ALGEBRAIC STRUCTURES

Xantcha

Examination 17th December 2012

Solutions. Complete solutions are required for each problem.
Marking. Each problem is worth 6 points.

- The marks 3,4 , and 5 correspond approximately to the scores 18,25 , and 32 , respectively, distributed reasonably evenly among the three divisions Group Theory, Ring Theory, and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions ought to be written out formally, using complete sentences.
I. (a) Define what it means for a permutation to be even or odd.
(b) Consider, in S_{9}, the permutation

$$
\sigma=\left(\begin{array}{lllllllll}
\mathrm{I} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 5 & 9 & 3 & \mathrm{I} & 2 & 6 & 8 & 7
\end{array}\right) .
$$

Write σ in cycle notation.
(c) Determine whether σ is even or odd.
(d) Determine whether σ is of even or odd order in S_{9}.
(e) Does there exist a permutation π such that $\pi^{2}=\sigma$?
2. (a) Define, for an integral domain, the notions of irreducible and prime element. How are these two concepts related?
(b) Factorise the polynomial $p(x)=\mathrm{I}+x+x^{2}+x^{3}$ into irreducibles over Z_{3}.
(c) Construct addition and multiplication tables for the factor ring $\mathbf{Z}_{3}[x] /(p(x))$. Is it an integral domain? Is it a field?
3. (a) Define abelian group.
(b) Classify the abelian groups of order 2012 (i. e. give a complete, irredundant list of groups of order 2012).
4. (a) Define what it means for P to be a prime ideal of a commutative, unital ring R. What is known about the structure of the factor ring R / P when P is a prime ideal?
(b) Let R be a commutative ring with unity. An element $x \in R$ is nilpotent if $x^{n}=\mathrm{o}$ for some positive integer n. Shew that x is either o or a zero divisor.
(c) Shew that the nilpotent elements constitute an ideal N of R.
(d) Shew that R / N contains no nilpotent elements apart from o $+N$.
5. (a) Define a subgroup of a group.
(b) Let G be a group and let D be the diagonal set

$$
D=\{(g, g) \mid g \in G\} .
$$

Shew that D is a subgroup of $G \times G$.
(c) Shew that, if G is abelian, then D is a normal subgroup of $G \times G$. Describe the structure of $(G \times G) / D$.
(d) Shew, by means of an example, that, if G is non-abelian, then D need not be normal in $G \times G$.
6. (a) What is the definition of a unital ring?
(b) A tessarine is a quantity of the form

$$
a+b i+c j+d k, \quad a, b, c, d \in \mathbf{R},
$$

where i, j, k are imaginary units. Tessarines are added and subtracted component-wise (like complex numbers and quaternions), and multiplied according to the rules

$$
i j=j i=k, \quad i^{2}=-\mathrm{r}, \quad j^{2}=\mathrm{I},
$$

combined with associativity and distributivity. The Tessarines form a unital ring T. Find the complete 4×4 multiplication table for the elements I, i, j, and k in T.
(c) Is T commutative? Does it have zero divisors? Is it a field?
(d) Shew that T is isomorphic to the direct product $\mathbf{C} \times \mathbf{C}$.
7. (a) Define the minimal polynomial of an (algebraic) element of a field extension.
(b) Shew that $\alpha=\sqrt{2}+i \sqrt{3}$ is algebraic over \mathbf{Q} and find its minimal polynomial.
(c) What is the dimension of the simple extension $\mathbf{Q}(\alpha)$, considered as a vector space over \mathbf{Q} ?
(d) Is $\mathbf{Q}(\alpha) \geqslant \mathbf{Q}$ a Galois (normal) extension? If so, find the Galois group.

