
UPPSALA UNIVERSITET Kompletterande material
Matematiska institutionen Tillämpad logik DV1
Erik Palmgren 2000-11-06 (ny version!)

1 Term rewriting systems

This handout is mainly intended as a guide and supplement to Chapter 2 of

W. Klop: Term Rewriting Systems. In: S. Abramsky et al. (eds.) Handbook of Logic
in Computer Science, Vol 2. Oxford University Press 1992.

The following parts are required reading: Ch. 2.1 (pp. 11 – 19), Ch. 2.3 – 2.4 (pp. 29 – 34,
40 – 51) and Ch. 2.6 (pp. 62 – 65) and cover the following

• Birkhoff’s completeness theorem for equational theories (see also section 1.1 below),

• rewrite rules

• unification of terms (see also section 1.2),

• basic definitions and results concerning well-founded relations, abstract reduction
systems (see also sections 1.3 – 1.4 below),

• complete term rewriting systems, critical pairs, the Knuth-Bendix completion proce-
dure,

• termination proofs using recursive path orderings.

1.1 Some notions from universal algebra

In universal algebra properties of general algebraic systems are studied. These systems
include the usual, groups, semigroups, monoids, rings, but also systems with operations
of arbitrary number of arguments. In algebraic specification theory these operations may
describe programs or hardware components. (See Meinke and Tucker 1992, Goguen and
Malcolm 1996 and Wechler 1992.)

A signature Σ is a set of function symbols, where each F ∈ Σ takes a fixed number n(F)
(the arity) of arguments. 0-ary function symbols are considered as constant symbols. (Thus
a signature is like a description of a first order language but without relation symbols.)
A Σ-algebra A consists of an underlying nonempty set A, and for each function symbol
F ∈ Σ, an operation

FA : An(F) → A,

1

for n(F) > 0. If n(F) = 0, FA ∈ A.
Homomorphisms, mappings which preserves the operations of an algebra are of central

importance. Let A and B be Σ-algebras. A (Σ-algebra) homomorphism ϕ : A → B is
function between the underlying sets ϕ : A → B which is such that for every function
symbol F ∈ Σ of arity n we have for all a1, . . . , an ∈ A:

ϕ(FA(a1, . . . , an)) = F B(ϕ(a1), . . . , ϕ(an)).

If n = 0, this reads ϕ(FA) = F B.

Example 1.1 The embedding Z ↪→ Q and the quotient mapping x 7→ xmodn : Z →
Z/nZ are basic examples of homomorphisms with respect to the signature Σ = {0, 1,+, ·}.

There is always a trivial homomorphism A → A, the identity homomorphism idA
defined by idA(x) = x. A homomorphism ϕ : A → B is an isomorphism if there is a
homomorphism ψ : B → A such that ψ ◦ ϕ = idA and ϕ ◦ ψ = idB. We leave the
verification of the following result to the reader:

Proposition 1.2 A homomorphism ϕ : A → B is an isomorphism iff ϕ : A → B is a
bijection. 2

Let Ter(Σ) be the set of terms that can be formed from the function symbols in Σ
and variables from a fixed set of variable symbols X = {x1, x2, x3, . . .}. The set Ter(Σ) is
inductively defined by the following clauses

(T1) If x ∈ X, then x ∈ Ter(Σ).

(T2) If F ∈ Σ and n(F) = 0, then F ∈ Ter(Σ).

(T3) If F ∈ Σ, n = n(F) > 0 and t1, . . . , tn ∈ Ter(Σ), then F (t1, . . . , tn) ∈ Ter(Σ).

Since the set Ter(Σ) is inductively defined, we may prove properties of terms by structural
induction. We may also define functions on terms by structural recursion. A substitution
is a function σ : X→ Ter(Σ), assigning to each variable symbol a term. The effect tσ of a
substitution σ on a term t is defined recursively

xσ
i = σ(xi)

F σ = F (n(F) = 0)

F (t1, . . . , tn)σ = F (tσ1 , . . . , t
σ
n) (n = n(F))

Thus we may extend σ to a function Ter(Σ)→ Ter(Σ) by σ(t) = tσ. Denote by

{xi1 := t1, . . . , xik := tk},

where i1 < i2 < · · · < ik, the substitution σ where σ(xij) = tj for j = 1, . . . , k and
σ(xi) = xi for i /∈ {i1, i2, . . . , ik}.

