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Dedalus genom sin konst och sitt snille vida beryktad
Bygde det opp; han förvirrar de ledande märken och ögat
I villfarelse för ibland skiljaktiga vägar.
Så på de Frygiska fält, man ser den klara Meandros
Leka. I tveksamt lopp han rinner och rinner tillbaka,
Möter sig ofta sjelf och skådar sin kommande bölja,
Och nu till källan vänd, nu åt obegränsade hafvet,
Rådvill öfvar sin våg. Så fyllas af Dedalus äfven
Tusen vägar med irrande svek: Knappt mäktar han sjelf att
Hitta till tröskeln igen. Så bedräglig han boningen danat.

Ovidius, Metamorphoses

Argument

We propose a new description of Endofunctors of Module Categories, based upon
a combinatorial category comprising finite sets and so-called mazes. Polynomial
and numerical functors both find a natural interpretation in this frame-work.

Since strict polynomial functors, according to the work of Salomonsson, are
encoded by multi-sets, the two strains of functors may be compared and contrasted
through juxtaposing the respective combinatorial structures, leading to the Polyno-
mial Functor Theorem, giving an evective criterion for when a numerical (polynomi-
al) functor is strict polynomial.

2010 Mathematics Subject Classification. Primary: 16D90. Secondary: 13C60,
18A25.

Polynomial and strict polynomial functors abound. Recent years have seen
scholars vying for adequate descriptions of their diverent flavours, with their
main focus on quadratic ones, oft-times being the only manageable case. Let
us, for the moment, be contented with mentioning Baues and Pirashvili’s
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classification [2] of quadratic functors on Groups, and Hartl and Vespa’s ac-
count [8] of quadratic functors from Pointed Categories to Abelian Groups.
Also, it will not be superfluous to note Hartl, Pirashvili, and Vespa’s recently
completed classification [9] of polynomial functors from Free Algebras over
set operads (which includes the cases of abelian groups and groups) to Abelian
Groups.

We shall be concerned with classifying endofunctors on Module Categor-
ies, with a particular eye on polynomial ones. Work in this direction was
presumably initiated by Baues, with his classification [1] of quadratic func-
tors, and then widely expanded upon by Baues, Dreckman, Franjou, and Pir-
ashvili in their now classical tract [3], in which polynomial endofunctors of
Abelian Groups are given an accurate characterisation. To this end, the au-
thors deploy the category of finite sets and surjections, an ingenious feat, but
not without certain draw-backs. Firstly, their scheme fails to bring about a
classification of all abelian group functors, polynomial or not. This is be-
cause, at the core of their argument, lies a structure theorem for functors on
Commutative Monoids. Passing to polynomial functors, it will be recalled, has
the curious evect of eradicating the distinction between monoids and groups.
Secondly, attempts to generalise their argument to arbitrary module categor-
ies will encounter quandaries, as it is not immediately clear what category one
should employ in lieu of Surjections.

We propose to resolve both of these diHculties by introducing the Laby-
rinth Category Laby, consisting of finite sets with mazes as the arrows between
them. A maze from the set ta, b, c, du to the set tw, x, y, zu (say) is something
like the following diagram:
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fl

where k, l, m, n, o, p, q, r, s, t are scalars. The reason for applying the name maze
to such a contraption should not be diHcult to divine.

The Labyrinth Category successfully captures the skeletal structure of the
whole module category and enables the reduction of a functor to a signific-
antly smaller collection of data. Polynomial functors find a natural interpret-
ation in this frame-work, as do numerical functors. (The honourable reader is
referred to the preliminary section for definitions.) Our main theorems along
this line are as follows. The base ring is betokened by B and its category of
right modules by Mod “ ModB. The symbol XMod denotes the subcategory
of finitely generated, free modules. Functors from Laby are always assumed
linear, while functors on the module category may be of quite an arbitrary
nature.
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Theorem 14: Labyrinth of Fun. The functor

Φ : FunpXMod,Modq Ñ LinpLaby,Modq,

where ΦpFq : LabyÑMod maps the set X to the cross-effect of rank X of F, evaluated
on B; is an equivalence of categories.

Theorem 15. The module functor F is polynomial of degree n if and only if ΦpFq
vanishes on sets with more than n elements.

Theorem 16. Assuming a binomial base ring, the module functor F is numerical
of degree n if and only if it suffices to specify the action of ΦpFq on pure mazes; i. e.,
mazes carrying only the label 1.

