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Xantcha

22nd November 2013

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Baudelaire, Correspondances

These lecture notes were compiled with the modest aim of providing a brief,
non-technical introduction to the Galois Correspondence. Without delving
into a profusion of detail of this complicated machinery, it will, or so we hope,
still manage communicate the essential ideas — a Galois Theory for Dummies,
so to speak.

Being a simplified version, the theory presented is valid only for algebraic
extensions of Q. Hence, there shall always be a tacit understanding that all
fields be extensions of Q and therefore, being algebraic, contained in Q.

Basic knowledge of Group and Field Theory will be assumed on the part
of the reader:

1. Algebraic elements, their minimal polynomials and degrees.

2. Algebraic extensions and their degrees. The Tower Law: If K ě E ě F ,
then

rK : Fs “ rK : EsrE : Fs.

Finite extensions are algebraic.

3. The structure of Simple Extensions: If α is algebraic over F , with min-
imal polynomial ppxq, then

Fpαq – Frxs{pppxqq.
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4. Algebraic closure. An algebraically closed field has no non-trivial alge-
braic extensions.

5. Soluble groups: G is soluble if there exists a chain of subgroups

t1u “ G0 Ĳ G1 Ĳ ¨ ¨ ¨ Ĳ Gn´1 Ĳ Gn “ G,

with all successive factor groups Gk{Gk´1 cyclic.

Briefly, Galois Theory traces its origins to mankind’s desire to solve algeb-
raical equations — by algebraical means, it ought to be added. This latter word
denotes the four standard operations of arithmetic, in conjunction with root
extractions. It scored one of Abstract Algebra’s earliest and most glorious
victories when it was cleverly deployed, by Abel and Galois independently, to
shew that such a feat is not always possible.

An historical outline goes as follows:

The Linear Equation. Solved by all four River Civilisations (Egypt, Mesopot-
amia, India, China).

The Quadratic Equation. Solved by the Babylonians and the Chinese. Be-
cause they had no symbolic algebra available, and so could express no
formulæ, their discourse would always be based on a lengthy argument
in words. Also, what we nowadays consider a general quadratic would
be split up into several cases, because negative numbers were yet not
available.

The Cubical Equation. The Art of Symbolic Algebra ripened during the Re-
naissance, and reaped two victories in quick succession: resolving the
cubic and the quartic, with mere decades in between. The solution of
the cubic was accomplished by del Ferro and Tartaglia during the first
half of the 16th century, and the method was subsequently published in
the magnum opus of Cardano, Ars Magna (1545). It has, of course, been
credited to neither del Ferro nor Tartaglia, but is known as Cardano’s
Formula.

The Quartical Equation. Resolved by Cardano’s student Ferrari. The solu-
tion was also included in the Ars Magna.

The Quintical Equation. Lagrange made the first progress on the problem
when he shewed that those methods which had successfully attacked the
equations of lower degree, would invariably fail for the quintic. From his
vague ideas, and drawing on the crisp and powerful language of Abstract
Algebra, at that time sprouting, crystallised Abel and Galois’s brilliant
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insight that the general quintical equation is insoluble in radicals, in the sense
that no general closed formula, applying the four standard operations of arith-
metic and successive root extractions to the co-efficients, will manufacture the
solutions. This is Abel’s Impossibility Theorem (1824); see Theorem 9 below.

§1. Splitting Fields

The notion of a splitting field is rather a natural one. When adjoining one
root of a polynomial equation to the ground field, one may well ask: why not
adjoin all of them?

Definition 1. Let f pxq P Frxs. The splitting field of f pxq is the smallest
subfield of F containing (F and) the zeroes of f pxq.

The splitting field is thus the smallest field in which f pxq splits completely
(decomposes as a product of linear factors).

Example 1. The field C contains the zeroes of x2`1, but it is not the smallest
such field, hence not the splitting field. The splitting field of x2 ` 1 (over Q)
is, of course, Qpiq. 4

Example 2. The field Qpe
πi
4 q is the splitting field of both x4` 1 and x8´ 1 “

px4´1qpx4`1q. The latter polynomial is not irreducible, but such a requirement
was never stipulated. 4

Theorem 1. If E is the splitting field of F, then any irreducible polynomial over
F having but a single zero in E, must necessarily have all its zeroes in E, and so will
split completely into linear factors.

