
Constructive logic and type theory∗

Erik Palmgren
Department of Mathematics, Uppsala University

March 2004

Constructive logic is based on the leading principle that

(I) proofs are programs.

In constructive type theory it has later been joined with thefurther principle that

(II) propositions are data types.

The latter is also called thepropositions-as-types principle. The meaning of these
principles is on first sight far from obvious. The purpose of these lectures is
to explain these and their consequences and applications incomputer science. A
particular aim is to provide background for the study of Martin-Löf type theory, or
similar theories of dependent types, and for using proof-checking systems based
on such theories. Proofs carried out within constructive logic may be consid-
ered as programs in a functional language, closely related to e.g. ML or Haskell.
The importance of this is the possibility to extract from an existence proof (that,
e.g., there are arbitrarily large prime numbers) a program that finds or constructs
the purported object, and further obtain a verification thatthe program terminates
(finds some number) and is correct (finds only sufficiently large prime numbers).
The combination of construction and verification of programs has raised consider-
able interest in computer science. Systems supporting thisare known asintegrated
program logics.The combination of a program, and proofs of some of its prop-
erties, is calledproof-carrying codeand is of potential importance for improving
the trustworthiness of software in network based programming (cf. Java program-
ming).

∗Lecture notes for a course in Applied Logic (Tillämpad logikDV1, datavetenskapliga pro-
grammet). This is an extension and translation of original notes in Swedish:Konstruktiv logik,
U.U.D.M. Lecture Notes 2002:LN1. The author is grateful forcorrections and suggestions by
Peter Dybjer, Thierry Coquand and Fredrik Dahlgren.

1

Constructive logic has a history well before the advent of electronic comput-
ers. Around the turn of the century 1899-1900 there arised doubts about the con-
sistency of the axiomatic and logical foundations for the abstract mathematics that
had started to develop with the support of set theory. Bertrand Russell had 1903
with his well-known paradox shown that unrestricted formation of sets from con-
cepts may lead to outright contradictions. (Is there a set that consists of all sets
that are not members of themselves?Answer: No.) Also other principles in use,
such as the Axiom of Choice, had been discovered to have unintuitive and unnat-
ural consequences, even though no paradoxes where known to arise from them.
Ernst Zermelo showed 1908 that the set of real numbers may be well-ordered. It
was among many mathematicians considered as a serious scientific crisis of the
subject, known as theGrundlagenkrisis. In that mood of time the outstanding
Dutch mathematician, and founder of modern topology, L.E.J. Brouwer started a
critical examination and reconstruction of the foundations for mathematics, which
went further than previous attempts, and included the very logic and not only the
axioms. By the introduction of hisintuitionistic mathematicshe wanted to put
mathematics on a secure and intuitive footing. His idea was that every proof must
built on a so-calledmental construction. At that time (1910) there were of course
no programming languages, and not even a mathematical notion of algorithm, but
it turned out that his notion of mental construction could beinterpreted as algo-
rithmic construction in a precise way. This requirement ledBrouwer to reject a
logical law that had been taken for granted since Aristotle,namely thePrinciple
of Excluded Middleor Tertium Non Datur. This states that for every proposition
A, eitherA is true orA is false, in logical symbols:

A∨¬A (PEM).

For concrete, finitely checkable, propositions there was noreason to doubt the law.
The problematic case, according to Brouwer, is whenA contains quantification
over an infinite set, for instance the set of integers. Brouwer demonstrated that
it was possible to develop mathematics also without the principle of excluded
middle, and that it in many cases lead to more informative andinsightful proofs.
The immediate followers of Brouwer were not very numerous, and his use of the
theory of choice sequences, which is inconsistent with classical logic, repelled
many mathematicians from his philosophy. Later developments of constructive
mathematics avoid this theory, and its results are immediately understandable and
acceptable to mainstream mathematics (Bishop and Bridges 1985, Bridges and
Richman 1987).

2

1 Non-constructive proofs

We shall illustrate how the principle of excluded middle is used in some non-
constructive existence proofs, and how this may lead to the loss of algorithmic
content. Here is a famous standard example, chosen for its simplicity rather than
mathematical interest.

Proposition 1.1 There are irrational numbers a and b such that ab is an rational
number.

Proof. The number
√

2 is irrational (non-rational). Consider the number
√

2
√

2
.

By the principle of excluded middle it is either rational or irrational. If it is ra-
tional, we may finish the proof by exhibitinga = b =

√
2. If it is irrational, let

a =
√

2
√

2
andb =

√
2. Thenab is rational, indeed we have

ab = (
√

2
√

2
)
√

2 = (
√

2)2 = 2.2

Note that in this existence proof it was not decided which of the numbers

a=
√

2 ora=
√

2
√

2
, with b=

√
2, that actually gives the intended example. One

may actually show, using deeper mathematical theory, that
√

2
√

2
is irrational, but

the standard proof requires several pages.
Many classical existence proofs are indirect, and start “Suppose that there

is no objectx such that . . . ”. The rest of the proof is devoted to show that a
contradiction arises from this assumption. Here is a simpleexample involving
infinite sequences.

Proposition 1.2 Each infinite sequence of natural numbers

a1,a2,a3, . . . ,ak, . . .

has a minimal term, i.e. there is some n such that an ≤ ak for all k.

Proof. Suppose that there is no minimal term in the sequence. For every indexk
we may then findk′ > k with ak > ak′. Let k1 = 1. By assumption there is then
k2 > k1 with ak1 > ak2. Again, by the assumption, we findk3 > k2 such thatak2 >
ak3. Continuing in this manner we obtain an infinite sequencek1 < k2 < k3 < · · ·
such that

ak1 > ak2 > ak3 > · · · .
This sequence of natural numbers decrease by at least one unit for every step, so

akn ≤ a1− (n−1).

3

Puttingn = a1 + 2, we thereby find a term in the sequence less than 0, which is
impossible.2

This existence proof gives no information whatsoever wherethe minimal term
is to be found. Not only the proof of this result is non-constructive, but the result
is essentially non-constructive. Consider for example thesequence obtained in
the following way: given a description of a Turing machine and an input string,
let ak be 0 if the machine has terminated afterk steps, and 1 otherwise. If we
would be able to find the minimum of this sequence, algorithmically, we could
also solve the general halting problem algorithmically. However this is known to
be impossible.

This kind of “information-less” existence proofs are not uncommon in mathe-
matical analysis. For instance certain results on the existence of solutions to differ-
ential equations build on such proofs (Cauchy-Peano existence proof). There are
rather simple examples of ordinary differential equations, whose solutions cannot
computed from the parameters, though there are theoreticalsolutions (cf. Beeson
1985)

Constructive mathematics and logic are founded on the idea that existence is
taken more seriously than in classical mathematics: to prove that a certain object
exists is the same as giving a method for constructing it. There is also the possibil-
ity of further requiring the method to be effective according to some complexity
measure (Nelson 1995, Bellantoni and Cook 1992). Such complexity restrictions
gives a quite different kind of mathematics, not very well investigated as of yet.

Exercises

1.1. Recall that an algebraic real number is a real number which is a root of a
polynomial with integer coefficients. Such numbers are closed under the usual
arithmetical operations. Any real number which is not algebraic, is calledtran-
scendental. The numberseandπ are transcendental. Prove, using only these facts,
thate+π or e−π is transcendental. (It is unknown which one it is, or if both are
transcendental).

1.2 (König’s lemma). A finite string over the alphabet{l , r} is regarded as de-
scribing a path in a binary tree, starting from the root. Suppose thatP is an infinite
set of such paths. Show that there is an infinite string

d1d2d3 · · ·

such that for everyn, the stringd1d2 · · ·dn is an initial segment of some path inP.

1.3 (Brouwer’s Fan Theorem). Consider a set of pathsP such that ifw is in P, then
so is each of its initial segments, i.e. ifw = uv∈ P, thenu∈ P. An infinite path

4

d = d1d2d3 · · · is said to bebarred by P, if there is somen such thatd1 · · ·dn /∈ P.
Show that if every infinite pathd is barred byP, thenP must be finite.

1.4. Prove thatb = 2log23 is irrational. Use this to give a constructive proof of
Proposition 1.1.

2 Typed lambda calculus

We give a short introduction to lambda calculus, with emphasis on those parts
which are useful in making the notion of mental constructionmathematically pre-
cise. For a comprehensive presentation of the theory, see Hindley and Seldin 1986
or Barendregt 1992.

The untyped lambda calculus was introduced in 1932 by the American logician
Alonzo Church, originally intended as a foundation for mathematics. Soon after
that it came to be used as one of the mathematical models for computability. John
McCarthy took this calculus as a starting point when designing the programming
language LISP in 1960. Later generations of functional programming languages,
such as ML and Haskell, incorporated also strict typing of functions. These lan-
guages are closely related totyped versionsof the lambda calculus.

We introduce and study a typed lambda calculus. First the notion of type is
defined inductively.

Definition 2.1 Types.

(i) N is a type (the type of natural numbers).

(ii) If A andB are types, then(A×B) is a type (the product ofA andB).

(iii) If A andB are types, then(A→ B) is a type (the type of functions fromA to
B).

(iv) If A andB are types, then(A+B) is a type (the disjoint union ofA andB).

Examples of types are

(N → (N×N)) ((N+(N×N))→ N).

To reduce the number of parentheses we use the convention that × binds stronger
than+, which in turn binds stronger than→. The above types are accordingly
written

N → N×N N+N×N → N.

Moreover, we use the convention that→ associates to the right, so thatN → N →
N should be readN → (N → N) and not(N → N) → N.

5

Remark 2.2 The type constructions (i) – (iii) are familiar from ML, but are there
denotednat , A * B andA -> B , respectively. In Haskell the product ofA andB
is written (A,B) .