2

Example 1.3 Let Σ = {0, f, g} where the arities are n(0) = 0, n(f) = 1 and n(g) = 2.
Then 0, f(0), g(x1, f(x3)) are examples of terms over Σ. For the substitution σ = {x1 :=
g(x1, x3), x2 := f(0), x3 := x2} we have

g(x1, f(x3))
σ = g(xσ

1 , f(xσ
3)) = g(g(x1, x3), f(x2)). 2

The set Ter(Σ) can be regarded as a Σ-algebra — in a kind of trivial way — by defining
for each n-ary function symbol F ∈ Σ, a function F Ter(Σ) by

FTer(Σ)(t1, . . . , tn) = F (t1, . . . , tn).

We call Ter(Σ) the term algebra of Σ. We may also restrict ourselves to terms without
variables (in case there are constant symbols) The resulting set, Ter0(Σ), also forms a
Σ-algebra.

Note that any substitution σ : X → Ter(Σ) extends to a Σ-algebra homomorphism
σ : Ter(Σ)→ Ter(Σ). (Exercise: verify this.)

Let A be a Σ-algebra. A variable assignment in A is a function ρ : X→ A. Given such
an assignment, the value [[t]]Aρ of a term t in A is determined. Define by recursion on t:

[[xi]]ρ = ρ(xi),

[[F (t1, . . . , tm)]]ρ = FA([[t1]]ρ, . . . , [[tm]]ρ).

An equation s = t is valid in A (in symbols: A |= s = t) iff for all variable assignments ρ
in A: [[s]]Aρ = [[t]]Aρ .

An equational theory over Σ is given by a set E of equations s = t where s, t ∈ Ter(Σ).
The deduction rules of an equational theory essentially only tell how instances of these
equations may be used to calculate inside terms. We denote by E `eq s = t that s = t is
derivable from E. The deduction rules are more formally

E `eq s = t if s = t ∈ E

E `eq s = t

E `eq sσ = tσ
(subst) for every substitution σ : X→ Ter(Σ)

E `eq s1 = t1 · · · E `eq sn = tn
E `eq F (s1, . . . , sn) = F (t1, . . . , tn)

(cong) for every F ∈ Σ with n = n(F)

E `eq t = t for every t ∈ Ter(Σ)

E `eq s = t

E `eq t = s
(symm)

E `eq s = v E `eq v = t

E `eq s = t
(trans)

3

Example 1.4 The equational theory of groups. Let Σ = {1, ·, ()−1}, where the arities are
0, 2 and 1 respectively. The equations E are

1 · x1 = x1, x1 · 1 = x1,

x1 · (x2 · x3) = (x1 · x2) · x3,

x1 · x
−1
1 = 1, x−1

1 · x1 = 1.

We give an example of a formal derivation of x2 · 1
−1 = x2 from the axioms of E:

x2 = x2

x1 · 1 = x1
(subst)

1−1 · 1 = 1−1

(symm)
1−1 = 1−1 · 1

x−1
1 · x1 = 1

(subst)
1−1 · 1 = 1

(trans)
1−1 = 1

(cong)
x2 · 1

−1 = x2 · 1

x1 · 1 = x1
(subst)

x2 · 1 = x2
(trans)

x2 · 1
−1 = x2

2

A Σ-algebra A is a model of E (in symbols: A |= E) iff A |= s = t, for each s = t ∈ E.
We say that s = t is a (semantic) consequence of E (in symbols: E |= s = t) if for every
Σ-algebra A:

A |= E =⇒ A |= s = t.

We now prove Birkhoff’s completeness theorem for equational theories. Let =E be the
relation on Ter(Σ) defined by

s =E t⇐⇒def E `eq s = t.

This relation of E-provable equality is an equivalence relation and a congruence with respect
to the operations FTer(Σ), according to the rules of the equational theory. We consider the
set T (E) = Ter(Σ)/ =E of equivalence classes [t] of terms. Thus the following is a well-
defined operation

F T (E)([t1], . . . , [tn]) = [F (t1, . . . , tn)]

for any F ∈ Σ. Thus T (E) is a Σ-algebra.

Theorem 1.5 (Birkhoff) Let Σ be a signature and let E be an equational theory over Σ.
Then

E `eq s = t⇐⇒ T (E) |= s = t.

Proof. (⇐) Suppose T (E) |= s = t. Then for the “identical” variable assignment

τ(xi) = [xi] we get [[s]]
T (E)
τ = [[t]]

T (E)
τ . Hence [s] = [t], so s =E t and thus E `eq s = t.

