ALGEBRAIC STRUCTURES

Xantcha

Examination 16th December 2013

Solutions. Complete solutions are required for each problem.

Marking. Each problem is worth 6 points.

- The marks 3, 4 and 5 correspond approximately to the scores 18, 25 and 32, respectively, distributed *reasonably* evenly among the three divisions Group Theory, Ring Theory and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions should be written out formally, using complete sentences.
- 1. (a) Define the *order* of a group element.
 - (b) What is the order of 48 in the additive group Z_{60} ?
 - (c) Find all elements of the subgroup of Z_{60} generated by 8 and 30.
 - (d) Find all elements of the multiplicative group Z_{60}^* .
- 2. (a) Define what it means for two groups to be *isomorphic*.
 - (b) Consider the following set of rational numbers:

$$A=\left\{ \left. 2^{a}3^{b}\right| a,b\in\mathbf{Z}\right\} .$$

Show that A is an abelian group under multiplication.

- (c) Show that A is isomorphic with $\mathbf{Z} \times \mathbf{Z}$.
- 3. (a) Define an *algebraic extension* of a field.
 - (b) Show that the ring

$$K = \mathbf{Z}_{2}[x]/(x^{4} + x + \mathbf{I})$$

is a field, and determine its order.

- (c) Is the multiplicative group K^* cyclic?
- (d) Is the field extension $\mathbb{Z}_2 \leq K$ algebraic?
- 4. (a) Let N be a normal subgroup of a group G. Define the *factor group* G/N.
 - (b) Consider the map

$$\pi: \mathbf{R}^2 \to \mathbf{R}, \quad (x, y) \mapsto x + y.$$

Show that π is a group homomorphism.

- (c) Find the kernel and image of π .
- (d) Describe the cosets in $\mathbb{R}^2/\operatorname{Ker} \pi$.
- 5. (a) Define prime and maximal ideals in a commutative, unital ring.
 - (b) Consider the ring

$$R = \mathbf{C}[x]/(x^3 - \mathbf{I}).$$

Show that the ideal $(x - 1 + (x^3 - 1))$ is both prime and maximal.

- (c) Show that the ideal $(0 + (x^3 1))$ is neither prime nor maximal.
- (d) Does R contain an ideal which is prime, but not maximal?
- (e) Does R contain an ideal which is maximal, but not prime?
- 6. (a) Define what it means for a polynomial equation p(x) = 0 to be soluble in radicals over Q.
 - (b) Find the Galois group of the polynomial equation

$$x^5 - x^4 - x + i = 0.$$

- (c) Is the equation soluble in radicals?
- 7. Let L be a *finite* commutative, unital ring of characteristic 3. Suppose that, for any inversible $u \neq 1$, the element u 1 will be inversible as well.
 - (a) Show that the map

$$\varphi: L \to L, \quad x \mapsto x^3$$

is a ring homomorphism.

- (b) Show that φ is a ring isomorphism.
- (c) Show that there exists a positive integer n such that $x^{3^n} = x$ for all $x \in L$.
- (d) Let now x be an arbitrary element of L. Show that $x^{3^{n-1}} + 1$ is its own inverse.
- (e) Show that *L*, in fact, must be a field.