Next we define the terms, or “programs”, of lambda calculus. The most impor-
tant constructions areabstractionλx.b, andapplication,apply(f ,a). Abstraction
forms fromb a new functionλx.b depending on a chosen variable. Ifb has the
typeB andx has the typeA, then the new function has the typeA → B. In λx.b
the variablex is bound. The applicationapply(f ,a) applies a functionf to an
argumenta. The connection between these constructions is given by theβ-rule

apply(λx.b,a) = b[a/x], (1)

where the right hand side means thata has been substituted forx in b. A condition
for the validity of the rule is that no variables ina become bound by performing
the substitution. As for first-order logic, the name of the bound variables are
inessential. This is expressed by theα-rule:

λx.b = λy.b[y/x], (2)

wherey is a variable not occurring inb. By employing this rule we can ensure that
the β-rule is applicable. In MLλx.b is written as(fn x => b) , and in Haskell
this is\x -> b .

Another important construction ispairing: if a has typeA and b has type
B, we may form the pair of these〈a,b〉, which is of typeA×B. There are two
projections, or selectors, that extract the first and secondcomponent from this pair

#1(〈a,b〉) = a, #2(〈a,b〉) = b. (3)

The third type construction is the disjoint unionA+B of two types. It is intuitively
the union ofA andB, but with a marking of the elements, that indicates from
which of the types the element comes, the left or right type. (This may be needed
if A = B.) The type has two constructorsinl andinr. If a has typeA, theninl(a)
has typeA+ B. If b has typeB, then inr(b) has typeA+ B. To express that
each element has one of these two formsinl(a) or inr(b), we introduce a case
construction, or a discriminator,when. If f has typeA→C andg has typeB→C,
thenwhen(d, f ,g) is of typeC. It obeys the computation rules

when(inl(a), f ,g) = apply(f ,a), when(inr(b), f ,g) = apply(g,b). (4)

In ML there is no primitive type construction which behaves as +. However we
may define the type construction as

datatype (’a,’b) sum = inl of ’a | inr of ’b

6

Whereas in Haskell this would be

data Sum a b = Inl a | Inr b

The natural numbers are most easily represented using unarynotation: 0 has
type N; if n has typeN, then its successor,S(n), is of the same typeN. The
number 3 is for instance represented by the termS(S(S(0))). Such a term is
called anumeraland is written in3 in brief form. We introduce an operatorrec

which allows functions to be defined by a generalised form of primitive recursion,
or structural recursion. Forf of typeA andg of typeN → A → A the following
equations are valid

rec(0, f ,g) = f , (5)

rec(S(n), f ,g) = g(n)(rec(n, f ,g)). (6)

Next the terms are defined formally. We use the abbreviationa : A for a being
a term of typeA.

Definition 2.3 Lambda terms.

For each typeA there are infinitely many variablesxA,yA,zA, . . . of that type.
If f : A→ B anda : A, thenapply(f ,a) : B.
If xA is a variable andb : B, thenλxA.b : A→ B, and the variablexA is bound.
If a : A andb : B, then〈a,b〉 : A×B.
If c : A×B, then #1(c) : A and #2(c) : B.
If a : A andB is a type, theninl(a) : A+B.
If b : B andA is a type, theninr(b) : A+B.
If d : A+B, f : A→C andg : B→C, thenwhen(d, f ,g) : C.
If a : N, f : A andg : N → A→ A, thenrec(a, f ,g) : A.

We shall often omit type information from variables, or other terms, when it may
be inferred from the context. The expressionapply(f ,a) is abbreviatedf (a).
The abtractionλx. binds most loosely, whence the expressionλx. f (a) is read
λx.apply(f ,a), while apply(λx. f ,a) is written(λx. f)(a).

Lambda calculus is anequational theory,i.e. a theory where only equalities
between terms are dealt with. Then logical formulae are thusexpressions of the
form s = t, wheres and t are terms of the same type. As axioms we assume
all instances of the equalities (1), (2), (3), (4), (5), (6) and t = t. The rules of
derivation are

t1 = t2
t2 = t1

t1 = t2 t2 = t3
t1 = t3

7

t1 = t2
t1[t/x] = t2[t/x]

t1 = t2
t[t1/y] = t[t2/y]

t1 = t2
λxA.t1 = λxA.t2

whose only purpose is to make calculations possible in subexpression. Using these
one may calculate as expected.

Example 2.4 Composition of functions.Let

comp =def λ f B→C.λgA→B.λxA. f (g(x)).

This term has type(B → C) → (A → B) → A → C. We havecomp(f)(g)(x) =
f (g(x)).

Example 2.5 The predecessor functionpd : N → N is defined by

pd =def λx.rec(x,0,λn.λy.n).

We have
pd(0) = rec(0,0,λn.λy.n) = 0

and

pd(S(x)) = rec(S(x),0,λn.λy.n)

= (λn.λy.n)(x)(rec(x,0,λn.λy.n))

= (λy.x)(rec(x,0,λn.λy.n))

= x

Example 2.6 Multiplication by 2.Define

double =def λx.rec(x,0,λn.λy.S(S(y))).

We havedouble(0) = 0 anddouble(S(x)) = S(S(double(x))).

Example 2.7 Representation of integers.Let Z = N+N and letinl(m) symbolise
the negative number−(m+1) while inr(n) symbolises the non-negative number
n. One easily checks that this term changes sign of an integer:

neg =def λz.when(z,λu.inr(S(u)),λv.rec(v, inr(0),λn.λy.inl(n))).

That is we haveneg(inl(m)) = inr(S(m)), neg(inr(0)) = inr(0) andneg(inr(S(m))) =
inl(m).

8

Example 2.8 Define a lambda termI of type (A → A) → N → (A → A) which
has the property that if applied to a numeraln, as follows, then

I(f)(n) = λx. f (f (· · · f (x) · · ·))).
Here the number off ’s in the right hand side isn. Observe that the right hand side
corresponds to the composition off with itself n times. To achieve this we use
the recursion operator

I =def λ f .λn.rec(n,λx.x,λm.λg.comp(f ,g)).

Remark 2.9 It is natural to regard the equalities (=) as computation relations, or
reduction relations, directed from left to right, such thatfor example #1(〈a,b〉) = a
is read #1(〈a,b〉) computes to a. In this manner we may regard the typed lambda
calculus as a programming language. It has the unusual property thatall programs
terminate. To prove this formally is very complicated, see for instance Hindley
and Seldin 1986, for a proof concerning a simplified calculus. The fact that all pro-
grams terminate implies that a programming language is not Turing complete, i.e.
there is a Turing machine computable function which cannot not be represented
as a lambda term. (Cf. Exercise 2.5 below.) However, the calculus contains all
computable functions that can beproved to terminatein the first order theory of
Peano arithmetic.

Remark 2.10 In pure untyped lambda calculusthe only programming construc-
tions are abstraction and application. It has, as the name indicates, no types so
each term may be applied to any term whatsoever, including the term itself. For
example,(λx.x(x))(λx.x(x)) is a well-formed term. Employing theβ-rule the
same term is obtained in one computation step! This means that there are non-
terminating programs in the calculus. Despite its extreme simplicity the untyped
calculus is Turing complete. It is however not easy to demonstrate this, and its
was first done by Turing in 1936, building on results of S.C. Kleene.

Exercises

2.1 Verify the equalities in Examples 2.6, 2.7 and 2.8.

2.2 Construct a lambda terme : N → N → N such that

e(0)(0) = S(0)

e(0)(S(y)) = 0

e(S(x))(0) = 0

e(S(x))(S(y)) = e(x)(y).

9

This is thus a function which may be used to decide whether twonatural numbers
are equal.

2.3 Show that each primitive recursive function may be simulated by a lambda
term.

2.4 It is known that the Ackermann functiona : N×N → N, defined by

a(0,n) = S(n)

a(S(m),0) = a(m,S(0))

a(S(m),S(n)) = a(m,a(S(m),n)),

grows to quickly for being a primitive recursive function. Prove that it neverthe-
less may be defined in the typed lambda calculus with the help of the recursion
operatorrec. [Hint 1: expand the definition ofa(S(m),n) in the third line of the
definition. Hint 2: define a functionb : N → N → N such thata(m,n) = b(m)(n).
Example 2.8 may also be useful.]

2.5 (a) Letf : N×N →N and letg(n) = f (n,n)+1. Prove that there is nomsuch
that f (m,n) = g(n) for all n. This is the archetypical diagonialisation argument.

(b) Prove thatg is computable, iff is computable.
(c) Suppose that the lambda terms contain sufficient information to deter-

mined their type in a unique way. This may be done by furnishing the operators
apply,when, rec, inl andinr with type information:applyA,B,whenA,B,C, recA, inlA,B

and inrA,B (see Definition 2.3). Argue informally that the following function is
totally defined and computable

f (m,n) =

k if m in base 2 is a character-code for a lambda termt
of typeN → N, andk is the value oft(n).

0 otherwise.

Use the fact thatt(x) always terminate with a numeral as value whenx is a nu-
meral. (We presuppose that special symbolsλ, . . . are character coded in some
appropriate way.)

(d) Show using (a) – (c) that there is a computable function which cannot be
computed by a term in the typed lambda calculus (presented inthis chapter).

3 Constructive interpretation of the logical constants

According to Brouwer’s idea every mathematical theoremA must rest on a (men-
tal) constructiona. The constructiona may be regarded as awitnessto the truth

10

of A. We shall here use the lambda terms which were introduced in Chapter 2
as such constructions. This basic constructive interpretation was further clarified
by A. Heyting (a student of Brouwer) and by A.N. Kolmogorov (the founder of
modern probability theory). Hence it is called theBrouwer-Heyting-Kolmogorov-
interpretation,or BHK-interpretation for short.

It should be pointed out that the class of constructions is not limited to the
lambda terms that we have introduced so far, but may be extended when further
construction methods are discovered (cf. Remark 3.4). There are some limits. One
may be lead to think that this is a construction

f (n) =

{

1 there aren consecutive 7’s in the decimal expansion ofπ,
0 otherwise.