(⇒) Note that each variable assignment τ : X → T (E) gives rise to a substitution
σ : X→ Ter(Σ) where

τ(xi) = [σ(xi)].

4

Thus from E `eq s = t and the substitution rule follows E `eq s
σ = tσ. Hence [sσ] = [tσ].

But [[s]]τ = [sσ] and [[t]]τ = [tσ], and hence T (E) |= s = t, since τ was arbitrary. 2

Corollary 1.6 For every equational theory E and any equation s = t over Σ we have

E |= s = t⇐⇒ E `eq s = t

Proof. (⇐) This is an easy proof by induction on derivations.
(⇒) From Theorem 1.5 (⇒) follows T (E) |= E (since s = t ∈ E implies E `eq s = t).

Suppose E |= s = t. Then in particular T (E) |= s = t. By Theorem 1.5 (⇐) again
E `eq s = t. 2

Remark 1.7 In view of Birkhoff’s completeness theorem and the usual completeness
theorem for first order logic, we have for equational theories E:

E `eq s = t⇐⇒ E ` s = t.

Thus quantifiers and connectives are not necessary when proving an equation from equa-
tional axioms.

Example 1.8 The equational theory of Abelian groups. Let Σ = {1, ·, ()−1}, where the
arities are 0, 2 and 1 respectively. The equations E are

1 · x1 = x1, x1 · 1 = x1,

x1 · (x2 · x3) = (x1 · x2) · x3,

x1 · x2 = x2 · x1,

x1 · x
−1
1 = 1, x−1

1 · x1 = 1.

The models of this theory are exactly the Abelian groups. Denote by u0 = 1 and un+1 =
u · un for n ∈ N. For n > 0, let u−n = (u−1)n. It is easy to show that for each t ∈ Ter(Σ)
there are sequences n1, . . . , nk ∈ Z− {0}, 1 ≤ i1 < i2 · · · < ik, where k ≥ 0, such that

t =E xn1

i1
· xn2

i2
· · · · · xnk

ik
. (1)

(In case k = 0, the product is simply 1.) Thus in the model T (E) the equivalence classes
are represented by elements of the form xn1

i1
· xn2

i2
· · · · · xnk

ik
. 2

One can in fact show that the sequences (nj), (ij) in (1) are unique. This can be used
to decide when two terms are provably equal. A systematic method for obtaining such
decidability results is provided by the theory of term rewriting systems.

For a signature Σ with at least one constant symbol, consider T0(E) which is defined
as T (E) but Ter0(Σ) is used instead of Ter(Σ). (Exercise: What is T0(E) in the case of
Example 1.8? If new constants are added?)

Theorem 1.9 Let E be an equational theory over a signature Σ, which has at least one
constant symbol. Then

5

(a) T0(E) |= E

(b) if A |= E, there is a unique homomorphism ϕ : T0(E)→ A.

Proof. (a): This is proved as in the direction (⇒) of Theorem 1.5, but using T0(E) instead
of T (E).

(b): Define ϕ : T0(E) → A by ϕ([t]) = [[t]]Aτ where τ is some fixed variable assignment
(it does not matter which since t has no variables). It is well-defined because if [s] = [t],
then E `eq s = t. Now A |= E, so A |= s = t, and hence in particular [[s]]Aτ = [[t]]Aτ .
Furthermore ϕ is a homomorphism, since

ϕ(F T (E)([t1], . . . , [tn])) = ϕ([F (t1, . . . , tn)])

= [[F (t1, . . . , tn)]]Aτ
= FA([[t1]]

A
τ , . . . , [[tn]]Aτ)

= FA(ϕ([t1]), . . . , ϕ([tn])).

Now, if ψ were another homomorphism, it is easily shown that ψ([t]) = ϕ([t]) by induction
on t. 2

Because of this theorem the model T0(E) is called the initial model of the theory E.

Remark 1.10 For algebraic specification of programs one usually consider Σ-algebras
with many sorts (types). For instance, we may have a sort A for an alphabet and a sort
S for a stack. The constants are a, b, c : A (the letters of the alphabet), nil : S (the empty
stack), the function symbols are pop : S→ S and push : A× S→ S. The equations E are

pop(nil) = nil,

pop(push(xA, tS)) = tS

(Here xA, tS indicate variables of the different sorts.) The definitions and results above
easily extend to many-sorted Σ-algebras. (Exercise: Try to find simple representatives of
equivalence classes in T0(E) analogously to Example 1.8.)