There may, of course, still exist polynomials that do not split over E,
namely those not having a single zero in E. In order to furnish zeroes to
all polynomials over F , one has to pass to the algebraic closure.

§2. Finite Extensions

We already know that finite extensions are algebraic. The theorem that fol-
lows asserts that finite extensions of Q, the only type that shall concern us, are
always simple. This knowledge is extremely useful, the structure of simple ex-
tensions admitting an explicit description (as the quotient of the polynomial
ring by the minimal polynomial). The theorem is a classic of Field Theory.

Theorem 2: The Primitive Element Theorem. Suppose F is an algebraic ex-
tension of Q. All finite extensions of F are simple.
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Proof. A finite extension is generated by finitely many elements. By induc-
tion, it shall be suHcient to shew that an extension Fpα, βq generated by two
elements is, in fact, generated by a single element. Since everything is alge-
braic, we have Q ď F ď Fpα, βq ď Q.

Let the zeroes of f pxq “ irrF α be α “ α1, . . . , αm and those of gpxq “ irrF β

be β “ β1, . . . , βn. The element β is a single zero of g since, if it were not, then
it would be a zero also of g1pxq, which is of lower degree than gpxq.

Choose q P F such that qpβj ´ βq ‰ αi ´ α, for all i and j ‰ 1. Obviously
Fpα, βq Ě Fpα´ qβq. We now prove that containment also goes the other way.

Consider the polynomial

hpxq “ f pα` qpx´ βqq P Fpα´ qβqrxs.

It fulfils hpβjq “ 0 precisely when j “ 1, so it is divisible by irrFpα´qβq β.
But irrFpα´qβq β also divides irrF β “ gpxq, and the polynomials g and h only
have the common zero β, which, as we just shewed, is single. Consequently,
irrFpα´qβq β “ x´ β, and so β P Fpα´ qβq. Then also α P Fpα´ qβq, and hence
Fpα, βq “ Fpα´ qβq.

§3. The Conjugation Isomorphisms

The pivotal theme Galois Theory revolves around is Field Automorphisms,
isomorphisms of a field with itself. Before restricting our attention to this
particular type, we shall ensure an adequate supply of isomorphisms of (pos-
sibly distinct) fields.

Theorem 3: The Conjugation Isomorphism Theorem. Let α and β be alge-
braic over the field F. The map

ψα,β : Fpαq Ñ Fpβq

c0 ` c1α` ¨ ¨ ¨ ` ckα
k ÞÑ c0 ` c1β` ¨ ¨ ¨ ` ckβ

k,

is an isomorphism of fields if and only if α and β have the same minimal polynomial
over F.

Proof. Suppose ψα,β, as defined above, is an isomorphism, and let the minimal
polynomial of α be a0 ` a1x` ¨ ¨ ¨ ` anxn. Then

0 “ ψα,βp0q “ ψα,βpa0 ` a1α` ¨ ¨ ¨ ` anα
nq “ a0 ` a1β` ¨ ¨ ¨ ` anβ

n,

and since a minimal polynomial is always irreducible, a0 ` a1x ` ¨ ¨ ¨ ` anxn is
the minimal polynomial also of β.
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Conversely, suppose α and β share the minimal polynomial ppxq. Then, by
the structure of simple extensions,

Fpαq – Frxs{pppxqq – Fpβq,

with the isomorphism Frxs{pppxqq Ñ Fpαq given by x ` pppxqq ÞÑ α. The com-
posite isomorphism

Fpαq Ñ Frxs{pppxqq Ñ Fpβq

is then given by
α ÞÑ x` pppxqq ÞÑ β,

which is the map ψα,β sought for.

Definition 2. Two elements sharing the same minimal polynomial, as in
the theorem above, are called conjugate.

The Conjugation Isomorphism Theorem then states: An algebraic element
may transform into any of its conjugates, and into its conjugates only, under a
field isomorphism.

Example 3. Consider, for example, the two numbers 3
?

2 and 3
?

2ζ, where
ζ “ e

2πi
3 denotes a third root of unity. They share the minimal polynomial

x3 ´ 2. By the theorem, the map

ψ 3?2, 3?2ζ : a` b 3
?

