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The following are some supplementary notes to Chapter 3 and 4 of Das (1992).

1 Some logical background to the resolution method

The resolution method is the basis for many of the most successful automatic theorem
provers, e.g. Otter, and logic programming, e.g. PROLOG. It was introduced in 1965 by
Alan Robinson.

Definition 1.1 A literal is a formula of the form P or ¬P where P is atomic. Here
P is called a positive, while ¬P is negative. Two literals L and M are complementary if
L = ¬M or M = ¬L.

Example 1.2 P , ¬P , R(x, f(x)), ¬R(g(y), x) are literals.

A formula of the form ∧
i=1

Ci

where Ci = Li,1 ∨ · · · ∨ Li,mi
and each Li,j is a literal, is said to be on conjuctive normal

form(CNF). (It is k-CNF if mi ≤ k for all i.)

Recall that every quantifier free formula is equivalent to a CNF-formula.

Exercise: Is the propositional formula P ∨ Q ∨ R is logically equivalent to some
2-CNF formula?

A formula is on Prenex normal form (PNF) if it has the form

Q1x1Q2x2 · · ·Qnxn ϕ (1)

where Qi ∈ {∀,∃} are quantifiers and ϕ is quantifier free.

Every formula is logically equivalent to some PNF formula.
Resolution theorem proving depends on the existence of another more restrictive normal

form. A closed formula is on Skolem normal form (SNF) if it is of the form

∀x1∀x2 · · · ∀xn ψ (2)

1



where ψ is on CNF. A clause is a closed formula of the shape

∀x1∀x2 · · · ∀xm (L1 ∨ · · · ∨ Ln) (3)

where each Li is a literal. In case there is only one literal (n = 1), it is usually called a
unit clause. By convention, a disjunction is absurdity ⊥ when n = 0. The clause is then
called the empty clause and is denoted 2.

In propositional logic, any disjunction of literals is called a clause.

The following proposition is easily proved using the Prenex operations.

Proposition 1 Any formula on Skolem normal form is logically equivalent to a conjunction
of clauses. 2

Because of this result a SNF formula can be treated as a set of clauses. It customary
to leave the universal quantifiers implicit. Thus

{P (x) ∨ ¬R(x), R(x) ∨Q(y)}

stands for the conjunction of clauses

∀x (P (x) ∨ ¬R(x)) ∧ ∀xy (R(x) ∨Q(y)).

1.1 Skolemization

Let A be an L-structure. Then

A |= ∀x1 · · ·xn ∃y ϕ(x1, . . . , xn, y) (4)

implies that there is some function f : An → A such that for all ā = (a1, . . . , an) ∈ An

A |= ϕ(ā, f(ā))

We extend the language L to L′ with a new function symbol F . Expand A to A′ with
FA′

= f . Then the above says

A′ |= ∀x1 · · ·xnϕ(x1, . . . , xn, F (x1, . . . , xn)). (5)

Since (4) and (5) are both true, we have an expanded model A′ in which

A′ |= ∀x1 · · ·xn ∃y ϕ(x1, . . . , xn, y) ↔ ∀x1 · · ·xn ϕ(x1, . . . , xn, F (x1, . . . , xn)). (6)

Now suppose that (4) is false. Then there exists some ā ∈ An such that for all b ∈ A

A 6 |=ϕ(ā, b).
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Thus for any function f : An → A and FA′
= f we have

A 6 |=∀x1 · · ·xn ϕ(x1, . . . , xn, F (x1, . . . , xn)).

Consequently both sides of (6) becomes false, and hence (6) is true for any choice of f .
We conclude that for any A, and regardless of (4) being true or false, there is some

expanded structure A′ such that (6) is true.

Consider a PNF-formula ϕ = Q1x1Q2x2 · · ·Qnxn ψ(x1, . . . , xn). For each existential
quantifier Qi = ∃, remove ∃xi and replace xi by fi(xj1 , . . . , xjm) where fi is a new m-ary
function symbol and xj1 , . . . , xjm are the universally quantified variables to the left Qixi.
The resulting formula ϕS is called the Skolemization of ϕ, and the new function symbols
are called Skolem function symbols.

Example 1.3 Here is an example of Skolemization

ϕ = ∃x1 ∀x2 ∀x3 ∃x4R(x1, x2, x3, x4)

7→ ∀x2 ∀x3 ∃x4R(f1, x2, x3, x4) f1 new constant symbol

= ∀x2 ∀x3 ∃x4R(f1, x2, x3, x4)

7→ ∀x2 ∀x3R(f1, x2, x3, f4(x2, x3)) f4 new function symbol

= ϕS

The next lemma gives the relation of a formula and its Skolemization.