This is, a priori, not a constructive function as no one has (yet) found an algorithm
that can decide whether there aren consecutive 7’s in the decimal expansion ofπ
or not. Case distinction is allowed only if it can be decided effectively which case
is true, for given parameters.

BHK-interpretation. We explain what it means thata is a witnessto the truth
of the propositionA, by induction on the form ofA. This will be expressed more
briefly asa is a witness to A, or thata testifies A.

• ⊥ has no witnesses.

• p testifiess= t iff p = 0 ands andt are computed to the same thing. (Here
s andt are supposed to be natural numbers, or some similar finitely given
mathematical objects.)

• p testifiesA∧B iff p is a pair〈a,b〉 wherea testifiesA andb testifiesB.

• p testifiesA → B iff p is a function which to each witnessa to A gives a
witnessp(a) to B.

• p testifiesA∨B iff p has the forminl(a), in which casea testifiesA, or p
has the forminr(b), in which caseb testifiesB

• p testifies(∀x ∈ S)A(x) iff p is a function which to each elementd ∈ S,
provides a witnessp(d) to A(d).

• p testifies(∃x∈S)A(x) iff p is a pair〈d,q〉 consisting ofd∈ Sand a witness
q to A(d).

11

A propositionA is valid under the BHK-interpretation,or is constructively
true, if there is a constructionp such thatp testifiesA.

Note that this use of the word “witness” extends its usage in classical logic
about existence statements. One may say that 2 is a witness to(∃x)x2 = 4 being
true. The established standard terminology is rather to saythat p is aproof for A,
and the constructionp is calledproof-object.But to avoid confusion with formal
derivations we use here, for pedagogical reasons, the wordwitness.

Here follows some examples of BHK-interpretations. We use constructions from
typed lambda calculus.

Examples 3.1 1. p = λx.x is a witness to the truth ofA→ A. This is clear, since
p(a) = (λx.x)(a) = a and ifa testifiesA, then so doesp(a).

2. A witness toA∧B→B∧A is given by the constructionf = λx.〈#2(x),#1(x)〉.
3. Consider the proposition⊥→ A. A witness to this is an arbitrary function

f such asf (x) = 42: Suppose thata is a witness to⊥. But according to the BHK-
interpretation⊥ has no witness, so we have a contradiction. By the absurdity law,
anything follows, in particular that 42 is a witness toA.

Negation isdefinedas¬A=def (A→⊥). To prove¬A amounts to proving that
A leads to a contradiction. As usual we defineA↔ B to be(A→ B)∧ (B→ A).

Example 3.2 The contraposition law(A → B) → (¬B → ¬A) is valid in under
the BHK-interpretation. Suppose thatf testifiesA→B. We wish to find a witness
to (¬B → ¬A), i.e. (B → ⊥) → (A → ⊥). Suppose therefore thatg testifies¬B
anda testifiesA. Therebyf (a) is a witness toB, and henceg(f (a)) is a witness
to ⊥. The constructionλa.g(f (a)) thus testifies¬A. Abstracting ong it is clear
thatλg.λa.g(f (a)) testifies¬B→¬A. The construction

λ f .λg.λa.g(f (a))

is finally the witness to the law of contraposition.2

Suppose that we have a witnessp to the truth of the proposition

(∀x∈ S)(∃y∈ T)A(x,y). (7)

Then we have for eacha ∈ S that p(a) testifies(∃y ∈ T)A(a,y). But p(a) is a
pair 〈c,q〉 wherec ∈ T andq testifiesA(a,c). It follows that #2(p(a)) testifies
A(a,#1(p(a))). Hence f (x) = #1(p(x)) defines a function such thatλx.#2(p(x))
testifies(∀x∈ S)A(x, f (x)). This gives a method for computingy from x.

A proposition of the form (7) may for instance be a specification of a program,
whereSis the type of input data,T is the type of output data, andA(x,y) describes
the desired relation between input and output. The witnessp now gives a program
f which satisfies the specificationA.

12

Remark 3.3 The Principle of Excluded Middle(PEM)

A∨¬A

is not obviously valid under the BHK-interpretation, sincewe would need to find a
method, which given the parameters inA, decides whetherA is valid or not. If we
restrict the possible constructions to computable functions, we may actually show
that PEM is not constructively true. It is known that there isa primitive recursive
functionT such thatT(e,x, t) = 1 in caset describes a terminating computation
(t is, so to say, the complete “trace” of the computation) for the Turing machinee
with input x, and having the valueT(e,x, t) = 0 otherwise. By a suitable coding,
the arguments toT may be regarded as natural numbers. The halting problem for
e andx may now be expressed by the formula

H(e,x) =def (∃t ∈ N)T(e,x, t) = 1.

According to PEM

(∀e∈ N)(∀x∈ N)H(e,x)∨¬H(e,x).

If this proposition were to have a computable witness, then we could decide the
halting problem, contrary to Turing’s well-known result that this is algorithmically
undecidable. The principle of indirect proof,reductio ad absurdum(RAA)

¬¬A→ A

can be shown to be equivalent to PEM within intuitionistic logic, so it is not valid
under the BHK-interpretation either.2

We have seen that a witness to the truth of a proposition may beregarded
as a program, by letting the constructions be lambda terms. In the following
chapter we show how proofs of a propositionA carried out following the rules of
intuitionistic logicalways gives rise to a witnessa to A,

The second leading idea, to consider propositions as data types, is realised in the
following limited sense. If the witnesses to the truth of propositionA have typeS,
the witnesses toB have typeT, and the witnesses toC(x) have typeU , then

• the witnesses toA∧B have typeS×T,

• the witnesses toA→ B have typeS→ T

• the witnesses toA∨B have typeS+T,

• the witnesses to(∀x∈ N)C(x) have typeN →U ,

13

• the witnesses to(∃x∈ N)C(x) have typeN×U

The witnesses tos= t have typeN. Since⊥ has no witnesses, we could formally
let these have typeN as well. Conceptually there are good reasons to introduce a
specialempty type. Extend Definition 2.1 with

/0 is type.

The empty type/0 has no elements. The construction !A : /0 → A is used to express
that /0 is at least as empty as any other type, namely, if/0 has an elementc, then
every other typeA has an element !A(c).

According to the above it is clear that a typeS corresponding to a proposition
A may contain terms that are not witnesses toA. For instance, the proposition
A1 = (∀n∈ N)n = n2 has corresponding typeN → N. It contains the termλx.0,
which is not a witness toA1.

It would be desirable to be able to identify propositions with data types in such
way that a propositionA has a witness if, and only if, it is non-empty regarded as
a data type. The logician H.B. Curry realised that for (intuitionistic) propositional
logic a formula could be made to correspond exactly with a type by introducing
type variablesX,Y, . . . that may stand for arbitrary types, empty or non-empty; see
Curry and Feys 1958. W.A. Howard extended, in 1969, Curry’s idea to universally
quantified propositions. The propositions-as-types principle is sometimes called
the Curry-Howard isomorphism(in particular, if further relations hold between
the reduction rules of the proofs and the programs; see Simmons 2000). A fully
fledged version of the propositions-as-types principle came only with the intro-
duction in 1971 of the type theory of Per Martin-Löf. In this and later work it
emerged how this principle could be generalised to many other logical construc-
tion, even those belonging to higher set theory.

For propositions containing individual variables the associated types becomes
much more complicated. In the exampleA1 above the propositionn = n2 should
be a empty typeSn = /0 for n≥ 2 and a type containing 0, for instanceSn = {0},
whenn = 0,1. This requires so calleddependent types.The typeSn depends on
n∈ N, an element in another type. We return to type theory in Chapter 7.

Remark 3.4 It is also possible to use untyped terms as constructions. Anim-
portant method is Kleene’s recursive realisability interpretation, where the con-
structions are indices (codes) for partial recursive functions (cf. Troelstra och van
Dalen 1988). These indices may be regarded as programs for Turing machines.
It may be argued that construction methods beyond these are necessary if one ac-
cepts the Church-Turing thesis on computability. While theconstructions in typed
lambda calculus, or Martin-Löf type theory, may be understood directly and in-
dependently of other theories, the properties of the untyped constructions need to
justified within some meta-theory.

14

Exercises

3.1 Prove that the following propositions are valid under the BHK-interpretation

(a) A∧B→ A andA∧B→ B

(b) A→ (B→ A∧B)

(c) A→ A∨B andB→ A∨B

(d) (A→C) → ((B→C) → (A∨B→C))

(e) A→ (B→ A)

(f) (A→ (B→C)) → ((A→ B) → (A→C))

(g) ⊥→ A

(h) A(t) → (∃x∈ D)A(x)

(i) (∀x∈ D)(A(x) → B) → ((∃x∈ D)A(x) → B)), wherex does not occur free
in B

(j) (∀x∈ D)A(x) → A(t)

(k) (∀x∈ D)(B→ A(x)) → (B→ (∀x∈ D)A(x)), wherex does not occur free
in B.

These are the logical axioms for (first-order) intuitionistic logic. In addition there
are the modus ponens rule, and the generalisation rule: fromA, derive(∀x∈ D)A.

3.2 Show that the following are constructively true:

(a) ¬¬¬A→¬A

(b) ¬(A∨B) ↔¬A∧¬B.

(c) ¬(∃x∈ D)A(x) ↔ (∀x∈ D)¬A(x)

3.3 Does any of the following (classical valid) propositions have constructive wit-
nesses? Discuss!

(a) ¬(∀x∈ D)A(x) → (∃x∈ D)¬A(x).

(b) ¬(A∧B) →¬A∨¬B.

15

4 Intuitionistic logic

We assume that the reader is familiar with some system of natural deduction for
predicate logic; see van Dalen 1997, Huth and Ryan 2000 or Hansen 1997. Here
is one such system based on derivation trees.