2` c 3
?4 ÞÑ a` b 3

?
2ζ` c 3

?4ζ
2

provides an isomorphism Qp 3
?

2q Ñ Qp 3
?

2ζq. 4

§4. Extension of Isomorphisms

Extension of isomorphisms is a recurrent theme in Galois Theory. We here
state, without proof, a very general theorem governing these.

We remind the reader that, by an extension of the map ϕ : X Ñ Y , is meant
a map ϕ̂ : X 1 Ñ Y 1, where X 1 Ě X and Y 1 Ě Y , such that ϕ̂pxq “ ϕpxq for all
x P X:

X 1
ϕ̂ // Y 1

X
ϕ // Y

Theorem 4: The Isomorphism Extension Theorem. Let F ď E be an algebraic
extension and let ϕ : F Ñ K be an isomorphism. Then there exists an extension of ϕ
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to an isomorphism of E with some algebraic extension L of K.

E // L

F
ϕ // K

Example 4. Consider again the previous example, that of the isomorphism

Qp 3
?

2q Ñ Qp 3
?

2ζq

a` b 3
?

2` c 3
?4 ÞÑ a` b 3

?
2ζ` c 3

?4ζ
2.

By the theorem, this isomorphism extends to an isomorphism

Qp 3
?

2, ζq Ñ L,

for some algebraic extension L Ě Qp 3
?

2ζq, and also to an isomorphism

Q Ñ M ,

for some (presumably larger) algebraic extension M Ě Qp 3
?

2ζq. 4

§5. Field Automorphisms

Definition 3. An isomorphism of a field with itself is called an automorph-
ism of the field.

Definition 4. Let F ď E be a field extension. The automorphism group of
E over F is

AutpE{Fq “ t σ : E Ñ E | @α P F : σpαq “ α u .

It is the set of those automorphisms of E fixing F .

Definition 5. Let F ď E be a field extension and let G ď AutpE{Fq. The
fixed field of G is

Fix G “ t α P E | @σ P G : σpαq “ α u .

It is the set of those field elements left fixed by the automorphisms in G.

Example 5. Consider the map

Qp
?

2,?3q Ñ Qp
?

2,?3q

a` b
?

2` c?3` d
?

6 ÞÑ a` b
?

2´ c?3´ d
?

6.
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It may be viewed as the conjugation isomorphism

ψ?3,´?3 : Qp
?

2qp?3q Ñ Qp
?

2qp?3q

— note that ˘?3 share the minimal polynomial x2 ´ 3 over Qp
?

2q.
Since ψ2?3,´?3 “ ι, the two automorphisms

tι, ψ?3,´?3u

form a two-element subgroup of AutpQp
?

2,?3q{Qq. The fixed field is

Fixtι, ψ?3,´?3u “ Qp
?

2q,

for
a` b

?
2` c?3` d

?
6 “ a` b

?
2´ c?3´ d

?
6

if and only if c “ d “ 0. This means, of course, that both ι and ψ?3,´?3, in
fact, belong to

AutpQp
?

2,?3q{Qp
?

2qq.

Hence the group tι, ψ?3,´?3u has the fixed field Qp
?

2q, and, conversely, the
field Qp

?
2q gives rise to the automorphism group

AutpQp
?

2,?3q{Qp
?

2qq “ tι, ψ?3,´?3u.

This is our first fleeting glimpse of the Galois Correspondence, the remarkable
dual relationship between Automorphism Groups, on the one hand, and their
Fixed Fields, on the other. 4

§6. Normal Extensions

We now examine two concrete instances exhibiting the Galois Correspond-
ence at play, and then proceed to investigate a field extension which does not
reproduce this evect. From a fastidious analysis of the malfunction, we are
led to the notion of a normal extension.

Example 6. As our first, simple example, we consider the field extension

Q ď Qp
?

2q “
 

a` b
?

2
ˇ

ˇ a, b P Q
(

.

Associating, to each of these two fields F , the automorphism group

AutpQp
?

2q{Fq,
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we are led to the following picture:

Qp
?

2q

Q

AutpQp
?

2q{pQ
?

2qq “ tr?2ÞÑ
?

2su

AutpQp
?