Lemma 1.4 Let ϕ be a closed prenex L-formula. Let ϕS be its Skolemization and f1, . . . , fm

the introduced Skolem function symbols. Then for every L-structure A there is an L′ =
L ∪ {f1, . . . , fm}-structure B expanding A (B|L = A) so that

B |= ϕ↔ ϕS.

Proof. The proof goes by succesively applying the procedure above (4–6) to the outmost
existential quantifier, and then noting that an equivalence holds in a structure if it already
holds in a restriction. We take the above example again, and find successively f1 and f4

(A; f1) |= ∃x1∀x2 ∀x3 ∃x4R(x1, x2, x3, x4) ↔ ∀x2 ∀x3 ∃x4R(f1, x2, x3, x4)

(A; f1, f4) |= ∀x2 ∀x3 ∃x4R(f1, x2, x3, x4) ↔ ∀x2 ∀x3R(f1, x2, x3, f(x2, x3))

Thus for some f1, f4 (which we do not know much about)

(A; f1, f4) |= ∃x1∀x2 ∀x3 ∃x4R(x1, x2, x3, x4) ↔ ∀x2 ∀x3R(f1, x2, x3, f(x2, x3)). 2
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Remark 1.5 This lemma only states that for a given structure A and a given formula ϕ
there is some expanded structure B in which the formula is equivalent to its Skolemization:
B |= ϕ↔ ϕS. This equivalence need not hold in every expansion of A:

ConsiderA = (N; ) the structure with no relations (except =) and no functions. Expand
it to B by adding the function f(n) = n+ 1 as an interpretation of FB Then

B |= ∀x∃y (x = y) but B 6 |=∀x (x = F (x)).

Here ∀x (x = F (x)) is the Skolemization of ∀x∃y (x = y).

However, we do have

Lemma 1.6 ϕS |= ϕ, for closed ϕ. 2

Recall that ϕS |= ϕ means that for any structure B in the language expanded with the
Skolem symbols,

B |= ϕS =⇒ B |= ϕ.

Hence a formula is implied by its Skolemization.

By the completeness theorem for predicate logic an L-formula ϕ is provable iff it is
valid, i.e. in symbols

` ϕ ⇐⇒ |= ϕ.

The right-hand side means that A |= ϕ for every L-structure A.

The following result is the key to the resolution method:

Theorem 1.7 Let ψ be any closed first-order formula. Suppose that ϕ is the prenex normal
form of ¬ψ and let ϕS be its Skolemization. Then

` ψ ⇐⇒ ` ¬(ϕS).

Proof. By the completeness theorem we may consider validity |= instead of provability `.

(⇒) Suppose |= ψ. Since ¬ψ is logically equivalent to ϕ, we have |= ¬ϕ. Suppose that

6 |=¬ϕS

This means that there is some model B such that B 6 |=¬ϕS, i.e. B |= ϕS. But by Lemma
1.6, B |= ϕ. This contradicts |= ¬ϕ. Hence

|= ¬ϕS

(⇐) Suppose now |= ¬ϕS. For a contradiction assume 6 |=ψ, i.e. that there exists some

model A such that A |= ¬ψ. Since ¬ψ is logically equivalent to ϕ, we get A |= ϕ. Hence
by Lemma 1.4 there is some expansion of A such that

B |= ϕ↔ ϕS.
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Now B |= ϕ, since B is the same as A with respect to the symbols occuring in ϕ. Thereby
B |= ϕS which contradicts the first assumption. We conclude that |= ψ. 2

ϕS is equivalent to a conjunction of clauses γ1 ∧ · · · ∧ γn. A proof of ¬ϕS can therefore
considered as a derivation of a contradiction, i.e. an empty clause, from the set of clauses
{γ1, . . . , γn}. A remarkable fact about the resolution method is that one derivation rule,
albeit somewhat complicated, suffices.

1.2 Resolution

• From A ∨ L and B ∨ ¬L, we may infer that A ∨B.

This is easily seen by considering the possible cases: A∧B, A∧¬L, L∧B, and L∧¬L.
The first three cases each imply A ∨B by ∨-introduction The last case is a contradiction,
so A ∨B follows then by the absurdity rule.

This rule may generalised as follows:

• Suppose that ∀x̄ (A ∨ L) and ∀ȳ (B ∨ ¬M) and Lθ = M θ for some subsitution θ of
terms for variables. Then we may infer that Aθ ∨Bθ.

