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Laboration 1

The following exercises concern mainly Chapter 1 — 4 of “Konstruktiv logik”. The purpose
of this laboration is to make you familiar with the proof editor Alfa. The proof editor is
based on a logical framework closely related to Martin-Lof type theory. The goal is not that
you should understand Martin-Lof type theory already at this first laboration, but rather
to be able relate to your knowledge of functional programming, e.g. ML or Haskell. The
logical framework of Alfa (called Agda) is essentially a typed lambda-calculus which has a lot
in common with ordinary functional programming languages. Among the exercises are also
some problems on the BHK-interpretation.

The exercises may be solved in groups of up to three persons. The solved Alfa-files (.alfa)
should be sent by e-mail to palmgren@math.uu.se at the latest October 17, 2001. Also hand
in an annotated and commented version on paper (or insert the comments directly in the
Alfa-file, if you know how to do this without breaking the file). The files necessary for the
laboration can be downloaded from the home page of the course. Put them in an empty
directory and make this your working directory. Start Alfa using the command alfa.

1. Open the file 1abl_1.alfa. In this file are some simple functions that you might rec-
ognize from a course in functional programming. Declare and define constants that
represent the following functions by using the case-construction of Alfa. Do not forget
to test your definitions. Use the termination check button to see that your function
does not call itself without decreasing some argument. The compute/evaluate button
makes it possible to run the examples.

(a) The identity function id on natural numbers.
(b) The function max which returns the greatest of two natural numbers.

(c) The function fact which computes the factorial of a natural number. You will
probably need to define some auxiliary function.

2. In the previous exercise the case-construction was used to build terms. In the com-
pendium “Konstruktiv logik” a different method is described. By this method a primi-
tive recursion principle is first given for the data type which is then used to define other
recursive functions. For example, the recursion principle for N is formalized using the
recursion operator rec.

(a) Open the file 1ab1l_2.alfa, declare and define constants representing the function
listed in Exercise 1 by using the recursion operator rec. (Notice that in Alfa rec has
an extra argument A indicating the type. This is sometimes filled in automatically,
but you may have to do it by hand.)



Remark 1: Observe that the recursion operator rec is defined via Alfa’s case-construction.
This is typical of strict formalizations in Alfa. I.e. the case-construction is used to define
a theory. Derivations within this theory use recursion operators.

As you will see, it is neither easy nor lucid to use recursion operators. The case-operation
is far easier to read. In this course it is recommended to use the case-construction
wherever this is suitable.

Remark 2: In Laboration 2 we will see how to to specify functions like maz by refining
its type. When constructing an element of this type we construct not only the program,
but simultaneously also its correctness proof. Consequently we do not need to test the
program.

3. Open the file 1ab1_3.alfa. Prove the following propositions by filling in the question
marks in Alfa’s main window.

4. Binary trees might be viewed as a sort of generalisation of natural numbers. A natural
number is either 0 or S(n) where n is a natural number. Similarly a binary tree is a leaf
L or a successor (branching) B(bg, b;) where by, b; are binary trees. (By letting 0 = L
and S(n) = B(n, L) we can easily represent the natural numbers.)

(a) Open the file 1abl 4.alfa. Define a type Bin of binary trees complete with
introduction, elimination and equality rules.

(b) The depth of a tree is defined by

depth(L) = 0
depth(B(by,b1)) = 1+ max(depth(by),depth(by)).

Construct an element depth of the type Bin — N that computes the depth of a
tree. Use the recursion operator.

(c) Test the function depth on some input.

This laboratory exercise was developed by Lars Lindqvist.