2q{Qq “ tr?2 ÞÑ
?

2s , r?2 ÞÑ´
?

2su

The bottom group, consisting of those automorphisms fixing Q only, is the
group with two elements, whereas the top group, consisting of those auto-
morphisms fixing the whole of Qp

?
2q, contains just the identity map. One

may reverse the procedure. Given one of the two groups G, it arises from the
field Fix G.

We observe that the smallest field leads to the largest group, and conversely.
The group lattice is upside-down, with the smallest group on top. 4

Example 7. Next, we return to the field extension

Q ď Qp
?

2,?3q “
!

a` b
?

2` c?3` d
?

6
ˇ

ˇ

ˇ
a, b, c, d P Q

)

.

There are three intermediate fields, shewn in Figure 1. Again we have, to each
field F , associated the group

AutpQp
?

2,?3q{Fq

of automorphisms fixing F . Once more, we observe that the group lattice is
pitched upside-down, with the smallest group residing on top, and that the
procedure may be reversed. To each group G corresponds the field Fix G.
Every intermediate field has been included in the field lattice, and all sub-
groups of

AutpQp
?

2,?3q{Qq – Z2 ˆ Z2

occur in the group lattice. 4

The preceding cases display the ideas at the heart of Galois Theory, and
the reader is advised to study them carefully. The next example is issued as an
admonition.

Example 8. The field extension

Q ď Qp 3
?

2q “
 

a` b 3
?

2` c 3
?4

ˇ

ˇ a, b, c P Q
(

leads to the following field and group lattices:

Qp 3
?

2q

Q

AutpQp 3
?

2q{Qp 3
?

2qq “ tr 3?2 ÞÑ 3?2su

AutpQp 3
?

2q{Qq “ tr 3?2 ÞÑ 3?2su
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Qp
?

2,?3q

Qp
?

2q Qp
?

6q Qp?3q

Q
!”?

2 ÞÑ
?

2
?3 ÞÑ?3

ı)

!”?
2ÞÑ
?

2
?3ÞÑ?3

ı

,
” ?

2ÞÑ
?

2
?3ÞÑ´?3

ı) !”?
2ÞÑ
?

2
?3ÞÑ?3

ı

,
”?

2 ÞÑ´
?

2
?3 ÞÑ´?3

ı) !”?
2 ÞÑ
?

2
?3ÞÑ?3

ı

,
”?

2 ÞÑ´
?

2
?3ÞÑ?3

ı)

!”?
2 ÞÑ
?

2
?3ÞÑ?3

ı

,
”?

2 ÞÑ´
?

2
?3 ÞÑ?3

ı

,
” ?

2 ÞÑ
?

2
?3 ÞÑ´?3

ı

,
”?

2 ÞÑ´
?

2
?3 ÞÑ´?3

ı)

Figure 1: Galois Correspondence for the Field Extension Q ď Qp
?

2,?3q.

There are no intermediate fields, because, for any Q ď E ď Qp 3
?

2q, we have

3 “ rQp 3
?

2q : Qs “ rQp 3
?

2q : EsrE : Qs

by the Tower Law. Hence either rQp 3
?

2q : Es “ 1 or rE : Qs “ 1.
The picture painted by this field extension isn’t nearly as dainty as those of

the two previous examples. Both fields produce the same trivial automorphism
group, so there is no longer a one-to-one correspondence between fields and
groups. 4

What went wrong this last time? The anomaly seems to lie with the bot-
tom group. Even though we require these automorphisms to fix only Q, no
more automorphisms are obtained — nothing beyond the identity map. How
come? Simply because there is no choice for the image of 3

?
2. By the Conjug-

ation Isomorphism Theorem, 3
?

2 has to transform into one of its conjugates
by an automorphism, but those conjugates are 3

?
2ζ and 3

?
2ζ2 (the minimal

polynomial being x3 ´ 2) and not included in the field Qp 3
?

2q.
What we have witnessed is a defect in the field extension, which we now

seek to remedy.

