ALGEBRAIC STRUCTURES

Xantcha
Examination 2 ${ }^{\text {nd }}$ April 2013

Solutions. Complete solutions are required for each problem.
Marking. Each problem is worth 6 points.

- The marks 3,4 , and 5 correspond approximately to the scores 18,25 , and 32 , respectively, distributed reasonably evenly among the three divisions Group Theory, Ring Theory, and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions should be written out formally, using complete sentences.
I. (a) Give the definition of a group G acting on a set X.
(b) Consider the following set of 2×2 matrices with entries from \mathbf{Z}_{2} :

$$
M=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbf{Z}_{2} \wedge a d \neq b c\right\} .
$$

Shew that it is a group under matrix multiplication. Is it abelian?
(c) How many elements does it contain? Which well-known group is it isomorphic to?
(d) Shew that the group M acts on the set $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ by left multiplication:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}=\binom{a x+b y}{c x+d y} .
$$

What are the orbits of the action?
2. (a) Define algebraic and finite extension fields. How are these two concepts related?
(b) Shew that $\mathbf{Q}[x] /\left(x^{6}+9 x+6\right)$ is a field.
(c) Let θ be such that $\theta^{6}+9 \theta+6=0$. Find the inverse of $\mathrm{I}+\theta$ in $\mathbf{Q}(\theta)$.
3. (a) What is the definition of a normal subgroup?
(b) Suppose K is a normal subgroup of H, which is a normal subgroup of G. Shew, by means of an example, that K is not necessarily normal in G. (You may, for example, wish to consider the fourth dihedral group.)
4. (a) When I is an ideal of a commutative, unital ring R, define the corresponding factor ring.
(b) Let F denote the commutative ring of continuous functions $\mathbf{R} \rightarrow \mathbf{R}$, under point-wise addition, subtraction, and multiplication. What is the multiplicative identity of this ring? Is F an integral domain? Is it a field?
(c) Let C denote the set of constant functions. Is C an ideal? If so, describe the structure of the corresponding factor ring F / C.
(d) Let Z denote the set of functions mapping o to o. Is Z an ideal? If so, describe the structure of the corresponding factor ring F / Z.
5. (a) Define a group.
(b) Let X be a set with n elements and let $P(X)$ denote its power set, i. e. its set of subsets. Given two sets $A, B \subseteq X$, their symmetric difference consists of the elements belonging to either A or B, but not both:

$$
A \sqcap B=\{x \in X \mid x \in A \cup B \wedge x \notin A \cap B\} .
$$

Shew that $(P(X), \sqcap)$ is an abelian group.
(c) Which well-known group is $P(X)$ isomorphic to? (I. e.: Classify $P(X)$ according to the Fundamental Theorem of Finitely Generated Abelian Groups.)
6. (a) What is the definition of a field?
(b) A split-quaternion is a quantity of the form

$$
a+b i+c j+d k, \quad a, b, c, d \in \mathbf{R},
$$

where i, j, k are imaginary units. Split-quaternions are added and subtracted component-wise (like complex numbers and quaternions), and multiplied according to the rules

$$
i^{2}=-1, \quad j^{2}=1, \quad k^{2}=1, \quad i j k=1,
$$

combined with associativity and distributivity. The Split-Quaternions form a unital ring S. Find the complete 4×4 multiplication table for the elements I, i, j, and k in S.
(c) Is S commutative? Does it have zero divisors? Is it a field?
(d) Shew that S is isomorphic to the matrix ring $\mathbf{R}^{2 \times 2}$.
7. (a) Define the Galois group of a polynomial over a field F.
(b) Factorise $p(x)=x^{6}-64$ into irreducibles over \mathbf{Q}.
(c) Determine the Galois group of $p(x)$ over \mathbf{Q}.

