rule fo (as it is supposed to have no elements), on the other
hand it has the elimination rule
c:0
Ia(c) : A
The collection of natural numbeR$ considered as a recursive type has the intro-
duction rules

(0E)

a:N
: — ).
0:N S(a):N (N)
The elimination rule is a fusion of the recursion operatar and the induction
principle. LetC be a type depending arn N.

x:N y:C[x/Z

t:N b:C[0/7 c: C:[S(;Q/z]
rec(t,b,Ax.Ay.c) : C[t/Z]

(NE).
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The computation rule is the same as for the recursion opara@hapter 2.
We introduce a basic dependent tyge), which depends on: N.

L(0) =0 L(S(x)) = N.

Combining this type with the functioe in Exercise 2.2 we get a dependent
L(e(m)(n)) that is empty exactly whem # n (cf. Em, above). It is now easy
to write down the sets of Example 7.7 — 7.9 as types in typeryhiey replacing
“e” by “".

Type theory may easily be extended with rules for enumandiipes and re-
cursive types of the kind used in ML or Haskell. The tyipef boolean values is
an enumeration type with following introduction and eliraiion rules:

tt: B ff: B (BI)
For a typeC that depends on: B

c:B d:Cjtt/Z e: Clff/Z
if(c,d,e) : Clc/Z

(BE)

The computation rules ai&tt,c,d) = c andif(ff,c,d) = d.
As yet another example of a recursive data type considernyhe ltis{ A) of
lists of objects of typd\. The introduction rules are

a:A  (:List(A)
cons(a, /) : List(A) -

nil : List(A)

The formulation of the associated elimination rule is leftam exercise for the
reader (see Martin-L6f 1984 for a solution).

Warning. A certain care has to be taken when defining new recursivetypés,
so that the property that all programs terminate is presermeecursive data type
D satisfying

D=D-—D (14)

will allow encoding of untyped lambda terms. Even when wptise theory may
also become inconsistent: if for instance there is a receitgpeA given by
A=A—0. (15)

There are syntactical criteria that guarantee terminadiwh relative consistency;
see Dybjer 2000. In the system Agda (Chapter 9) there is @aptatmination
checker, that catches all such non-wellfounded definitibasalso forbids many
legitimate ones.
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Type universes. A type universes a typeU consisting of other types, that /&

is a type for eact\ : U. The purpose of a type universe is to admit quantification
over types, and thus over families of types. Given a t{pendB : X — U, then
apply(B,x) = B(x) is also a type, depending on X. The typeX — U may thus

be viewed as the type of all typeslihdepending orX.

Example 7.12 It is possible to introduce a very small univet$econsisting only
of the type<d andN. From thisdefine Lby recursion: leC = U’

L(z) =def rec(z,0,AX.Ay.N)

The computation rules giveg0) = 0 ochL(S(x)) =N. O

In standard versions of Martin-Lof type theory there is avenseSet containing
the basic type® andN, and which is moreover closed under the formatiomnlef
>- and+-types. The closure condition means that

o (Mx:A)B(x): Set, if A:Set andB: A — Set,
o (2X:A)B(X) : Set, if A:Set andB: A — Set,
o A+ B:Set, if A:Set andB: Set.

Example 7.13 With the help of a universe one may define types that lacks-coun
terpart in ML or Haskell. For instance, let far. N andA : Set,

FO)(A) = A
FSM)(A) = A—Fn)(A)

We haveF (n)(A)=A— A—--- — A(narrows), so the number of arguments that
a function of this type takedependon n. (Compare to the example with matrices
above.) Formally we may defirfe as

An.rec(N AA A AXAYAA.(A— y(A)),
whereF : N — Set — Set. (Exercise: check this using the computation rul€s.)

Remark 7.14 Type universes make it possible to type polymorphic fumgjo
i.e. functions which works the same way regardless of type.ekample is the
appending of lists

append : (MA: U) [List(A) — List(A) — List(A)].
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append(N) is then the append function specialised to lists of natwaiimers.0

Sometimes it may be necessary to pile universes on each otther typeB =
(XA : Set)(Zn: N)F(n)(A) does not belong t&et, since it is not the case that
Set : Set. The typeF (n)(B) is not well-defined, sincé demands thaB belongs
to Set. To construct arF which can takeB as an argument we may introduce a
larger universé&et, which is closed unddrl-, ¥- and--constructions and which
Is such that

e Set: Sety,
e A:Seto forall A: Set.

