ALGEBRAIC STRUCTURES

Xantcha

Examination 23rd April 2014

Solutions. Complete solutions are required for each problem.
Marking. Each problem is worth 6 points.

- The marks 3, 4 and 5 correspond approximately to the scores 18,25 and 32 , respectively, distributed reasonably evenly among the three subdivisions Group Theory, Ring Theory and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions should be written out formally, using complete sentences.
I. (a) Define what it means for a group to be finitely generated.
(b) State the Fundamental Theorem for Finitely Generated Abelian Groups.
(c) Classify the abelian groups of order 2014.
(d) Are there any non-abelian groups of order 2or4?

2. (a) Define a subring of a ring.
(b) Let A be a commutative ring of characteristic 2 . Consider the set of squares in A :

$$
B=\left\{a^{2} \mid a \in A\right\}
$$

Show that B is a subring of A.
(c) Show that B is not, in general, an ideal of A, for example by considering $A=\mathbf{Z}_{2}[x]$.
(d) Show that B will not necessarily be a subring if A is not required to have characteristic 2.
3. (a) Define the notion of a group homomorphism.
(b) Show that the determinant

$$
\operatorname{det}: \mathrm{GL}_{n}(\mathrm{C}) \rightarrow \mathrm{C}^{*}
$$

is an homomorphism of groups, where $\mathrm{GL}_{n}(\mathbf{C})$ denotes the group of inversible complex $n \times n$ matrices.
(c) Show that $\mathrm{SL}_{n}(\mathbf{C})$, the complex matrices of determinant I , is a normal subgroup of $\mathrm{GL}_{n}(\mathrm{C})$.
(d) Show that

$$
\mathrm{GL}_{n}(\mathrm{C}) / \mathrm{SL}_{n}(\mathbf{C}) \cong \mathrm{C}^{*} .
$$

4. (a) Define prime and maximal ideals of a commutative, unital ring.
(b) Let $R=\mathbf{Z}_{4}[x]$. Show that the ideal (x) is neither prime nor maximal.
(c) Show that the ideal $(2, x)$ is both prime and maximal in R.
(d) Does there exist an ideal in R which is prime, but not maximal?
(e) Does there exist an ideal in R which is maximal, but not prime?
5. (a) Define a field.
(b) Compute the Galois group of $p(x)=x^{8}-x^{2}$ over \mathbf{Q}.
6. (a) Suppose the group G acts on the set X. Define the orbit and stabiliser (also known as the isotropy subgroup) of a point $x \in X$.
(b) Consider the set of affine functions

$$
A=\{f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=a x+b \mid a, b \in \mathbf{R} \wedge a \neq 0\} .
$$

Show that it is a group under function composition.
(c) Show that the group A acts on the set \mathbf{R}.
(d) What is the orbit of the point $p \in \mathbf{R}$? What is the stabiliser?
7. (a) Define the splitting field of a polynomial $q(x)$ over a field F.
(b) Let $q(x)$ be a rational cubical polynomial, and let α, β and γ denote its three roots. Show that the splitting field of $q(x)$ over \mathbf{Q} equals $\mathbf{Q}(\alpha, \beta)$.
(c) Give an example where $\mathbf{Q}(\alpha), \mathbf{Q}(\beta)$ and $\mathbf{Q}(\gamma)$ all equal the splitting field.
(d) Give an example where the splitting field is neither $\mathbf{Q}(\alpha)$ nor $\mathbf{Q}(\beta)$ nor $\mathbf{Q}(\gamma)$.