Derivation rules:

A B
A∧B

(∧I)
A∧B

A
(∧E1)

A∧B
B

(∧E2)

A
h

...
B

A→ B
(→ I ,h)

A→ B A
B

(→ E)

A
A∨B

(∨I1)
B

A∨B
(∨I2)

A
h1 B

h2

...
...

A∨B C C

C
(∨E,h1,h2)

⊥
A

(⊥E)

¬A
h

...
⊥
A

(RAA,h)

This is the propositional part of the rules. Note that a discharged assumptionA is

denotedA
h

in the derivation, whereh is a symbol that identifies those assumptions
which are discharged at the same time. The symbol is placed also at the rule which
does the discharging, and has to be unique.

A
(∀x)A

(∀I)
(∀x)A
A[t/x]

(∀E)

A[t/x]
(∃x)A

(∃I)

A
h

...
(∃x)A C

C
(∃E,h)

16

The rules for the quantifiers have certain restrictions. For(∀I) the condition
is thatx may not be free in undischarged assumptions aboveA. This blocks a
derivation of

x = 0→ (∀x)x = 0. (8)

For (∃E) the restriction is thatx may not be free inC or in undischarged assump-
tions other than those marked withh. This blocks derivations of

(∃x)A→ (∀x)A. (9)

The above rules constitute a system forclassical predicate logic(with equality).
If the rule RAA is omitted, we get a system forintuitionistic predicate logic.

Validity under the BHK-interpretation. We show that the rules of theintu-
itionistic subsystem are valid under the BHK-interpretation, that is,if we have
witnesses for the propositions above derivation bar then wecan construct a wit-
ness for the proposition below the derivation bar. The notation a : A is used to
express thata is a witness toA. We presuppose that the quantification domain
is D. To make an assumptionA is interpreted as making the assumption that a
variablex is a witness toA, i.e.x : A.

a : A b : B
〈a,b〉 : A∧B

(∧I)
c : A∧B
#1(c) : A

(∧E1)
c : A∧B
#2(c) : B

(∧E2)

x : A
h

...
b : B

λx.b : A→ B
(→ I ,h)

c : A→ B a : A
apply(c,a) : B

(→ E)

a : A
inl(a) : A∨B

(∨I1)
b : B

inr(b) : A∨B
(∨I2)

x : A
h1 y : B

h2

...
...

c : A∨B d : C e: C

when(c,λx.d,λy.e) : C
(∨E,h1,h2)

17

c : ⊥
!(c) : A

(⊥E)

a : A
λx.a : (∀x)A

(∀I)
c : (∀x)A

apply(c, t) : A[t/x]
(∀E)

a : A[t/x]
〈t,a〉 : (∃x)A

(∃I)

y : A
h

...
c : (∃x)A d : C

d[#1(c),#2(c)/x,y] : C
(∃E,h)

We have shown

Theorem 4.1 The rules for intuitionistic logic are valid under the BHK-interpretation.

Example 4.2 We derive the contraposition law in intuitionistic logic

¬B
h2

A→ B
h3 A

h1

B
(→ E)

⊥ (→ E)

¬A
(→ I ,h1)

¬B→¬A
(→ I ,h2)

(A→ B) → (¬B→¬A)
(→ I ,h3)

and then do the BHK-interpretation:

g : ¬B h2
f : A→ B

h3 a : A
h1

f (a) : B
(→ E)

g(f (a)) : ⊥ (→ E)

λa.g(f (a)) : ¬A
(→ I ,h1)

λg.λa.g(f (a)) : ¬B→¬A
(→ I ,h2)

λ f .λg.λa.g(f (a)) : (A→ B) → (¬B→¬A)
(→ I ,h3)

Example 4.3 We derive and then make a BHK-interpretation of(∃x)(A∧B) →
A∧ (∃x)B. Herex is not free inA.

18

z : (∃x)(A∧B)
h2

y : A∧B
h1

#1(y) : A
(∧E1)

y : A∧B
h1

#2(y) : B
(∧E2)

〈x,#2(y)〉 : (∃x)B
(∃I)

〈#1(y),〈x,#2(y)〉〉 : A∧ (∃x)B
(∧I)

〈#1(#2(z)),〈#1(z),#2(#2(z))〉〉 : A∧ (∃x)B
(∃E,h1)

λz.〈#1(#2(z)),〈#1(z),#2(#2(z))〉〉 : (∃x)(A∧B) → A∧ (∃x)B
(→ I ,h2)

(What does the witness on the last line do?)

Remark 4.4 * To indicate what open assumptions there are available at a given
position in a proof tree one usessequent notation.The expression

Ah1
1 , . . . ,Ahn

n ⊢ B

states thatB is proved under the open assumptionsA1, . . . ,An. The order of these
assumption does not matter, and the same formula may occur several times, but
the markersh1, . . . ,hn have to be distinct. See Troelstra and Schwichtenberg
1996 for a formulation of natural deduction using this notation. Under the BHK-
interpretation the marker becomes superfluous and may be replaced by variables

x1 : A1, . . . ,xn : An ⊢ b : B. (10)

Model theory of intuitionistic logic.* We have seen that the intuitionistic deriva-
tion rules are valid under the BHK-interpretation. However, for this kind of se-
mantics there is no completeness theorem (van Dalen and Troelstra 1988). Intu-
itionistic logic is complete for Beth-Kripke-Joyal semantics, see van Dalen 1997
for an introduction. This semantics has the same function asTarski semantics
for classical logic and is very useful for demonstrating that a logical formula is
unprovable in intuitionistic logic. (For instance one may easily give negative so-
lutions to Exercise 3.3.)

Non-logical axioms: induction. The BHK-semantics has only been applied to
pure logic above. It is also possible to verify some non-logical axioms to be valid,
for instance the induction scheme for natural numbers. The scheme may also be
stated as an elimination rule. We now assume that the domain of quantification is
N. The induction rule

19

A(x)
h

...
A(0) A(S(x))

A(t)
(induction,h)

may easily be given a BHK-interpretation with the help of therecursion operator:

y : A(x)
h

...
b : A(0) c : A(S(x))

rec(t,b,λx.λy.c) : A(t)
(induction,h).

Exercises

4.1 Deduce 3.1 (a)–(k) in intuitionistic logic. (Use the soundness theorem and
compare to the constructions you obtained in Exercise 3.1.)

4.2 Deduce 3.2 in intuitionistic logic.

4.3* Prove¬¬¬A↔¬A in intuitionistic logic.

4.4 Show that the false formulae (8) and (9) are provable, if the restrictions on
quantifiers rules are removed.

20

5 Brouwerian counter examples

In this section we present a common way to show that a proposition is construc-
tively unprovable. There are certain simple logical principles, that are trivially true
in classical logic, but which have no constructive proofs. These are theprinciples
of omniscienceconcerning infinite binary sequences

1 0 0 1 1 0 0 0 1 0· · · .

An (infinite) binary sequenceis formally a functionα : N → {0,1}. We consider
here two such principles, thelimited principle of omniscienceand thelesser lim-
ited principle of omniscience

(LPO) For all binary sequencesα either∃nαn = 1 or∀nαn = 0.

(LLPO) Letα be a binary sequence with at most one occurrence of 1. Then∀nα2n =
0 or∀nα2n+1 = 0.

It may easily be shown, constructively, that

LPO⇒ LLPO.

In a recursive realisability interpretation LLPO is false,and hence so is LPO
(Troelstra and van Dalen 1988). One may also convince oneself by intuitive con-
siderations that LLPO does not have a constructive proof. Let α be the binary
sequence defined byαn = 1 if n is the first position in the decimal expansion ofπ
commencing a run of 100 consecutive 7s, andαn = 0 in other cases. A construc-
tive proof of LLPO would immediately give a method for deciding whether the
run is never started at an odd position, or is never started atan even position.

If P is a theorem in classical mathematics whose constructive truth we doubt,
we may try to show thatP implies of one the principles LPO or LLPO. In case we
succeed in this, we should give up looking for a constructiveproof of P.

Exercises

5.1 Establish the implication LPO⇒ LLPO in intuitionistic logic, in particular
without using PEM or RAA.

5.2 Prove using intuitionistic logic that Theorem 1.2 implies LPO.

21

6 Classical and intuitionstic proofs

We have seen that proofs in intuitionistic logic have the remarkable property that
programs may be extracted from them. Most naturally occurring proofs, in mathe-
matical text books or journals, rely as they stand on some useof classical logic. A
natural question is whether there is some mechanical methodfor translating clas-
sical proofs to constructive proofs. It is clear that such methods must have some
limitations in view of the counter examples of the previous chapters. Kurt Gödel
and Gerhard Gentzen showed that there is a method for purely logical proofs, and
certain simple theories, if the proposition provedA may be substituted by a clas-
sically equivalent propositionA∗. This substitute may not have the same meaning
from a constructive point of view.

In classical logic, the logical constants (connectives andquantifiers)∃ and∨
are actually unnecessary, since we have the following provable equivalences

A∨B ↔ ¬(¬A∧¬B) (11)

(∃x)C ↔ ¬(∀x)¬C (12)

for arbitrary formulaeA,B,C. The fact is that if we take the right hand sides as
definitions of the corresponding logical constants, and only use RAA,(⊥E) and
the introduction and elimination rules for∧,→ and∀, then we get a complete
system for classical predicate logic (see e.g. van Dalen 1997). A formula of pred-
icate logic where the only logical constants used are⊥,∧,→ and∀, is called a
non-existential formula.(We think ofA∨B as a form of existence statement.)

Define theGödel-Gentzen negative translation(·)∗ by recursion on non-existential
formulae:

• ⊥∗ = ⊥,

• R(t1, . . . , tn)
∗ = ¬¬R(t1, . . . , tn) , if R is a predicate symbol,

• (A∧B)∗ = A∗∧B∗,

• (A→ B)∗ = A∗ → B∗,

• ((∀x)C)∗ = (∀x)C∗.

