ALGEBRAIC STRUCTURES

Xantcha

Examination 30 th August 2013

Solutions. Complete solutions are required for each problem.
Marking. Each problem is worth 6 points.

- The marks 3, 4, and 5 correspond approximately to the scores 18,25 , and 32 , respectively, distributed reasonably evenly among the three divisions Group Theory, Ring Theory, and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions should be written out formally, using complete sentences.
r. Consider the permutation

$$
\pi=\left(\begin{array}{llllll}
\mathrm{I} & 2 & 3 & 4 & 5 & 6 \\
6 & 2 & 4 & 3 & \mathrm{I} & 5
\end{array}\right)
$$

(a) Write π in cycle notation.
(b) Determine whether π is even or odd.
(c) Find a permutation commuting with π, which is neither π itself nor the identity permutation.
(d) Find a permutation not commuting with π.
(e) Determine the order of the subgroup generated by π.
2. (a) Starting from the concept of an integral domain and an irreducible element, define a unique factorisation domain.
(b) Consider the polynomial

$$
p(x)=x^{4}+x^{3}+5 x^{2}+10 x+5
$$

Factorise $p(x)$ into irreducible factors over \mathbf{Q}.
(c) Factorise $p(x)$ into irreducibles over \mathbf{Z}_{3}.
3. (a) Define the notion of a group action.
(b) Consider the set of four matrices:

$$
G=\left\{\left(\begin{array}{cc}
\pm \mathrm{r} & \mathrm{o} \\
\mathrm{o} & \pm \mathrm{r}
\end{array}\right)\right\}
$$

Shew that G is a group under matrix multiplication. Which wellknown group is it isomorphic to?
(c) Shew that G acts on the plane \mathbf{R}^{2} by left multiplication: $A \cdot x=A x$, for $A \in G$ and $x \in \mathbf{R}^{2}$.
(d) What is the orbit of a point $P=(p, q)$ under this action? What is the stabiliser?
4. (a) Define the concept of a ring.
(b) Define ring homomorphisms and ring isomorphisms.
(c) Shew that the rings $\mathbf{Q}[x] /\left(x^{2}-1\right)$ and $\mathbf{Q} \times \mathbf{Q}$ are isomorphic.
5. (a) Define a soluble group.
(b) Is S_{3} soluble?
(c) Is \mathbf{Z} soluble?
6. (a) Define what it means for P to be a prime ideal of a commutative, unital ring R. What is known about the structure of the factor ring R / P when P is a prime ideal?
(b) Let R be a commutative, unital ring, let S be a subring, and let I be an ideal of R. Prove that, if $S \cap I=\{0\}$, then the set

$$
T=\{s+I \mid s \in S\}
$$

forms a subring of R / I isomorphic to S.
7. (a) Define the Galois group of a polynomial over a field F.
(b) Factorise $p(x)=x^{4}-4$ into irreducibles over \mathbf{Q}.
(c) Determine the Galois group of $p(x)$ over \mathbf{Q}.