Definition 6. The finite field extension F ď E is normal (or Galois) if any
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(hence all) of the following equivalent conditions be satisfied:

A. E is the splitting field of some polynomial with co-eHcients in F .

B. F “ Fix AutpE{Fq.

C. rE : Fs “ |AutpE{Fq|.

D. All automorphisms of F that fix F , automatically leave E set-wise1 invari-
ant.

Proving the equivalence of the above four conditions calls for some highly
technical machinery and is best reserved for a proper course in Galois Theory.

Let us cogitate a bit on B, which is not as trivially true as might appear.
We have, just spelling out the definition,

Fix AutpE{Fq “ t α P E | @σ P AutpE{Fq : σpαq “ α u .

In words: These are the elements left fixed by everything that fixes F. Naturally, F
itself is included in this set, so F ď Fix AutpE{Fq, but there may be further fixed
points. The condition in B, that Fix AutpE{Fq be equal to F , may be phrased:
The field automorphisms that fix F, fix only F.

Example 9. The field extension Q ď Qp
?

2,?3q passes the four tests with
flying flags:

A. Qp
?

2,?3q is the splitting field of the polynomial px2 ´ 2qpx2 ´ 3q.

B. As can be seen from the lattices in Figure 1 above,

Fix AutpQp
?

2,?3q{Qq “ Q,

since there exist automorphims dislocating both square roots.

C. As may also be gathered from the lattices,

rQp
?

2,?3q : Qs “ 4 “ |AutpQp
?

2,?3q{Qq|.

D. Any automorphism of Q must either preserve or switch the roots of the
two equations x2 “ 2 and x2 “ 3, so Qp

?
2,?3q is left invariant.

4

Example 10. On the other hand, the extension Q ď Qp 3
?

2q fizzles miser-
ably:

1This is the only place where set-wise invariance plays a rôle. In all other instances, we are con-
cerned with automorphisms fixing a field, by which term we always mean element-wise invariance.
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A. Qp 3
?

2q is not a splitting field. It is certainly not the splitting field of x3´2,
and therefore, in accordance with Theorem 1, of no other polynomial
either.

B. We saw above that

Fix AutpQp 3
?

2q{Qq “ Fixtιu “ Qp 3
?

2q ‰ Q.

C. We also found that

rQp 3
?

2q : Qs “ 3 ‰ 1 “ |tιu| “ |AutpQp 3
?

2q{Qq|.

D. Finally, the conjugation isomorphism

ψ 3?2, 3?2ζ : 3
?

2 ÞÑ 3
?

2ζ

gives (by the Isomorphism Extension Theorem) an automorphism of Q
not leaving Qp 3

?
2q invariant.

4

§7. Properties of Normal Extensions

Theorem 5. Let F ď E ď K be such that F ď K is normal. Then E ď K is also
normal.

Proof. If K is the splitting field of f pxq over F , then K is also the splitting field
of f pxq over E.

Example 11. On the other hand, F ď E need not be normal. For example,
in

Q ď Qp 3
?

2q ď Qp 3
?

2, 3
?

2ζ, 3
?

2ζ
2q,

the whole extension is normal (it is the splitting field of x3 ´ 2), but, as we
strove to make clear above, not the bottom one. 4

Theorem 6. Consider an algebraic extension F ď K ď F.

• Every automorphism τ P AutpK{Fq extends (non-uniquely) to an automorph-
ism of F.

• Conversely, if F ď K is normal, then every σ P AutpF{Fq restricts to an
automorphism of K.
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Proof.

• According to the Isomorphism Extension Theorem, every automorph-
ism τ P AutpK{Fq extends to an isomorphism σ of F with an algebraic
extension E of F . Consider the inverse σ´1 : E Ñ F . Again by the Iso-
morphism Extension Theorem, σ´1 extends to an isomorphism of F
(which contains E, since E ě F is algebraic), with an algebraic exten-
sion of F . But F is algebraically closed and has no algebraic extensions.
Therefore σ´1 must already be an isomorphism of F with itself, i. e., an
automorphism.

• By normality, every σ P AutpF{Fq leaves K invariant, and so restricts to
an automorphism of K.

§8. The Galois Correspondence

Theorem 7: The Main Theorem of Galois Theory. Let Q ď K be a finite,
normal extension. There is a correspondence between groups and fields, called the
Galois correspondence, depicted as follows:

”

Intermediate fields
QďFďK

ı

F ÞÑAutpK{Fq
..
”

Intermediate groups
AutpK{QqěGětιu“AutpK{Kq

ı

Fix GÐ [G

ll

It has the following properties:

1. The Galois correspondence is a bijection:

Fix AutpK{Fq “ F and AutpK{Fix Gq “ G.