It should be clear that the only thing this translation achieves is to insert two
negation sign in front of every predicate symbol. Obviously, A is provably equiv-
alent toA∗ using RAA.

Example 6.1 Let Rbe a binary predicate symbol. The formula

A = (∀x)(∃y)(R(x,y)∨R(y,x))

22

is classically equivalent toB = (∀x)¬(∀y)¬¬(¬R(x,y)∧¬R(y,x)). The Gödel-
Gentzen translationB∗ is

(∀x)¬(∀y)¬¬(¬¬¬R(x,y)∧¬¬¬R(y,x))

Theorem 6.2 Let A be a non-existential formula. If A is provable in classical
predicate logic, then A∗ is provable in intuitionistic predicate logic.

Proof. A formal proof goes by induction on derivations. Since the proof rules are
identical for the systems, save for RAA, one needs only to prove

¬¬A∗ → A∗ (13)

in intuitionistic predicate logic, for each non-existential formulaA. This is done
by induction on the formulaA, using the following theorems of intuitionistic logic.

⊢ ¬¬⊥→⊥,
⊢ ¬¬¬¬B→¬¬B,
¬¬A→ A,¬¬B→ B⊢ ¬¬(A∧B) → A∧B,
¬¬B→ B⊢ ¬¬(A→ B) → (A→ B),
(∀x)(¬¬A→ A) ⊢ ¬¬(∀x)A→ (∀x)A.

We leave their proofs as exercises for the reader.2

A non-existential formulaA is callednegativeif every predicate symbol inA is
immediately preceded by a negation. For such a formula everypredicate symbol
in the corresponding translationA∗ will be preceded by three negations. Intu-
itionistically, it holds that¬¬¬B↔¬B. Consequently, every negative formula is
equivalent to its own Gödel-Gentzen interpretation. We have

Corollary 6.3 Let A be a negative, non-existential formula. If A is provable in
classical predicate logic, then it is also provable in intuitionistic predicate logic.

Theorem 6.2 may be extended to some theoriesT, such that ifA is provable in
classical predicate logic using axioms fromT, thenA∗ is provable in intuitionistic
predicate logic from the axioms ofT. (T = /0 is thus the theorem proved above.)
An important example isT = PA, the first-order theory of natural numbers, known

23

as,Peano arithmetic.It has the following axioms:

(∀x)x = x

(∀x)(∀y)[x = y→ y = x]

(∀x)(∀y)(∀z)[x = y∧y = z→ x = z]

(∀x)(∀y)[x = y→ S(x) = S(y)]

(∀x)(∀y)(∀z)(∀u)[x= z∧y = u→ x+y = z+u]

(∀x)(∀y)(∀z)(∀u)[x= z∧y = u→ x·y = z·u]

(∀x)¬S(x) = 0

(∀x)(∀y)[S(x) = S(y) → x = y]

(∀x)x+0 = x

(∀x)(∀y)x+S(y) = S(x+y)

(∀x)x·0 = 0

(∀x)(∀y)x·S(y) = x·y+x

A(0)∧ (∀x)[A(x) → A(S(x))] → (∀x)A(x).

HereA(x) is an arbitrary formula in the language{=,0,S,+, ·}.
For quantifier-freeP we have an additional result: if

A = (∀x)(∃y)P(x,y)

is provable fromPA using classical logic, thenA is already provable using in-
tuitionistic logic from the axioms (see Troelstra and van Dalen 1988). SinceA
has the format of a program specification, it is sometimes possible to use this,
and similar results, to extract programs from classical proofs (see Schwichtenberg
1999).

Exercises

6.1. Let P(x) be a predicate symbol and considerA = (∃x)P(x)∨ (∀x)¬P(x).
Eliminate all occurrences of∨ and∃ with the help of (11). Then prove the Gödel-
Gentzen translated formula in intuitionistic logic.

6.2. Prove the following in intuitionistic logic.

(a) ⊢ ¬¬⊥→⊥,

(b) ⊢ ¬¬¬¬B→¬¬B,

(c) ¬¬A→ A,¬¬B→ B⊢ ¬¬(A∧B) → A∧B,

24

(d)* ¬¬B→ B⊢ ¬¬(A→ B) → (A→ B),

(e)* (∀x)(¬¬A→ A) ⊢ ¬¬(∀x)A→ (∀x)A.

6.3.* Suppose thatT is a theory such that,

(a) T provesA∨¬A, for every atomicA, using only intuitionistic logic,

(b) T provesB∗ using intuitionistic logic, for every axiomB of T.

Then show that if a non-existentialA is provable classically inT, then it is already
provable intuitionistically.

6.4.* Prove that PA satisfies the conditions in 6.3. Hint: for(a) use induction on
natural numbers.

7 Martin-Löf type theory

The type theory of Martin-Löf 1984 has several notions not present in simple
lambda calculus, such as dependent types,Π-types andΣ-types. These were in-
troduced to realise the full propositions-as-types principle.

7.1 Set-theoretic constructions: sums and products.

To explainΠ− andΣ-types we present some less common set-theoretic construc-
tions. LetI be a set, and letAi be a set for eachi ∈ I . We say thatAi (i ∈ I) is a
family of sets. Thedisjoint union, or sumof this family is a set of pairs

(Σi ∈ I)Ai = {〈i,a〉 | i ∈ I ,a∈ Ai}.

(Two alternative notations:∑i∈I Ai and∪̇i∈IAi — note the dot.)

Example 7.1 Let J = {1,2,3} andB1 = {0}, B2 = {0,1}, B3 = {1,2}. Then

(Σ j ∈ J)B j = {〈1,0〉,〈2,0〉,〈2,1〉,〈3,1〉,〈3,2〉}.

Example 7.2 Let Cn = {m∈ N : m≤ n}, for n∈ N. Then

(Σn∈ N)Cn = {〈n,m〉 ∈ N×N | m≤ n}.

25

Consider once more a familyAi (i ∈ I) of sets. Thecartesian productof this family
is a set of functions

(Πi ∈ I)Ai = { f : I →∪i∈I Ai | (∀i ∈ I) f (i) ∈ Ai}

(Alternative symbolism:∏i∈I Ai .) This is thus the set of functionsf defined onI ,
where for eachi ∈ I the valuef (i) belongs toAi . The range, or codomain,Ai de-
pend on the argumenti. Therefore the construction is sometimes calleddependent
function space.

Example 7.3 Let B j (j ∈ J) be a family of sets as in Example 7.1. Then(Π j ∈
J)B j consists of four different functionsf ,g,h, andk, where

f (1) = 0 g(1) = 0 h(1) = 0 k(1) = 0
f (2) = 0 g(2) = 0 h(2) = 1 k(2) = 1
f (3) = 1 g(3) = 2 h(3) = 1 k(3) = 2

Example 7.4 Let Cn (n ∈ N) be as in Example 7.2. Note that∪n∈NCn = N. So
(Π ∈ N)Cn = { f : N → N | (∀n∈ N) f (n) ∈Cn} = { f : N → N | (∀n∈ N) f (n) ≤
n}.

Remark 7.5 (Binary sums and products.) LetI = {0,1} andC0 = A, C1 = B.
Then

(Σi ∈ I)Ci = {〈0,a〉 : a∈ A}∪{〈1,b〉 : b∈ B},
is a disjoint union ofA andB. We denote this set asA+B. Furthermore

(Πi ∈ I)Ci = { f : I →C0∪C1 | f (0) ∈C0, f (1) ∈C1}.

Since functions with a two-element domainI = {0,1} may be regarded as pairs,
we see that(Πi ∈ I)Ci is a binary cartesian productA×B.

Remark 7.6 Suppose thatAi = A for all i ∈ I . Then we obtain(Σi ∈ I)Ai = (I ×A)
and(Πi ∈ I)Ai = (I → A). Therefore we may regardΣ andΠ as generalisations
of the constructions× and→.

7.2 Propositions as sets

We now investigate how these constructions may be used to give interpretations
of propositions assets.Define a setEm,n, depending onm,n∈ N, by:

Em,n =

{

{0} if m= n
/0 if m 6= n.

ThenEm,n is nonempty exactly whenm= n.

26

Example 7.7 The proposition(∃n∈N)m= 2n is true if, and only if,m is an even
natural number. Consider now the setSm = (Σn∈ N)Em,2n. The only possibility
for it to be non-empty is that(n,0) ∈ Sm for somen, which is true whenm= 2n.
We get that

Sm 6= /0 ⇔ (∃n∈ N)m= 2n.

Example 7.8 The proposition(∀n∈ N)(n+k)2 = n2+4n+4 is true if, and only
if, k = 2. Form the setTk = (Πn ∈ N)E(n+k)2,n2+4n+4. This set is non-empty
if, and only if, the function f (n) = 0 belongs to the set, i.e. if for alln ∈ N:
E(n+k)2,n2+4n+4 = {0}, i.e.(n+k)2 = n2+4n+4. Hence:

(∀n∈ N)(n+k)2 = n2+4n+4⇔ Tk 6= /0.

Example 7.9 The proposition(∀n∈N)[n= 0∨(∃m∈N)n= m+1] says that each
natural number is 0 or a successor of another natural number.The corresponding
set becomes

(Πn∈ N) [En,0+(Σm∈ N)En,m+1].

Exercise: show that this contains exactly one element.

7.3 The type theory

In the preceding section we gave aset-theoreticdescription of dependent type con-
structions, and thereby achieved a version of principle (II). However we have no
guarantee that an element of a set correspond to an algorithmic construction. That
is, we still have to achieve principle (I). To realise both (I) and (II) algorithmic
counterpart to dependent types must be defined. This is done in Martin-Löf type
theory,which is a typed lambda calculus which generalise the calculus from Chap-
ter 2 by introducing dependent types. This system is similarto a BHK-interpreted
version of natural deduction system for intuitionistic logic (see Chapter 4). What
is derived in type theory arejudgementsof the forma : A, which may be read as
(i) a has type Aor (ii) a is a witness to the proposition A. It turns out that this idea
of identifying propositions with types also leads to conceptual simplifications:∧
and∃ may be unified in the constructionΣ, while→ and∀ man be unified in the
Π-construction. The disjunction∨ is given by the type construction+.