Now, the same problem would occur again ifBrihe universéet is replaced by
Sets.

Remark 7.15 The simple and drastic solution to assusee: Set leads to an in-
consistent theory; see Martin-L6f 1971. This paradox itecebirard’s paradox
In practise it seems that one or two levels of universes avegmn

7.4 Type theory as a formal system*

In a formal system for Martin-Lof type theory there is not pmlles for judge-
ments of the forma : A. The types cannot be defined as grammatically simple
as for the lambda calculus in Chapter 2. That an expre®3janis a type, may
depend on that we have previously showed tha#. Therefore one needs a par-
ticular judgement form for saying that an expression is @tyor instance rules

of the following kind are needed

XA

Atype Btype z:N

(Mx: A)Btype L(z) type
Furthermore, the computation rules have a special judgefoem a = b : A,
which states thaa andb can be computed to the same element of the #pe
Because of constructions &s-) above, there should be a way of expressing
that two types may be computed to the same type, B. We have for instance
L(e(0)(1)) =L(0)=0.

A technique for managing open assumptions is to use assumixtis (see

Remark 4.4 above)

M=X1:A1,....% : An.
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Such a list is also called eontext For type theory they are rather complicated,
since the order between the assumptions is importgnmay depend on all vari-
ablesx; : A1,...,%—1 : An—1. This means that, in general, an assumption early
in the list may not be possible to discharge, until all lateswanptions have been
discharged. To ensure correct formation of contexts, tigeyet another judge-
ment form. One needs to know that an expression actually ype lbefore the
assumption that a variable has this type can be added toxtonte

[ Btype
r,y: Bcontext

The assumption rule is

X1 :A1,..., % Ap context
Xy AL Xn A XA
In computer implementations of type theory, contexts amdmatational equal-

ities are handled by the system. It is thus not necessaryvatout those rules,
to be able to use the theory.

Exercises

7.1. Letlp={0,1,2},11 ={0,3}, 1, =0, Ag = {0,1}, Ay = {0}, A= {1,2} and
Az = 0. List the elements of the following sets

(@) (Zi € lo)A

(b) (Zi€l)A

(c) (Mielo)A

(d) (Miel)A

(e) (Mjelg)(Ziel)A

(M (Zjelg)(NeljA

7.2. Do the exercise in Example 7.9.

7.3. Formulate an elimination rule for the recursive datzetyist(A).
7.4. Define #(+) in terms ofsplit.
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8 Formalising mathematics

In order to mechanically check, or construct, mathemapoabfs we need first of
all to have a mathematically precise notion of proof. Thiagkieved by various
logical systems, as we have already seen examples of. Butseeneed some
conventions for describing or coding mathematical objeetsonal numbers, real
numbers, matrices, functions, ordered sets, graphs, étees

The foundation of mathematics in set theory builds on thergpdf all objects
as sets, in effect built up from the empty $etind set parenthes¢s  }. Thus
for instance natural numbers are usually coded as

0=0 1={0{0}} 2={1{1}}

Pairs of elements may be coded as

(a,b) = {{a},{a,b}}.

The cartesian products x B of two sets is the set of alla, b) wherea € A and

b € B. FunctionsA — B are then subsets @ x B satisfying the usual condition

of graphs of functions. For details of further such codings s.g. (Krivine 1971).
The next level is to disregard from particular representatof mathemati-

cal objects and to describe their properties abstractly.ifstance, the cartesian

product of two set®\ andB may be described as a $&{A, B) together with two

“projection” functions

m:P(AB)—»A Th:P(AB)—B,

such that for alla € A andb € B there exists a unique element P(A, B) with
Ty (c) = aandm(c) = b. Thusty picks out thekth component of the abstract pair.
Thereby the reference to the particular coding of ZF setrghetay be avoided. In
category theory this point of view is taken to its extreme] ane dispenses with
the reference to sets altogether. Mathematics may as wéslneled on category
theory.

At this level of abstraction it makes little difference whet mathematics is
founded on set theory or type theory. We shall see below hanesonportant
basic notions are formalised in type theory.

8.1 Sets and functions

In mathematics a basic means of abstraction is that of regpasthme objects as
the “same” from some aspect. This is done is set theory byrtieduction of
equivalence relations and then equivalence classes. Btanice, if for natural
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natural number®N we want to disregard from everything except from whether
they have the same parity, we introduce the equivalenceedasf even and odd
numbers:

0={0,2,4,...} 1={1,35,...}.

