ALGEBRAIC STRUCTURES

Xantcha

Examination 16th December 2013

Solutions. Complete solutions are required for each problem.
Marking. Each problem is worth 6 points.

- The marks 3,4 and 5 correspond approximately to the scores 18,25 and 32 , respectively, distributed reasonably evenly among the three divisions Group Theory, Ring Theory and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions should be written out formally, using complete sentences.
I. (a) Define the order of a group element.
(b) What is the order of 48 in the additive group \mathbf{Z}_{60} ?
(c) Find all elements of the subgroup of \mathbf{Z}_{60} generated by 8 and 30 .
(d) Find all elements of the multiplicative group \mathbf{Z}_{60}^{*}.

2. (a) Define what it means for two groups to be isomorphic.
(b) Consider the following set of rational numbers:

$$
A=\left\{2^{a} 3^{b} \mid a, b \in \mathbf{Z}\right\} .
$$

Show that A is an abelian group under multiplication.
(c) Show that A is isomorphic with $\mathbf{Z} \times \mathbf{Z}$.
3. (a) Define an algebraic extension of a field.
(b) Show that the ring

$$
K=\mathbf{Z}_{2}[x] /\left(x^{4}+x+\mathbf{r}\right)
$$

is a field, and determine its order.
(c) Is the multiplicative group K^{*} cyclic?
(d) Is the field extension $\mathbf{Z}_{2} \leqslant K$ algebraic?
4. (a) Let N be a normal subgroup of a group G. Define the factor group G / N.
(b) Consider the map

$$
\pi: \mathbf{R}^{2} \rightarrow \mathbf{R}, \quad(x, y) \mapsto x+y .
$$

Show that π is a group homomorphism.
(c) Find the kernel and image of π.
(d) Describe the cosets in $\mathbf{R}^{2} / \operatorname{Ker} \pi$.
5. (a) Define prime and maximal ideals in a commutative, unital ring.
(b) Consider the ring

$$
R=\mathbf{C}[x] /\left(x^{3}-\mathrm{I}\right) .
$$

Show that the ideal $\left(x-\mathrm{I}+\left(x^{3}-\mathrm{I}\right)\right)$ is both prime and maximal.
(c) Show that the ideal $\left(0+\left(x^{3}-1\right)\right)$ is neither prime nor maximal.
(d) Does R contain an ideal which is prime, but not maximal?
(e) Does R contain an ideal which is maximal, but not prime?
6. (a) Define what it means for a polynomial equation $p(x)=0$ to be soluble in radicals over \mathbf{Q}.
(b) Find the Galois group of the polynomial equation

$$
x^{5}-x^{4}-x+\mathrm{I}=0 .
$$

(c) Is the equation soluble in radicals?
7. Let L be a finite commutative, unital ring of characteristic 3. Suppose that, for any inversible $u \neq \mathrm{r}$, the element $u-\mathrm{r}$ will be inversible as well.
(a) Show that the map

$$
\varphi: L \rightarrow L, \quad x \mapsto x^{3}
$$

is a ring homomorphism.
(b) Show that φ is a ring isomorphism.
(c) Show that there exists a positive integer n such that $x^{3^{n}}=x$ for all $x \in L$.
(d) Let now x be an arbitrary element of L. Show that $x^{3^{n}-\mathrm{r}}+\mathrm{I}$ is its own inverse.
(e) Show that L, in fact, must be a field.