A novelty of this system is that types may depend on other types. That a
type B depends onz : A means essentially that the variablez occurs free in the
type expressionB. This dependence may be nested, there may yet another typeC
depending ony : B andz : A, etc. These dependencies are written

27

B is a type(z : A),

C is a type(z : A,y : B).

We may also say thatb is an element ofB depending onz : A. This is written

b : B (z : A),

Thus fora : A, we haveb[a/z] : B[a/z].
Certain aspects of the formal treatment of dependent types will be omitted

here (see however Section 7.4 below).

Π-types.Let B be a type depending onx : A. The introduction rule forΠ is this:

x : A
...

b : B

λx.b : (Πx : A)B
(ΠI)

The elimination rule is

f : (Πx : A)B a : A
apply(f ,a) : B[a/x]

(ΠE)

The associated computation rule isapply(λx.b,a) = b[a/x] : B[a/x], often called
theβ-rule.

For a typeB which is independent ofx, we see that this becomes the BHK-
interpretation of the rules (→ I) and (→ E) respectively, for intuitionistic logic.

If A is considered as the quantification domain, the rules are similar to those for
∀. In single sorted intuitionistic logic the judgementsx : A anda : A are hidden,
since all variables and terms automatically have the type ofthe quantification
domain.

Σ-types.Let B be a type depending onx : A. The introduction forΣ is

a : A b : B[a/x]
〈a,b〉 : (Σx : A)B

(ΣI)

If A is regarded as the quantification domain andB is regarded as a proposition,
we see that(ΣI) may be read as the rule(∃I).

In caseB is independent ofx, so thatB[a/x] = B, we see that the rule(ΣI) has
the same shape as(∧I). (Set-theoretically it holds in this case that:(Σx∈ A)B =
A×B, see Remark 7.6.)

28

The elimination rule forΣ is the following: suppose thatC is a type depending on
z : (Σx : A)B.

x : A y : B
...

...
c : (Σx : A)B d : C[〈x,y〉/z]

split(c,λx.λy.d) : C[c/z]
(ΣE)

The associated computation rule issplit(〈a,b〉,g) = g(a)(b) : C[〈a,b〉/z].

If C does not depend onz, and the “hidden” judgements for the quantification
domain are taken into account, then the rule(ΣE) is in accordance with(∃E).

If B is independent ofx, C = A andd = x we have that

split(〈a,b〉,λx.λy.x) = (λx.λy.x)(a)(b) = a.

We may considersplit(z,λx.λy.x) as the first projection #1(z), and hence(∧E1) is
generalised. (Exercise: how may #2(z) be defined in terms ofsplit?)

Remark 7.10 In versions of type theory suitable for computer implementation,
for instance Agda or Alf, the terms are provided with complete type information.
For instance, the expressionsplit(c,λx.λy.d) is written as

split(A,(x)B,(z)C,c,λx.λy.d),

where(x)B indicates thatB is a family of types depending onx.

+-types.The introduction rule for the binary sum+ is

a : A
inl(a) : A+B

(+I1)
b : B

inr(b) : A+B
(+I2)

Let C be a type depending onz : A+B. The elimination rule is given by

x : A y : B
...

...
c : A+B d : C[inl(x)/z] e : C[inr(x)/z]

when(c,λx.d,λy.e) : C[c/z]
(+E)

The computation rule is identical with (4).
We leave it to the reader to show how these rules generalise the rules for∨.

Remark 7.11 Functional programming and dependent types.The typing disci-
pline in a programming language has the well-known advantage that many pro-
gramming errors may be detected already by the compiler. Dependent types make

29

it possible to sharpen this discipline, and to make further errors detectable at
an early stage. An example of a functional language using dependent types is
Cayenne (Augustsson 1998).

Suppose that we wish to write a programf for multiplying two matricesA
andB. For the matrix productAB to be well-defined the number of columns in
A must be the same as the number of rows inB. Denote byM(r,k) the type of
r ×k-matrices. We will thus haveAB : M(r,k) for A : M(r,n) andB : M(n,k). One
could imagine designingf (A,B) to take a special error value when the dimensions
of the matrices are mismatching. This would however mean that dimension errors
would not be discovered at the compilation stage. By using dependent types it is
possible to letf have the type

(Πr : N)(Πn : N)(Πk : N)[M(r,n)×M(n,k)→ M(r,k)],

in which case it becomes impossible to write a well-typed program which usesf
and make a dimension error.

An important application ofΣ-types is to form modules. There is no need for
a special construction as in ML. A module specification is a type of the form

(Σ f1 : A1) · · ·(Σ fn : An)P(f1, . . . , fn),

where f1, . . . , fn are functions, or operations, andP(f1, . . . , fn) is regarded as a
proposition describing their mutual relations and effects. An element

〈g1, . . . ,〈gn,q〉 · · ·〉
of this type is an implementation of the module.

Basic types and recursive types.We give the rules for the types/0 andN. There
is no introduction rule for/0 (as it is supposed to have no elements), on the other
hand it has the elimination rule

c : /0
!A(c) : A

(/0E)

The collection of natural numbersN considered as a recursive type has the intro-
duction rules

0 : N
a : N

S(a) : N
(NI).

The elimination rule is a fusion of the recursion operatorrec and the induction
principle. LetC be a type depending onz : N.

x : N y : C[x/z]
...

...
t : N b : C[0/z] c : C[S(x)/z]

rec(t,b,λx.λy.c) : C[t/z]
(NE).

30

The computation rule is the same as for the recursion operator in Chapter 2.
We introduce a basic dependent typeL(z), which depends onz : N.

L(0) = /0 L(S(x)) = N.

Combining this type with the functione in Exercise 2.2 we get a dependent
L(e(m)(n)) that is empty exactly whenm 6= n (cf. Em,n above). It is now easy
to write down the sets of Example 7.7 – 7.9 as types in type theory by replacing
“∈” by “:”.

Type theory may easily be extended with rules for enumeration types and re-
cursive types of the kind used in ML or Haskell. The typeB of boolean values is
an enumeration type with following introduction and elimination rules:

tt : B ff : B (BI)

For a typeC that depends onz : B

c : B d : C[tt/z] e : C[ff/z]
if(c,d,e) : C[c/z]

(BE)

The computation rules areif(tt,c,d) = c andif(ff,c,d) = d.
As yet another example of a recursive data type consider the type List(A) of

lists of objects of typeA. The introduction rules are

nil : List(A)
a : A ℓ : List(A)

cons(a, ℓ) : List(A)
.

The formulation of the associated elimination rule is left as an exercise for the
reader (see Martin-Löf 1984 for a solution).

Warning. A certain care has to be taken when defining new recursive datatypes,
so that the property that all programs terminate is preserved. A recursive data type
D satisfying

D = D → D (14)

will allow encoding of untyped lambda terms. Even when worse, the theory may
also become inconsistent: if for instance there is a recursive typeA given by

A = A→ /0. (15)

There are syntactical criteria that guarantee terminationand relative consistency;
see Dybjer 2000. In the system Agda (Chapter 9) there is a partial termination
checker, that catches all such non-wellfounded definitions, but also forbids many
legitimate ones.

31

Type universes.A type universeis a typeU consisting of other types, that isA
is a type for eachA : U . The purpose of a type universe is to admit quantification
over types, and thus over families of types. Given a typeX andB : X →U , then
apply(B,x) = B(x) is also a type, depending onx : X. The typeX →U may thus
be viewed as the type of all types inU depending onX.

Example 7.12 It is possible to introduce a very small universeU ′ consisting only
of the types/0 andN. From thisdefine Lby recursion: letC = U ′

L(z) =def rec(z, /0,λx.λy.N)

The computation rules givesL(0) = /0 ochL(S(x)) = N. 2

In standard versions of Martin-Löf type theory there is a universeSet containing
the basic types/0 andN, and which is moreover closed under the formation ofΠ-,
Σ- and+-types. The closure condition means that

• (Πx : A)B(x) : Set, if A : Set andB : A→ Set,

• (Σx : A)B(x) : Set, if A : Set andB : A→ Set,

• A+B : Set, if A : Set andB : Set.

Example 7.13 With the help of a universe one may define types that lacks coun-
terpart in ML or Haskell. For instance, let forn : N andA : Set,

F(0)(A) = A

F(S(n))(A) = A→ F(n)(A)

We haveF(n)(A) = A→A→·· ·→A (n arrows), so the number of arguments that
a function of this type takesdependonn. (Compare to the example with matrices
above.) Formally we may defineF as

λn.rec(n,λA.A,λx.λy.λA.(A→ y(A)),

whereF : N → Set → Set. (Exercise: check this using the computation rules.)2

Remark 7.14 Type universes make it possible to type polymorphic functions,
i.e. functions which works the same way regardless of type. An example is the
appending of lists

append : (ΠA : U) [List(A)→ List(A)→ List(A)].

32

append(N) is then the append function specialised to lists of natural numbers.2

Sometimes it may be necessary to pile universes on each other. The typeB =
(ΣA : Set)(Σn : N)F(n)(A) does not belong toSet, since it is not the case that
Set : Set. The typeF(n)(B) is not well-defined, sinceF demands thatB belongs
to Set. To construct anF which can takeB as an argument we may introduce a
larger universeSet2 which is closed underΠ-, Σ- and+-constructions and which
is such that

• Set : Set2,

• A : Set2 for all A : Set.

Now, the same problem would occur again if inB the universeSet is replaced by
Set2.

Remark 7.15 The simple and drastic solution to assumeSet : Set leads to an in-
consistent theory; see Martin-Löf 1971. This paradox is called Girard’s paradox.
In practise it seems that one or two levels of universes are enough.