1.2 Unification of terms

Unification is an important tool in term rewriting, automatic theorem proving, and funda-
mental for logic programming (Prolog). Unification of terms amount to equation solving
in the term algebra Ter(Σ).

Example 1.11 Let Σ = {f, g} with arities 2 and 1 respectively. Find a solution in Ter(Σ)
to the equation

f(x1, g(f(x2, x1))) = f(g(x2), x3).

A solution: x1 := g(x2), x3 := g(f(x2, g(x2))).

6

As in ordinary equation solving we are often interested in a general solution. Over the
term algebra such a solution is called a most general unifier. Indeed, in the example above
any other solution can be gotten from the one provided, by instantiating the variables.

As explained in Section 1.1 substitutions can be regarded as Σ-algebra homomorphisms
σ : Ter(Σ)→ Ter(Σ) determined by their values on the set X of variables. A substitution
that is given by a permutation of the variables is called a renaming substitution. Two
substitutions τ : Ter(Σ) → Ter(Σ) and σ : Ter(Σ) → Ter(Σ) may be composed σ ◦ τ as
follows

(σ ◦ τ)(t) = σ(τ(t)) = (tτ)σ.

We write τσ for σ ◦ τ .

Example 1.12 Let Σ = {f, g} with arities 2 and 1 respectively. Consider the substitutions
σ = {x2 := g(x1), x3 := g(x3)} and τ = {x1 := f(x2, x2)}. Then (τσ)(x1) = σ(τ(x1)) =
σ(f(x2, x2)) = f(σ(x2), σ(x2)) = f(g(x1), g(x1)), (τσ)(x2) = g(x1) and (τσ)(x3) = g(x3).
Hence

τσ = {x1 := f(g(x1), g(x1)), x2 := g(x1), x3 := g(x3)}.

On the other hand, by a similar computation,

στ = {x1 := f(x2, x2), x2 := g(f(x2, x2)), x3 := g(x3)}. 2

Generalising this example we have for σ = {xi1 := t1, . . . , xin := tn} and τ = {xi1 :=
s1, . . . , xin := sn, xj1 := r1, . . . , xjm

:= rm}, where the indices i1, . . . , in, j1, . . . , jm are all
distinct, that

στ = {xi1 := tτ1, . . . , xin := tτn, xj1 := r1, . . . , xjm
:= rm}

We say that one substitution σ is more general than another substitution ρ iff ρ = στ for
some substitution τ . In this case we write σ ≤ ρ.

Exercise 1.13

(i) Check that the relation ≤ is reflexive and transtive.

(ii) Prove that if σ ≤ ρ and ρ ≤ σ, then there is a renaming substitution τ such that
ρ = στ . 2

A unifier of a set of terms T = {t1, . . . , tn} is substitution σ which makes all these terms
equal, i.e. tσ1 = · · · = tσn. A unifier σ of T is a most general unifier (mgu), if σ ≤ ρ for
any unifier ρ of T . By Exercise 1.13 any two mgu’s σ and σ ′ of T are the same up to a
renaming substitution (i.e. σ = σ′τ for some renaming substitution τ).

Note that F (s1, . . . , sn)σ = F (t1, . . . , tn)σ iff sσ
i = tσi for all i = 1, . . . , n. Hence in order

to solve one equation in the term algebra, we may have to solve a system of equations.

7

The unification algorithm of Martelli-Montanari. The algorithm starts with a finite
set of equations G = {s1 = t1, . . . , sn = tn}, and outputs a most general unifier σ for this set
(regarded as a mgu of the set {F (s1, . . . , sn), F (t1, . . . , tn)} where F is a function symbol),
if there is any unifier, or reports failure otherwise. The algorithm is non-deterministic and
applies certain reduction rules to the finite sets and stops at the empty set (∅), or with a
failure (denoted #). Along the way the answer substitution σ is built up. From a successful
computation

G1 � G2 �σ1
G3 � G4 � G5 �σ2

G6 � ∅.

we extract σ = σ1σ2, the answer substitution. For a set G = {s1 = t1, . . . , sn = tn} we
write Gσ = {sσ

1 = tσ1 , . . . , s
σ
n = tσn}.