2. The Galois correspondence reverses order: If the fields F and E correspond to
the groups G and H, respectively, then:

F ď E if and only if G ě H .

Hence the group lattice is the field lattice turned upside-down.

3. The bottom field Q corresponds to the full automorphism group AutpK{Qq.
The top field K corresponds to the trivial subgroup AutpK{Kq “ tιu.

4. rK : Fs “ |AutpK{Fq|.

5. rF : Qs “ pAutpK{Qq : AutpK{Fqq.
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6. F ě Q is a normal field extension if and only if AutpK{Fq is a normal sub-
group of AutpK{Qq.

7. When this is the case, there is an isomorphism of groups:

AutpF{Qq – AutpK{Qq
L

AutpK{Fq.

Proof.

1. The first statement follows from the fact that K is a normal extension
also of F .

As to the second statement, it is clear that G ď AutpK{Fix Gq. Since
the extension K ě Fix G is finite, it is simple — this follows from the
Primitive Element Theorem. Find α such that K “ pFix Gqpαq and let
G “ tσ1, . . . , σmu.

Consider the polynomial

f pxq “ px´ σ1pαqq ¨ ¨ ¨ px´ σmpαqq.

For simplicity, take the special case m “ 2, so that

f pxq “ px´ σ1pαqqpx´ σ2pαqq “ x2 ´ pσ1pαq ` σ2pαqqx` σ1pαqσ2pαq.

The co-eHcients belong to Fix G, since they are invariant under the ac-
tion of G. This is because, for a finite group G “ tσ1, . . . , σmu, one has

tσjσ1, . . . , σjσmu “ tσ1, . . . , σmu.

For example, in the case m “ 2:

σjpσ1pαq ` σ2pαqq “ σjσ1pαq ` σjσ2pαq “ σ1pαq ` σ2pαq

and
σjpσ1pαqσ2pαqq “ σjσ1pαq ¨ σjσ2pαq “ σ1pαqσ2pαq

Moreover, α is a zero of f , since one σj “ ι, and the corresponding factor
becomes

α´ σjpαq “ 0.

It follows that α is algebraic of degree at most m over Fix G, and so

|AutpK{Fix Gq| “ rK : Fix Gs “ rpFix Gqpαq : Fix Gs

“ degFix G α ď m “ |G|.

Consequently, AutpK{Fix Gq “ G.
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2. If F ď E, then all those automorphisms fixing E will of course also fix
the subfield F , and so AutpK{Eq ď AutpK{Fq.

Conversely, if G ě H , then those elements left fixed by G will also be
left unperturbed by the subgroup H ; hence Fix G ď Fix H .

3. Special case of Item 1.

4. This follows from the fact that the extension K ě F is normal.

5. Since K ě F , Q are both normal, Item 4 (or the definition of normality)
shews that

rK : Fs “ |AutpK{Fq| and rK : Qs “ |AutpK{Qq|.

The Tower Law then gives:

rF : Qs “
rK : Qs
rK : Fs

“
|AutpK{Qq|
|AutpK{Fq|

“ pAutpK{Qq : AutpK{Fqq.

6. F ě Q is normal if and only if all automorphisms of Q, fixing Q, leave
F set-wise invariant. By Theorem 6, this is true if and only if all auto-
morphisms of K, fixing Q, leave F set-wise invariant. We then arrive at
the following chain of logical equivalences:

@σ P AutpK{Qq : σpFq “ F

Ø @σ P AutpK{Qq, α P F : σpαq P F “ Fix AutpK{Fq

Ø @σ P AutpK{Qq, α P F , τ P AutpK{Fq : τσpαq “ σpαq

Ø @σ P AutpK{Qq, α P F , τ P AutpK{Fq : σ
´1

τσpαq “ α

Ø @σ P AutpK{Qq, τ P AutpK{Fq : σ
´1

τσ P AutpK{Fq

Ø AutpK{Fq Ĳ AutpK{Qq,

concluding the proof.