As first step an equivalence relatienon N is defined
X =Y <=gef X— Y iS divisible by 2

The equivalence classes are introduced as subséfs pff = {y € N: x=y}.
Then thequotient sets
(N/=)={[X:xe N}

and note thafx] = [y] iff x=y. Hence e.g.
0=[0]=[2=[4 ="

This construction is general and can be made for an)Xsahd any given equiv-
alence relatior= on X.

In constructive mathematics one usually skips the intrtdnof equivalence
classes, following the princple that each ¥eshould come with an explicitly
given equivalence relatioagx. This has the advantage that the notion of set can
be understood in a quite concrete way, and avoiding setstef $&r instance
the quotient se{N/ =) above, would be the paiilN,=). It is actually close to
some practise in mathematics to use explicit equivaledagoas when there is a
possibility of confusion as in

7=5=3(mod 2.

A setoid Xwill be a typeX together with an equivalence relatiesx on X.
The latter means that=x y is a family of types depending ony : X and that
there are functions ref, sym and tra with

ref(a):a=xa (a:X),

syma,b,p):b=xa (a:X,b:X,p:a=xb),

tra(a,b,c,p,q):a=xc (ab,c:X,p:a=xb,q:b=xc).
We shall writex € X instead ofx : X.

Remark 8.1 In the Bishop tradition of constructive mathematksds called a
presetrather than a type, and is called aset.
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An extensional function from the setoidX to the setoid is a pair(f,extr)
wheref : X — Y is function so that

exts (a7 b, p) : i(a) =Y i(b) (a7 b:X, p-a=x b)
Two functionsf,g: X — Y areextensionally equaf there ise with

e@):f(a)=yg(@ (a:X).

We shall follow the terminology of Bishop, when dealing wétoids, calling an
extensional function simplfunction and calling a function, anperation. Also
we usuall writef also for f when there is no risk of confusion.

We introduce some standard properties for a funcfiorK — Y between se-
toids. Itis

- injectiveif u=x v wheneverf (u) =y f(v)
- surjectiveif for everyy €'Y there is some € X with f(x) =y y.

- split epiif there is a functiorg : Y — X so thatf og = 1y.

Clearly, every functionf : X — Y which is split epi is also surjective. The
axiom of choicean classical ZF set theory can be phrased as: every sugectiv
function is split epi. This is in general too strong for beswnstructively accept-
able. We have however the following results.

An equivalence relatios=y onY is finest,if for any other equivalence relation
~onYy,

a=y b= a~h.

A setoid whose equivalence relation is finest is calleti@ice setoid.

Theorem 8.2 For any setoid X and any choice setoid Y, each surjectivetifumc
f: X =Y issplit epi.

Proof. Supposef : X — Y is sujective. Then
p(y) s (XeX)(f(Xx) =vy) (YeY).

Let g(y) = #1(p(y)). Thenf(g(y)) =y yis true for ally € Y, but we still do not
know thatg is extensional. Define a new equivalence relatoan by

y~z<=g(y) =x 9(2).
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Now, since=y is the finest equivalence relation 8h we get the desired exten-
sionality
y=yz=9(y) =x 9(2).

Thusg is extensional and o g = 1y. O

Example 8.3 The setoid of natural numbe(®, =) where
m=y n = L(e(m)(n)),
is a choice setoid.

A relationRbetween setoid® andY is a family of typeR(x,y) (xe X,y €Y)
such that

R(xy),x=xX,y=y Y = R(X,Y).
ForX =Y, we say thaR s an relatioron X

Quotient setoids. Let X = (X,=x) be a setoid and let be a relation on the
setoidX, which is an equivalence relation. Thenis an equivalence relation on
X, and

X=x Y= X~Y. (16)

ThenX /~ = (X,~) is a setoid, andl: X — X/~ defined byi(x) = x is a function
according to (16). We have the following extension propetyf : X — Y is a
function with

X~y= f(X) =y f(y),
then there is a unique functidn: X/~ — Y (up to extensional equality) with

f(i(x)) =y f(X) (xe X).
This is the same abstract property that quotient sets hdassical ZF set theory.

The identity type construction assigns to each tyeefinest equivalence re-
lation Id(A,-,-), see Nordstronet. al. 1990. It follows that every setoid is the
quotient setoid of a choice setoid, in this version of typ=otly.