The Martelli-Montanari reduction rules are the following

1. G∪{F (t1, . . . , tn) = F (s1, . . . , sn)}� G∪{t1 = s1, . . . , tn = sn} provided F (t1, . . . , tn) =
F (s1, . . . , sn) is not an element of G. (“Function decomposition”)

2. G ∪ {t = t}� G provided t = t is not an element of G.

3. G ∪ {t = x}� G ∪ {x = t}, provided t is not a variable, and that t = x is not an
element of G.

4. G ∪ {x = t}�{x:=t} G
{x:=t}, provided x is a variable, x does not occur in t and that

x = t is not an element of G. (“Variable elimination”)

5. G∪{F (t1, . . . , tn) = H(s1, . . . , sm)}� #, if F and H are different function symbols.

6. G ∪ {x = t}� #, provided x 6= t and x occurs in t. (“Occur check”)

Example 1.14 We compute the mgu of f(x1, g(f(x2, x1))) and f(g(x2), x3) using the
algorithm.

{f(x1, g(f(x2, x1))) = f(g(x2), x3)} � {x1 = g(x2), g(f(x2, x1)) = x3}
�{x1:=g(x2)} {g(f(x2, g(x2))) = x3}
� {x3 = g(f(x2, g(x2)))}
�{x3:=g(f(x2,g(x2)))} ∅

The answer substitution is σ = {x1 := g(x2), x3 := g(f(x2, g(x2)))}.

Example 1.15 The terms f(g(x1), x1) and f(x2, g(x2)) are not unifiable.

{f(g(x1), x1) = f(x2, g(x2))} � {g(x1) = x2, x1 = g(x2)}
�{x1:=g(x2)} {g(g(x2)) = x2}
� {x2 = g(g(x2))}
� #

This computation fails by occur check, since x2 occurs in g(g(x2)).

8

1.3 Well-founded relations

A binary relation (A,<) is well-founded if there is no infinite descending sequence

a1 > a2 > a3 > · · ·

in A.

Example 1.16 The natural numbers (N, <) with the usual order is well-founded, while
this is not the case for the integers (Z, <).

Example 1.17 Consider (N×N, <′) with the lexicographic order (a, b) <′ (c, d) iff a < c
or a = c and b < d. We have

(0, 0) <′ (0, 1) <′ · · · <′ (0, n) <′ · · · <′ (1, 0) <′ (1, 1) <′ · · · (2, 0) <′ · · · <′ (m, 0).

This relation is well-founded. For suppose (an+1, bn+1) <
′ (an, bn) for all n. Then the

sequence (an) is eventually constant from, say N , and onwards. Hence bk+1 <
′ bk for all

k ≥ N , which is impossible. 2

That a relation is well-founded is the same as saying that a certain induction principle
is valid, so called Noetherian1 induction, or well-founded induction. Let (A,<) be a binary
relation. A subset S ⊆ A is progressive iff

(∀a)[(∀b < a)b ∈ S ⇒ a ∈ S].

Thus in a progressive set, if all the elements that lie before a are in the set, then also a
is in the set. A binary relation (A,<) is called inductive iff S = A whenever S ⊆ A is
a progressive subset. What are the progressive subsets S of (N, <)? Clearly, there are no
elements before 0, and hence trivially 0 ∈ S. Now suppose that {0, 1, . . . , n} ⊆ S. Then
all elements before n + 1 are in S. Hence also n + 1 ∈ S. By induction S = N. Above we
just showed that (N, <) is inductive. In fact, we have

Theorem 1.18 A binary relation is well-founded iff it is inductive.

Proof. Suppose that (A,<) is an inductive binary relation. Define the following subset
of A

S = {b ∈ A : there is no infinite sequence b > a1 > a2 > a3 · · ·}.

It is easily checked that S is progressive set. Hence S = A, so (A,<) is well-founded.
Now suppose that (A,<) is not inductive. Hence there is a progressive set S ⊂ A. Let

x0 ∈ A\S. Since S is progressive, there must be some x1 < x0 such that x1 /∈ S. But then
again there must be some x2 < x1 such that x2 /∈ S. Proceeding in this way one constructs
a sequence

x0 > x1 > x2 > · · ·

1After Emmy Noether, a pioneer in abstract algebra.

9

which shows that (A,<) is not well-founded. 2

Let (A,<) be a binary relation. The transitive closure (A,<+) of (A,<) is defined by
a <+ b iff there is a sequence a1 < . . . < an, n ≥ 1, with a = a1 and b = an. We leave the
following as an easy exercise

Proposition 1.19 Let (A,<) be a binary relation. Then (A,<) is well-founded iff (A,<+)
is well-founded. 2

Suppose that (A,<) is well-founded, (B,<′) a binary relation and f : B → A a function
such that, for all x and y

x <′ y ⇒ f(x) < f(y).