As instances of the assumptions, we have Aθ ∨ Lθ and, since Lθ = M θ, also Bθ ∨ ¬Lθ.
We may now apply the former rule and get Aθ ∨Bθ.

If we let θ be the most general unifier (mgu) of L and M , then any other instance of
the rule may be gotten out of this one. This is the idea of the resolution rule. We shall
now work with sets of clauses and leave universal quantifiers implicit as in the previous
section. A clause γ = L1 ∨ · · · ∨ Lm is considered as a set of literals {L1, . . . , Ln}.

Definition 1.8 Let C and D be clauses with no variables in common. Let L and M be
literals occuring in C and D respectively, and suppose that θ is an mgu for their atoms,
and that Lθ and M θ are complementary. Then the clause

(Cθ − {Lθ}) ∪ (Dθ − {M θ})

is called the binary resolvent of C and D. Its parent clauses are C and D.

Example 1.9 Consider the clauses C = P (x) ∨ ¬Q(g(x)) and D = Q(y) ∨ R(y). Let
L = ¬Q(g(x)) and M = Q(y). The mgu of their atoms, i.e. of Q(g(x)) and Q(y), is
θ = {y := g(x)}. The binary resolvent is

(Cθ − {Lθ}) ∪ (Dθ − {M θ}) = P (x)θ ∨R(y)θ = P (x) ∨R(g(x)).

Example 1.10 The binary resolvent of ¬Q(g(x)) and Q(y) is the empty clause 2.
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Example 1.11 To resolve C = P (x) ∨ ¬S(x, g(x)) and D = S(h(y), z) ∨ R(z) we find
an mgu of the atoms of the underlined literals, θ = {x := h(y), z := g(h(y))}. The binary
resolvent is then

P (x)θ ∨R(z)θ = P (h(y)) ∨R(g(h(y))).

Consider a pair of clauses C = P (x, y) ∨ Q(f(a)) ∨ Q(z) and D = ¬Q(f(y)) ∨ ¬R(y).
We may not do away with all the Q in one binary resolution step, although we see that
Q(f(a)) and Q(z) unify with θ = {z := f(a)}. Considering Cθ as a factor of C, Cθ may
now be binary resolved with D.

If a subset of the literals of a clause C has the same sign and mgu θ, then Cθ is a factor
of C. Trivially C is a factor of itself

Definition 1.12 A resolvent of clauses C and D is a binary resolvent of C1 and D1 where
C1 is a factor of C and D1 is a factor of D.

Thus P (x, f(a)) ∨ ¬R(a) is a resolvent of C and D in the example above.

Definition 1.13 Let S be a set of clauses. The one-step resolution of S is

Res(S) = S ∪ {C : C is the resolvent of two clauses from S}

Resolution in several steps is defined recursively: Let

Res0(S) = S

Resn+1(S) = Res(Resn(S)).

We have

S ⊆ Res(S) ⊆ Res2(S) ⊆ Res3(S) ⊆ · · · ⊆ Resn(S) ⊆ · · ·
This sequence may in general grow for ever as in the following example.

Example 1.14 Let S = {¬P (x) ∨ P (f(x)), P (0)}. Then

S = {¬P (x) ∨ P (f(x)), P (0)}
Res(S) = {¬P (x) ∨ P (f(x)), P (0), P (f(0))}

Res2(S) = {¬P (x) ∨ P (f(x)), P (0), P (f(0)), P (f(f(0)))}
...

Resn(S) = {¬P (x) ∨ P (f(x)), P (0), P (f(0))), P (f(f(0))), . . . , P (fn(0))}
...
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Theorem 1.15 (The Resolution Theorem, Robinson 1965) Let M = {C1, . . . , Cm}
be a set of clauses with free variables among x̄. Then

` ¬∀x̄
m∧

i=1

Ci if and only if 2 ∈ Resn(M) for some n ≥ 0

To sum up we get the following method for proving a closed first-order formula ψ. Let
ϕ be the PNF of ¬ψ and let ϕS be the Skolemization of ϕ. Using the procedure for finding
CNF we may rewrite

ϕS ↔ ∀x̄
m∧

i=1

Ci

where each Ci is a clause. By Theorem 1.7 and the Resolution Theorem we have the
following equivalences for M = {C1, . . . , Cn}

` ψ ⇐⇒ ` ¬ϕS

⇐⇒ ` ¬∀x̄
m∧

i=1

Ci

⇐⇒ 2 ∈ Resn(M) for some n ≥ 0
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