Remark 8.4 For a full development of the basic theory of sets and funetia the
constructive setting we refer to Bishop and Bridges 1985Mimskset al. 1988.
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9 Implementations of type theory

A modern implementation of Martin-L6f type theory is Agda Coquand 1998).
On top of this there is a graphical user interface Alfa (Haig1998), also sup-
porting additional notational features.

We describe the syntax of Agda, which is an “unsugared” versif the Alfa
syntax. Itis also possible to work with Agda syntax in Alfausing the command
“Edit as Text".

e Type membership is denoted by a double caonA in Agda.

e Function applicatiorf (a) is written as a juxtapositioh a with a space in
between.

e A dependent function typ@lx: A)Bis written(x: A) -> B. For the cor-
responding lambda abstractiam.b the argument type is written explicitly,
and become§(x: A) -> b. (WhenB does not depend onone may write
A-> B)

e The two-place-type is a special case of a more geneeabrd typewhere
components are named, and not just numbered, For instamce\)B cor-
responds to

sig { fst: A, snd: Bifst/X }

Let z be an element of this type. To access the value of the compgmen
field) with namefst one writeszfst . The pair(a,b) : (x: A)Bis written

struct { fst = a snd = b}
e Enumeration types and recursive data types may be defineldsynas in
ML, with the help of the constructiodata . From such a definition con-

structors and thease is automatically generated. We give some simple
examples.

The typeB of booleans is defined by
data tt | ff

The constructors are callet® andff@_ respectively. Corresponding to
if(c,d,e) we have

case c of { tt -> d, ff > ¢
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However,case should only be used on variables.cdis non-variable one
writes

let {y = c} in case y of { tt -> d; ff > ¢

The empty type iglata { }  and since it does not have constructors its
elimination operator(c) becomes trivialcase ¢ of { }

Natural numberN are defined recursively by
Nat :: Set = data zero | S (n::Nat)

(In this expressiomMat :: Set means that the new type belongs to the
type universeSet .) The constructors of this type arero@ _andS@ re-
spectively. The case-function corresponding to this is

case c of {zero -> Uy S n-> uwl,

wheren may be free in irnus.

In Agda there are type univers8st andType (essentially corresponding
to Set; andSety above). These universes are closed uriti¢ypes, record
types and the formation of recursive data types.

Definitions in Agda have the form

f (vi o intypg) --- (vy i Intypg) : outtype= def

where f is an identifier for the function to be defined, ..., v, are variables for
argumentsouttypeis the type of the value andef is the defining term.

Example 9.1 The +-construction from Chapter 2 is defined in Agda as

Plus (A::Set)(B::Set) :: Set
= data inl (x:A) | inr (y:B)

Plus is thus a type constructor which takes two types from theanseSet and
forms the disjoint union of them in the same universe. Themwfuaction may be
defined by

when (A::Set)(B::Set)(C::Set)
(c:Plus A B)(d:A->C)(e::B->C) :: C
= case ¢ of {(inl x) > d x;
(inry) > ey}
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when thus has six arguments, of which the first three are typesétivere omitted
in Chapter 2; see however Exercise 213).

Example 9.2 The recursion operataec (Chapter 2) is defined as

rec (A:Set)(a:Nat)(f::A)(g::Nat->A->A) = A
= case a of { zero -> f;
(S x) -> g x (rec A x fg)}

O

In these examples there no essential use of dependent fJpedype universes
make it easy to handle such types. The tgpe> Set consists of all families of
types inSet that depends oA. We may introduce the abbreviati6am Afor this
type, in Agda:

Fam (A:Set) :: Type
= A -> Set

Example 9.3 The general recursion operator (Chapter 7) also gives thecion
principle, and is expressed as follows

rec (A::Fam Nat)

(a::Nat)

(f:A zero@)

(g::(x:Nat)->(y::A x)->A (S@_ X)) = A a
= case a of { zero > f;

(Sx) ->gx(rec Axfaqg)}

O

Example 9.4 The dependent typleis defined by

L (z::Nat) :: Set
= case z of {zero -> Empty;
(S x) -> Nat}
whereEmpty::Set = data

Example 9.5 A module of functions that find sufficiently large prime numbe
may be written as the record type
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Primefinder :: Set
= sig {f: Nat -> Nat;
correctl :: (n:Nat) -> Prime (f n);
correct2 :: (n:Nat) -> LessEq n (f n)}

wherePrime is a predicate which which is true precisely for prime numiasd
LessEq is the relation< on N. For z::Primefinder the fieldz.f is a function
that givenn gives a prime numbgp > n. (Exercise: defin€rime andLessEq .)
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