Then (B,<′) is well-founded. This fact can sometimes provide an easy proof that a relation
is well-founded.

1.4 Abstract reduction systems

An Abstract Reduction System (ARS) is a set A together with a binary relation→. Further
on we will mostly be interested in the case where A is a set of terms and → is a one-step
computation, or reduction, relation. However we treat the general case first, so (A,→)
could be any directed graph, finite or infinite.

An element a in A of an ARS (A,→) is said to be a normal form, if there is no b ∈ A
such that a→ b. (Intuitively a cannot be computed further, and can be considered as the
value of a computation.)

Example 1.20 Let A = {0, 1, 2, 3} and →= {(1, 0), (1, 2), (2, 1), (2, 3)}. (Draw the graph
of this ARS!) It is easy to see that the elements of normal form are exactly 0 and 3.

Example 1.21 The ARS given by A2 = {0, 1} and →= {(1, 0), (0, 1)} has no elements of
normal form.

Let (A,→) be an ARS. Denote by � the reflexive and transitive closure of →, that is,
a � b holds iff there is a sequence a = a1, . . . , an = b, n ≥ 1, such that

a1 → a2 → · · · → an.

Write a →+ b if this holds for a sequence where n ≥ 2. An ARS (A,→) is weakly
normalizing (WN) if for every a ∈ A there is some normal form b ∈ B with a � b. It is
easily checked that the ARS of Example 1.20 is weakly normalizing. Note however that
1 � 0 and 1 � 3 so that 1 has two distinct normal forms.

Two elements a and b of an ARS (A,→) are said to be convergent (in symbols: a ↓ b) if
there is some c such that a � c and b � c. An ARS (A,→) is confluent or Church-Rosser
(CR) if b ↓ c for any a, b, c ∈ A such that a � b and a � c The following simple result
shows the importance of this property.

10

Proposition 1.22 Let (A,→) be a confluent, weakly normalizing ARS. Then every ele-
ment of A has a unique normal form.

Proof. Suppose that b and c are normal forms and a � b and a � c. By confluency, for
some d ∈ A with b � d and c � d. Since b is normal, b = d and likewise c = d. Hence
b = c. 2

An ARS (A,→), where there are no infinite sequences a1 → a2 → a3 → · · · is called
strongly normalizing (SN), i.e. (A,←) is a wellfounded relation. Clearly, in this case any
strategy of performing the reductions will lead to a normal form. The ARS of Example
1.20 is does not have this property since there is the sequence 1→ 2→ 1→ 2→ · · ·.

Example 1.23 The ARS given by A = {0, 1, 2, 3} and→= {(1, 0), (1, 2), (2, 3)} is strongly
normalizing but not confluent.

The following theorem is often useful when proving confluency. An ARS (A,→) is
weakly confluent or Weakly Church-Rosser (WCR) if b ↓ c for any a, b, c ∈ A such that
a→ b and a→ c. (Note the one-step computation relations from a.)

Theorem 1.24 (Newman’s lemma) A weakly confluent, strongly normalizing ARS is con-
fluent.

Proof. Let (A,→) be an ARS. That it is confluent is equivalent to P (u) for all u, where

P (u)⇔def (∀x, y)[u � x ∧ u � y ⇒ x ↓ y]

Since the ARS is strongly normalizing, we can prove (∀u)P (u) by Noetherian induction.
For this it suffices to show that S = {u ∈ A : P (u)} is a progressive set, i.e.

(∀u)[(∀t) (u→ t⇒ P (t))⇒ P (u)].

So assume that u ∈ A is arbitrary, and as induction hypothesis (∀t) (u → t ⇒ P (t)). In
case u is normal, we are done. Otherwise, suppose that u → b � x and u → c � y.
By weak confluency there is some d such that b � d and c � d. By the induction
hypothesis P (b), so there is a z with x � z and d � z. By transitivity, c � z. Using the
induction hypothesis again, P (c) holds, so there is some v with z � v and y � v. Thus
by transitivity, x � v. The induction step is finished. 2

11

References

J.A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programming Lan-
guages. MIT Press, 1996.

K. Meinke and J.V. Tucker. Universal Algebra. In: S. Abramsky et al. (eds.):
Handbook of Logic in Computer Science, Vol. 1. Oxford University Press 1992.

W. Wechler. Universal Algebra for Computer Scientists. Springer 1992.