Roughly speaking, mazes should be thought of as deviations, and the lat-
ter theorem substantiates the known fact that, for numerical functors, co-ef-
ficients from inside the argument may be brought out front, as testified by
Theorem 10 of [14]. The quotient category encoding numerical functors will
be denoted by Labyn, so that: Numerical functors, of degree n, are equivalent to
linear functors from Labyn to Modules.

We interpose here, referring to Theorem 13 below for the precise state-
ment, that the labyrinth description will indeed be equivalent to Baues, Dreck-
mann, Franjou, and Pirashvili’s approach [3] using surjections, contingent on
the hypotheses that: (1) polynomiality have been duly assumed, and (2) the
base ring be Z.

The further question, as to whether strict polynomial functors admit a
similar formatting, found its complete solution in Salomonsson’s doctoral
thesis [11]. Denoting the category of multi-sets of cardinality n by MSetn, the
main result that shall concern us may, slightly paraphrased, be summarised
thus: Homogeneous functors, of degree n, are equivalent to linear functors from
MSetn to Modules. (See Theorem 18.)

According to Theorem 11 below, there is an isomorphism

BLabyn – BbZ ZLabyn,

whose heuristical significance it may not be superfluous to point out. Namely,
the category of numerical functors over an arbitrary binomial ring will be
found “identical in structure” to the category of numerical — or polynomial
— functors over Z, for

BNumn – LinBpBLabyn,Modq – LinBpBbZ ZLabyn,Modq

– BbZ LinZpZLabyn,Modq – BbZ ZNumn.

The corresponding result for homogeneous functors holds more trivially, for
here it is an inherence of the construction that

BMSetn – BbZ ZMSetn.
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One obvious mode of relating the two strains of functors — numerical and
strict polynomial — will be to juxtapose their combinatorics. To this end, we
establish the existence of a functor

An : Labyn ÑMSetn,

called the Ariadne functor, by the aid of which two principal results are pro-
cured:

Theorem 22. Pre-composition with the Ariadne functor begets the forgetful func-
tor from Homogeneous to Numerical Functors.

Theorem 23: The Polynomial Functor Theorem. Let F be a numerical func-
tor of degree n, corresponding to the labyrinth module H : Labyn Ñ Mod. Then F
may be given a homogeneous structure of degree n if and only if the following criteria
are met:

1. F is quasi-homogeneous, that is, it satisfies the equation

Fprαq “ rnFpαq,

for any r P QbZ B and homomorphism α (see Definition 7).

2. H admits a factorisation through Laby‘n (see Definition 27).

An equipollent variant is Theorem 23 of [14], stated using the language of
modules.

The construction of Laby‘n should be of considerable interest, as it sup-
plies the key to appreciating the exact obstructions for polynomial functors
to be strict polynomial.

This research was carried out while a graduate student at Stockholm Uni-
versity under the eminent supervision of Prof. Torsten Ekedahl.
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Section the Noughth.

Polynomial Functors

We begin by reviewing the basic theory of Polynomial and Strict Polynomial
Functors.

For the entirety of this article, B shall denote a fixed base ring of scalars.
All modules, homomorphisms, and tensor products shall be taken over this B,
unless other-wise stated. We let Mod “ BMod betoken the category of (unital)
modules over this ring, and we denote by XMod be the category1 of those
modules that are finitely generated and free.

When A and B are linear categories (enriched over Mod), the symbols
FunpA, Bq and LinpA, Bq denote the corresponding categories of functors and
linear functors, respectively.

We shall also use the standard notation rns “ t1, . . . , nu.

§1. Polynomial Functors. A module functor is a functor XMod Ñ Mod —
and, so as to avoid any misunderstandings, we duly emphasise that linearity
will not be assumed. We shall be wholly content to consider such restricted
functors exclusively, for a functor defined on the subcategory XMod always
has a canonical well-behaved extension to the whole module category Mod.
The details are spelled out in [14].

1The letter X herein is intended to suggest “eXtra nice modules”.
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Let us recall the classical notions of polynomiality. The subsequent defin-
itions made their first appearance in print, albeit somewhat implicitly, in Ei-
lenberg & Mac Lane’s monumental article [4], sections 8 and 9:

Definition 1. Let ϕ : M Ñ N be a map of modules. The n’th deviation of ϕ

is the map

ϕpx1 ˛ ¨ ¨ ¨ ˛ xn`1q “
ÿ

IĎrn`1s

p´1qn`1´|I|
ϕ

˜

ÿ

iPI

xi

¸

of n` 1 variables.

Definition 2. The map ϕ : M Ñ N is polynomial of degree n if its n’th
deviation vanishes:

ϕpx1 ˛ ¨ ¨ ¨ ˛ xn`1q “ 0

for any x1, . . . , xn`1 P M .