7.4 Type theory as a formal system*

In a formal system for Martin-Löf type theory there is not only rules for judge-
ments of the forma : A. The types cannot be defined as grammatically simple
as for the lambda calculus in Chapter 2. That an expressionB(a) is a type, may
depend on that we have previously showed thata : A. Therefore one needs a par-
ticular judgement form for saying that an expression is a type. For instance rules
of the following kind are needed

x : A
...

A type B type

(Πx : A)B type
z : N

L(z) type

Furthermore, the computation rules have a special judgement form a = b : A,
which states thata andb can be computed to the same element of the typeA.
Because of constructions asL(·) above, there should be a way of expressing
that two types may be computed to the same type,A = B. We have for instance
L(e(0)(1)) = L(0) = /0.

A technique for managing open assumptions is to use assumption lists (see
Remark 4.4 above)

Γ ≡ x1 : A1, . . . ,xn : An.

33

Such a list is also called acontext. For type theory they are rather complicated,
since the order between the assumptions is important:An may depend on all vari-
ablesx1 : A1, . . . ,xn−1 : An−1. This means that, in general, an assumption early
in the list may not be possible to discharge, until all later assumptions have been
discharged. To ensure correct formation of contexts, thereis yet another judge-
ment form. One needs to know that an expression actually is a type before the
assumption that a variable has this type can be added to context.

Γ ⊢ B type
Γ,y : B context

.

The assumption rule is

x1 : A1, . . . ,xn : An context
x1 : A1, . . . ,xn : An ⊢ xi : Ai

.

In computer implementations of type theory, contexts and computational equal-
ities are handled by the system. It is thus not necessary worry about those rules,
to be able to use the theory.

Exercises

7.1. LetI0 = {0,1,2}, I1 = {0,3}, I2 = /0, A0 = {0,1}, A1 = {0}, A2 = {1,2} and
A3 = /0. List the elements of the following sets

(a) (Σi ∈ I0)Ai

(b) (Σi ∈ I1)Ai

(c) (Πi ∈ I0)Ai

(d) (Πi ∈ I1)Ai

(e) (Π j ∈ I0)(Σi ∈ I j)Ai

(f) (Σ j ∈ I0)(Π ∈ I j)Ai

7.2. Do the exercise in Example 7.9.

7.3. Formulate an elimination rule for the recursive data typeList(A).

7.4. Define #2(·) in terms ofsplit.

34

8 Formalising mathematics

In order to mechanically check, or construct, mathematicalproofs we need first of
all to have a mathematically precise notion of proof. This isachieved by various
logical systems, as we have already seen examples of. But we also need some
conventions for describing or coding mathematical objects: rational numbers, real
numbers, matrices, functions, ordered sets, graphs, treesetc.

The foundation of mathematics in set theory builds on the coding of all objects
as sets, in effect built up from the empty set/0 and set parentheses{ }. Thus
for instance natural numbers are usually coded as

0 = /0 1 = {0,{0}} 2 = {1,{1}} · · · .

Pairs of elements may be coded as

〈a,b〉 = {{a},{a,b}}.

The cartesian productsA×B of two sets is the set of all〈a,b〉 wherea ∈ A and
b ∈ B. FunctionsA→ B are then subsets ofA×B satisfying the usual condition
of graphs of functions. For details of further such codings see e.g. (Krivine 1971).

The next level is to disregard from particular representation of mathemati-
cal objects and to describe their properties abstractly. For instance, the cartesian
product of two setsA andB may be described as a setP(A,B) together with two
“projection” functions

π1 : P(A,B)→ A π2 : P(A,B) → B,

such that for alla ∈ A andb ∈ B there exists a unique elementc∈ P(A,B) with
π1(c) = a andπ2(c) = b. Thusπk picks out thekth component of the abstract pair.
Thereby the reference to the particular coding of ZF set theory may be avoided. In
category theory this point of view is taken to its extreme, and one dispenses with
the reference to sets altogether. Mathematics may as well befounded on category
theory.

At this level of abstraction it makes little difference whether mathematics is
founded on set theory or type theory. We shall see below how some important
basic notions are formalised in type theory.

8.1 Sets and functions

In mathematics a basic means of abstraction is that of regarding some objects as
the “same” from some aspect. This is done is set theory by the introduction of
equivalence relations and then equivalence classes. For instance, if for natural

35

natural numbersN we want to disregard from everything except from whether
they have the same parity, we introduce the equivalence classes of even and odd
numbers:

0 = {0,2,4, . . .} 1 = {1,3,5, . . .}.
As first step an equivalence relation≡ onN is defined

x≡ y⇐⇒def x−y is divisible by 2.

The equivalence classes are introduced as subsets ofN: [x] = {y ∈ N : x ≡ y}.
Then thequotient setis

(N/≡) = {[x] : x∈ N}
and note that[x] = [y] iff x≡ y. Hence e.g.

0 = [0] = [2] = [4] = · · ·

This construction is general and can be made for any setX, and any given equiv-
alence relation≡ on X.

In constructive mathematics one usually skips the introduction of equivalence
classes, following the princple that each setX should come with an explicitly
given equivalence relation=X. This has the advantage that the notion of set can
be understood in a quite concrete way, and avoiding sets of sets. For instance
the quotient set(N/≡) above, would be the pair(N,≡). It is actually close to
some practise in mathematics to use explicit equivalence relations when there is a
possibility of confusion as in

7≡ 5≡ 3 (mod 2).

A setoid Xwill be a typeX together with an equivalence relation=X on X.
The latter means thatx =X y is a family of types depending onx,y : X and that
there are functions ref, sym and tra with

ref(a) : a =X a (a : X),

sym(a,b, p) : b =X a (a : X,b : X, p : a =X b),

tra(a,b,c, p,q) : a =X c (a,b,c : X, p : a =X b,q : b =X c).

We shall writex∈ X instead ofx : X.

Remark 8.1 In the Bishop tradition of constructive mathematicsX is called a
preset,rather than a type, andX is called aset.

36

An extensional function ffrom the setoidX to the setoidY is a pair(f ,extf)
where f : X →Y is function so that

extf (a,b, p) : f (a) =Y f (b) (a,b : X, p : a =X b)

Two functionsf ,g : X →Y areextensionally equalif there isewith

e(a) : f (a) =Y g(a) (a : X).

We shall follow the terminology of Bishop, when dealing withsetoids, calling an
extensional function simplyfunction, and calling a function, anoperation. Also
we usuall writef also for f when there is no risk of confusion.

We introduce some standard properties for a functionf : X →Y between se-
toids. It is

- injectiveif u =X v wheneverf (u) =Y f (v)

- surjectiveif for every y∈Y there is somex∈ X with f (x) =Y y.

- split epi if there is a functiong : Y → X so thatf ◦g = 1Y.

- bijectiveif it is injective and surjective.

Clearly, every functionf : X → Y which is split epi is also surjective. The
axiom of choicein classical ZF set theory can be phrased as: every surjective
function is split epi. This is in general too strong for beingconstructively accept-
able. We have however the following results.

An equivalence relation=Y onY is finest,if for any other equivalence relation
∼ onY,

a =Y b =⇒ a∼ b.

A setoid whose equivalence relation is finest is called achoice setoid.

Theorem 8.2 For any setoid X and any choice setoid Y , each surjective function
f : X →Y is split epi.

Proof. Supposef : X →Y is sujective. Then

p(y) : (Σx∈ X)(f (x) =Y y) (y∈Y).

Let g(y) = #1(p(y)). Then f (g(y)) =Y y is true for ally∈ Y, but we still do not
know thatg is extensional. Define a new equivalence relation∼ onY by

y∼ z⇐⇒ g(y) =X g(z).

37

Now, since=Y is the finest equivalence relation onY, we get the desired exten-
sionality

y =Y z=⇒ g(y) =X g(z).

Thusg is extensional andf ◦g = 1Y. 2

Example 8.3 The setoid of natural numbers(N,=N) where

m=N n = L(e(m)(n)),

is a choice setoid.

A relationRbetween setoidsX andY is a family of typesR(x,y) (x∈X,y∈Y)
such that

R(x,y),x =X x′,y =Y y′ =⇒ R(x′,y′).

ForX = Y, we say thatR is an relationon X

Quotient setoids. Let X = (X,=X) be a setoid and let∼ be a relation on the
setoidX, which is an equivalence relation. Then∼ is an equivalence relation on
X, and

x =X y =⇒ x∼ y. (16)

ThenX/∼= (X,∼) is a setoid, andi : X →X/∼ defined byi(x) = x is a function
according to (16). We have the following extension property. If f : X → Y is a
function with

x∼ y =⇒ f (x) =Y f (y),

then there is a unique functionf : X/∼→Y (up to extensional equality) with

f (i(x)) =Y f (x) (x∈ X).

This is the same abstract property that quotient sets has in classical ZF set theory.

The identity type construction assigns to each typeA a finest equivalence re-
lation Id(A, ·, ·), see Nordströmet. al. 1990. It follows that every setoid is the
quotient setoid of a choice setoid, in this version of type theory.

Remark 8.4 For a full development of the basic theory of sets and functions in the
constructive setting we refer to Bishop and Bridges 1985 andMineset al. 1988.

38

9 Implementations of type theory

A modern implementation of Martin-Löf type theory is Agda (C. Coquand 1998).
On top of this there is a graphical user interface Alfa (Hallgren 1998), also sup-
porting additional notational features.

We describe the syntax of Agda, which is an “unsugared” version of the Alfa
syntax. It is also possible to work with Agda syntax in Alfa byusing the command
“Edit as Text”.

• Type membership is denoted by a double colona :: A in Agda.

• Function applicationf (a) is written as a juxtapositionf a with a space in
between.