7. Define an homomorphism

ξ : AutpK{Qq Ñ AutpF{Qq, σ ÞÑ σ


F .

It is onto because of Theorem 6, and the kernel is simply AutpK{Fq. By
the Fundamental Homomorphism Theorem,

AutpK{Qq
L

AutpK{Fq “ AutpK{Qq
L

Ker ϕ – Im ϕ “ AutpF{Qq.

14



Q
p

3?
2,

ζ
q

2
2

2

3
Q
p

3?
2q

3

Q
p

3?
2ζ
q

3

Q
p

3?
2ζ

2 q

3
Q
pζ
q

2

Q
!
”

?
2ÞÑ
?

2
ζ
ÞÑ
?

3

ı
)

2
2

2

3
!
”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ
2

ı
)

3

!
”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2ζ

2

ζ
ÞÑ

ζ
2

ı
)

3

!
”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2ζ

ζ
ÞÑ

ζ
2

ı
)

3

!
”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2ζ

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2ζ

2

ζ
ÞÑ

ζ

ı
)

2
!
”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2

ζ
ÞÑ

ζ
2

ı

,”

3?
2ÞÑ

3?
2ζ

ζ
ÞÑ

ζ

ı

,
”

3?
2ÞÑ

3?
2ζ

ζ
ÞÑ

ζ
2

ı

,”

3?
2ÞÑ

3?
2ζ

2

ζ
ÞÑ

ζ

ı

,”

3?
2ÞÑ

3?
2ζ

2

ζ
ÞÑ

ζ
2

ı

*

F
i
g
u
r
e
2
:

G
al

oi
s

C
or

re
sp

on
de

nc
e

fo
r

th
e

Fi
el

d
E

xt
en

si
on

Q
ď

Q
p

3?
2,

ζ
q.

15



Example 12. Figure 2 displays the Galois correspondence for the field ex-
tension Q ď Qp 3

?
2, ζq, which is normal, being the splitting field of x3 ´ 2.

Once the full Galois group AutpQp 3
?

2, ζq{Qq – S3 is known, one proceeds to
discover the intermediate fields through their corresponding subgroups of S3.
By the Main Theorem, all intermediate fields arise in this way. Observe that
this transforms a potentially infinite problem into a finite one.

The reader will perceive the little numerals with which the diagram has
been decorated. For field extensions, they indicate the respective degrees; for
group extensions, they specify the index of the subgroups in their respect-
ive supergroups. That corresponding figures be equal is in concordance with
Items 4 and 5 of the Main Theorem.

There is one further point we wish to dwell upon. The only normal sub-
group of S3 is, it will be recalled, the three-element subgroup A3. By Item 6 of
the Main Theorem, this corresponds to the normal field extension Q ď Qpζq.
By Item 7, an isomorphism will then be expected:

AutpQpζq{Qq – AutpQp 3
?

2, ζq{Qq
L

AutpQp 3
?

2, ζq{Qpζqq – S3{A3 – Z2.

4

§9. Solution by Radicals

The great triumph of Galois Theory is its ability to successfully demonstrate
the impossibility of solving algebraical equations beyond the quartic in terms
of radicals. In order to acquire a feeling for what this means, let us look at a
few concrete examples.

Example 13. The equation x2 ` px` q “ 0 has the solution

x “ ´
p
2
˘

d

p2

4
´ q.

Now, let us assume the co-eHcients p and q to be rational. The roots are
not necessarily so, but will live in what is called a quadratic extension of the
co-eHcient field, namely

Q

˜d

p2

4
´ q

¸

.

This field is obtained from Q after adjoining (at most) a single element, the
square root of a rational number. (It is conceivable that this element is indeed
rational, in which case the field extension is, of course, trivial.)
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Hence, the fact that both solutions are expressible by means of the four
arithmetic operations, coupled with a single root extraction, may, in the lan-
guage of Field Theory, be phrased: Given a quadratic equation, there exists an
extension of the base field, obtained by adjoining a square root, containing both solu-
tions. 4

Example 14. Our old friend, the cubical equation x3 ´ 2 “ 0, has the solu-
tions

x1 “
3
?

2, x2 “
3
?

2ζ, x3 “
3
?