• A dependent function type(Πx : A)B is written (x:: A) -> B. For the cor-
responding lambda abstractionλx.b the argument type is written explicitly,
and becomes\(x:: A) -> b. (WhenB does not depend onx one may write
A -> B.)

• The two-placeΣ-type is a special case of a more generalrecord type,where
components are named, and not just numbered, For instance(Σx : A)B cor-
responds to

sig { fst:: A; snd:: B[fst/x] }

Let z be an element of this type. To access the value of the component (or
field) with namefst one writesz.fst . The pair〈a,b〉 : (Σx : A)B is written

struct { fst = a; snd = b }

• Enumeration types and recursive data types may be defined similarly as in
ML, with the help of the constructiondata . From such a definition con-
structors and thecase is automatically generated. We give some simple
examples.

The typeB of booleans is defined by

data tt | ff

The constructors are calledtt@_ andff@_ respectively. Corresponding to
if(c,d,e) we have

case c of { tt -> d; ff -> e}

39

However,case should only be used on variables. Ifc is non-variable one
writes

let {y = c} in case y of { tt -> d; ff -> e}

The empty type isdata { } and since it does not have constructors its
elimination operator !(c) becomes trivial:case c of { }

Natural numbersN are defined recursively by

Nat :: Set = data zero | S (n::Nat) .

(In this expressionNat :: Set means that the new type belongs to the
type universeSet .) The constructors of this type arezero@_ andS@_re-
spectively. The case-function corresponding to this is

case c of {zero -> u1; S n -> u2} ,

wheren may be free in inu2.

• In Agda there are type universesSet andType (essentially corresponding
to Set1 andSet2 above). These universes are closed underΠ-types, record
types and the formation of recursive data types.

Definitions in Agda have the form

f (v1 :: intype1) · · · (vn :: intypen) :: outtype = def

where f is an identifier for the function to be defined,v1, . . . ,vn are variables for
arguments,outtypeis the type of the value anddef is the defining term.

Example 9.1 The +-construction from Chapter 2 is defined in Agda as

Plus (A::Set)(B::Set) :: Set
= data inl (x::A) | inr (y::B)

Plus is thus a type constructor which takes two types from the universeSet and
forms the disjoint union of them in the same universe. The when-function may be
defined by

when (A::Set)(B::Set)(C::Set)
(c:Plus A B)(d::A->C)(e::B->C) :: C

= case c of {(inl x) -> d x;
(inr y) -> e y}

40

when thus has six arguments, of which the first three are types (these were omitted
in Chapter 2; see however Exercise 2.3).2

Example 9.2 The recursion operatorrec (Chapter 2) is defined as

rec (A::Set)(a::Nat)(f::A)(g::Nat->A->A) :: A
= case a of { zero -> f;

(S x) -> g x (rec A x f g)}

2

In these examples there no essential use of dependent types.The type universes
make it easy to handle such types. The typeA -> Set consists of all families of
types inSet that depends onA. We may introduce the abbreviationFam Afor this
type, in Agda:

Fam (A::Set) :: Type
= A -> Set

Example 9.3 The general recursion operator (Chapter 7) also gives the induction
principle, and is expressed as follows

rec (A::Fam Nat)
(a::Nat)
(f::A zero@_)
(g::(x::Nat)->(y::A x)->A (S@_ x)) :: A a

= case a of { zero -> f;
(S x) -> g x (rec A x f g)}

2

Example 9.4 The dependent typeL is defined by

L (z::Nat) :: Set
= case z of {zero -> Empty;

(S x) -> Nat}

whereEmpty::Set = data .

Example 9.5 A module of functions that find sufficiently large prime numbers
may be written as the record type

41

Primefinder :: Set
= sig {f:: Nat -> Nat;

correct1 :: (n::Nat) -> Prime (f n);
correct2 :: (n::Nat) -> LessEq n (f n)}

wherePrime is a predicate which which is true precisely for prime number, and
LessEq is the relation≤ on N. For z::Primefinder the fieldz.f is a function
that givenn gives a prime numberp≥ n. (Exercise: definePrime andLessEq .)

42

Bibliography

A good introduction to lambda calculus is Hindley and Seldin1986, which is
mainly devoted to untyped and simply type calculus. For a deeper study of un-
typed calculus Barendregt 1977 is the standard reference. Troelstra and Schwicht-
enberg 1996 is a thorough introduction to both typed lambda calculus and proof
theory for intuitionistic predicate logic. Barendregt 1992 treats lambda calcu-
lus with dependent types. Martin-Löf 1984 gives an elegant presentation of his
own type theory with “meaning explanation” and philosophical justifications. The
original paper Martin-Löf 1972 is also strongly recommended. For an introduc-
tion to type theory and its applications in computer science, see Coquandet. al.
1994, Nordströmet. al. 1990 and Thompson 1991. A short introduction to in-
tuitionistic logic and its semantics is in van Dalen 1997. The standard tomes on
constructive logical systems are van Dalen och Troelstra 1988, vol. I and II.

Augustsson, Lennart (1998), Cayenne - a language with dependent types.Proc.
of the International Conference on Functional Programming(ICFP’98). ACM
Press, September 1998. [See also URL:www.cs.chalmers.se/˜augustss/ .]

Barendregt, H.P. (1977),The Lambda Calculus.North-Holland.

Barendregt, H.P. (1992), Lambda calculi with types, pp. 118– 279 i (S. Abramsky,
D.M. Gabbay and T.S.E. Maibaum eds.)Handbook of Logic in Computer Science,
vol 2. Oxford University Press.

Beeson, Michael (1985),Foundations of Constructive Mathematics.Springer-
Verlag.

Bellantoni, Stephen, Cook, Stephen (1992). A New Recursion-Theoretic Charac-
terization of the Polytime Functions.Computational Complexityvol. 2, 97-110.

Bishop, Errett and Bridges, Douglas S. (1985),Constructive Analysis.Springer-
Verlag.

Bridges, Douglas S. och Richman, Fred (1987),Varieties of Constructive Mathe-
matics. London Mathematical Society Lecture Notes, Vol. 97. Cambridge Uni-
versity Press.

Coquand, Catarina.Agda.URL: www.cs.chalmers.se/˜catarina/agda/

Coquand, Thierry, Nordström, Bengt, Smith, Jan och von Sydow, Björn (1994),
Type theory and Programming.The EATCS bulletin,February 1994. [Also avail-
able at URL:www.cs.chalmers.se/˜smith/ .]

Curry, H.B. and Feys, R. (1958),Combinatory Logic.North-Holland.

Dybjer, P. (2000), A general formulation of simultaneous inductive-recursive def-
initions in type theory,Journal of Symbolic Logic65(2000).

Hallgren, Thomas.The Proof Editor Alfa.
URL: www.cs.chalmers.se/˜hallgren/Alfa/

Hansen, Kaj B. (1997),Grundläggande Logik.Studentlitteratur.

Hansen, Michael R. och Rischel, Hans (1999),Introduction to Programming Us-
ing SML.Addison-Wesley.

Heyting, Arend (1971),Intuitionism.North-Holland.

Hindley, J.R. och Seldin, J.P. (1986),Introduction to Combinators and Lambda
Calculus.Cambridge University Press.

Howard, W.A. (1980), The Formulae-as-Types Notion of Construction. To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and FormalismJ.P. Seldin
and J.R. Hindley (red.), Academic Press, pp. 479 – 490.

Martin-Löf, Per (1972),An intuitionistic theory of types.Technical report, De-
partment of Mathematics, University of Stockholm. Published in (Sambin and
Smith 1998).

Martin-Löf, Per (1984),Intuitionistic Type Theory.Bibliopolis.

Martin-Löf, Per (1985), Constructive Mathematics and Computer Programming.
Mathematical Logic and Computer Languages.C.A.R. Hoare and J.C. Shepherd-
son (red.). Prentice-Hall.

Mines, Ray, Richman, Fred, Ruitenburg, Wim (1988),A Course in Constructive
Algebra.Springer.

Mints, Grigori (2000),A Short Introduction to Intuitionistic Logic.Kluwer Aca-
demic/Plenum Publishers.

Nelson, Edward (1995).Ramified recursion and intuitionism.Preprint.
www.math.princeton.edu/˜nelson/papers.html

Nordström, Bengt, Peterson, Kent and Smith, Jan (1990),Programming in Martin-
Löf ’s Type Theory.Oxford University Press. [The book is out of print, but is ac-
cessible in electronic form at URL:
www.cs.chalmers.se/Cs/Research/Logic/book/ .]

Nordström, Bengt, Peterson, Kent och Smith, Jan (2000), Martin-Löf’s type the-
ory. Handbook of Logic in Computer Science, Vol. 5. Oxford University Press.

Salling, Lennart (1999),Formella språk, automater och beräkningar.Eget förlag,
Uppsala.

Sambin, Giovanni and Smith, Jan (1998) (eds.)Twenty-Five Years of Type Theory.
Oxford University Press.

Schwichtenberg, Helmut (1999),Classical Proofs and Programs.Marktoberdorf
Summer School ’99. Available at URL:
www.mathematik.uni-muenchen.de/˜schwicht/

Simmons, Harold (2000),Derivation and Computation.Cambridge University
Press.

Stirling, Colin (1992), Modal and temporal logics, pp. 477 –563 i (S. Abram-
sky, D.M. Gabbay and T.S.E. Maibaum eds.) Handbook of Logic in Computer
Science, vol. 2, Oxford University Press.

Thompson, Simon (1991),Type Theory and Functional Programming.Addison-
Wesley.

Thompson, Simon (1999),The Craft of Functional Programming.Addison-Wesley.

Troelstra, Anne S. and Schwichtenberg, Helmut (1996),Basic Proof Theory,Cam-
bridge University Press.

Troelstra, Anne S. och van Dalen, Dirk (1988),Constructivism in Mathematics,
Vol. I & II. North-Holland.

van Dalen, Dirk (1997)Logic and Structure,Third edition. Springer.