2ζ
2,

with ζ “ 1
2 `

1
2
?3i, as always, denoting a third root of unity. These are all

contained in the top field of the tower

Q ď Qp 3
?

2q ď Qp 3
?

2,?3iq.

Once again, each new field has been concocted from the preceding one through the
adjunction of a single square or cube root. 4

Illuminated by these insights, we formally define what it means for a poly-
nomial to be soluble in radicals.

Definition 7. Suppose there exists a tower of fields

F “ E0 ď E1 ď ¨ ¨ ¨ ď Em “ E

with the following property: Each Ek “ Ek´1pαkq for some element αk, a
(positive) power of which belongs to Ek´1. Then F ď E is called a radical
extension.

Definition 8. The equation f pxq “ 0, where f pxq P Frxs, is soluble in
radicals if the solutions are all contained in a radical extension E of F (E will
thus contain the splitting field of f pxq).

Definition 9. Let f pxq be a rational polynomial. Its Galois group is the
group AutpK{Qq, where K is the splitting field of f pxq.

Example 15. In the preceding definition we find associated, to each polyno-
mial, a whole Galois Correspondence of intermediate fields and automorph-
ism groups. For instance, Figure 1 displays the Galois Correspondence for the
polynomial px2 ´ 2qpx2 ´ 3q, and Figure 2 that of x3 ´ 2. 4

Theorem 8. A rational polynomial equation is soluble in radicals if and only if
its Galois group is soluble.
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Proof. We shall not endeavour a complete proof, but content ourselves with
a vague indication of why the result is true. Consider a radical extension
E ď Epαq, where αn P E. Assuming that the bottom field E contains all n’th
roots of unity, denoted by 1, ζ, . . . , ζn´1, we shall shew that the automorphism
group AutpEpαq{Eq is cyclic.

This simplification is of course crude in the extreme, and by no means
suHcient to verify the general result of the theorem. It does, however, bespeak
that radical field extensions, under the Galois Correspondence, give rise to cyclic
factor groups — which would hint at a soluble group.

The minimal polynomial of α over E divides xn ´ αn. This implies σpαq “

ζqα for some q P Z. We may thus define

µ : AutpEpαq{Eq Ñ Zn

by letting
µpσq “ q Ø σpαq “ ζ

q
α.

We now shew µ has the homomorphism property. Suppose τpαq “ ζpα, so
that µpτq “ p. The root of unity ζp P E and will remain fixed by σ, whence

σpτpαqq “ σpζp
αq “ σpζpqσpαq “ ζ

p
ζ

q
α.

Consequently,
µpστq “ p` q “ µpσq ` µpτq,

and µ is an homomorphism.
Since Ker µ “ tιu, it is one-to-one, and so provides an embedding of

AutpEpαq{Eq into Zn. Hence the group is cyclic, as desired.

Theorem 9: Abel’s Impossibility Theorem. There exist algebraical equations
of any degree beyond the quartic which are insoluble in radicals.

Proof. The argument runs as follows:

1. Shew An is a simple group when n ě 5.

2. The ramification is that Sn is insoluble when n ě 5. For it has a compos-
ition series

tιu Ĳ An Ĳ Sn,

with simple composition factors An{tιu – An and Sn{An – Z2. Since An

is not abelian, the group Sn is not soluble.

3. The hard part consists in exhibiting a polynomial f pxq of degree n having
Galois group Sn. Referring to Theorem 8, the equation f pxq “ 0 will then
be insoluble in radicals.
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One must be careful not to misconstrue the statement of the Impossibility
Theorem. It does not state that quintical equations never be soluble. For
instance, the equations x5 “ 0 and x5 “ 1 are both perfectly soluble in radicals.

What it does state, is that the quintic is insoluble in general, which is to say
that there exist quintics whose solutions cannot be expressed in radicals. As a
concrete example, one may prover the inconspicuous

x5 ´ x´ 1 “ 0,

which has Galois group precisely S5. Since there even exist particular equa-
tions whose roots cannot be expressed in radicals, there is, a fortiori, no closed
formula calculating the roots of a general quintic in terms of its co-eHcients.

As a last point, we remark that “most” equations of degree n have Galois
group Sn, and so “most” quintics are insoluble in radicals.

19