Definition 3. The functor F : XMod Ñ Mod is polynomial of degree (at
most) n if every arrow map

F : HompM , Nq Ñ HompFpMq, FpNqq

is.

Classically, module functors have been analysed in terms of their cross-
effects.

Definition 4. Let F be a module functor and let k be a natural number.
The cross-effect of rank k is the multi-functor

crk FpM1, . . . , Mkq “ Im F pπ1 ˛ ¨ ¨ ¨ ˛ πkq ,

where πi :
À

Mi Ñ
À

Mi denote the canonical projections.

Theorem 1: The Cross-Effect Decomposition ([4], Theorem 9.1).

FpM1 ‘ ¨ ¨ ¨ ‘Mkq “
à

IĎrks
crI F ppMiqiPIq .

A functor is polynomial of degree n if and only if the cross-evects of rank
exceeding n vanish.

§2. Numerical Functors. Next, let us suppose the base ring B to be binomial2
in the sense of Hall ([7]); that is, commutative, unital, and in the possession
of binomial co-eHcients. Examples include the ring of integers, as well as all
Q-algebras.

2This is a numerical ring in the terminology [5] of Ekedahl. For the equivalence of the two
notions, a proof is overed in [15].
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Definition 5 ([13], Definition 5). The map ϕ : M Ñ N is numerical of
degree (at most) n if it satisfies the following two equations:

ϕpx1 ˛ ¨ ¨ ¨ ˛ xn`1q “ 0, x1, . . . , xn`1 P M ;

ϕprxq “
n
ÿ

k“0

ˆ

r
k

˙

ϕ

ˆ

♦
k

x
˙

, r P B, x P M .

Definition 6 ([14], Definition 10). The functor F : XModÑMod is numer-
ical of degree (at most) n if every arrow map

F : HompM , Nq Ñ HompFpMq, FpNqq

is.

We denote the abelian category of numerical functors of degree n by Numn.

Definition 7 ([14], Definition 11). The numerical functor F is quasi-homo-
geneous of degree n if the extension functor3

F : QbZ XModÑ QbZ Mod

satisfies the equation
Fprαq “ rnFpαq,

for any r P QbZ B and homomorphism α.

The category of quasi-homogeneous functors of degree n will be denoted
by the symbol QHomn. Being quasi-homogeneous is an obvious necessary
condition for a functor to admit a homogeneous structure (see below). The
Polynomial Functor Theorem below will provide a suHcient condition.

§3. The Deviations. Since the Labyrinth Category formalises deviations, it
will be deemed pivotal, for a proper understanding of the theory to follow,
to acquire some cognisance of the machinery of the latter. To this end, we
establish the Deviation Formula, which seems to have made its first appearance
in [12].

For (multi-)sets A and B, we shall write K Ď AˆB to indicate that K Ď AˆB
and that both canonical projections are surjective.

Lemma 1. Let m and n be natural numbers, and let L Ď rms ˆ rns. Then
ÿ

LĎKĎrmsˆrns

p´1q|K| “ 0,

unless L is of the form P ˆQ, for some P Ď rms, Q Ď rns.
3It will be recalled that binomial rings are torsion-free.
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Proof. If L is not of the given form, there exists an pa, bq which is not in L, but
such that some pa, jq and some pi, bq are in L. Then, for any K Ď rmsˆ rns con-
taining pa, bq, the set K will satisfy the given inclusions if and only if Kztpa, bqu
does. Because the cardinalities of these sets diver by 1, the corresponding
terms in the sum will have opposite signs, and hence cancel.

Lemma 2. Let m, n, p, and q be natural numbers. Then
ÿ

rpsˆrqsĎKĎrmsˆrns

p´1q|K| “ p´1qm`n`p`q`pq.

Proof. Let Y pm, n, kq denote the number of sets K of cardinality k satisfying

rps ˆ rqs Ď K Ď rms ˆ rns.

The formula is evidently true for m “ p and n “ q, for then Y pp, q, pqq “ 1,
and all other Y pp, q, kq “ 0.

We now proceed by recursion. Consider the pair pm, nq P rmsˆrns. The sets
K containing pm, nq will fall into two classes: those where pm, nq is mandatory
in order to satisfy K Ď rms ˆ rns, and those where it is not. For a K in the
latter class, removing pm, nq will yield another set counted in the sum above,
but of cardinality decreased by 1. Since these two types of sets exactly pair ov,
with opposing signs, their contribution to the given sum is 0.

Consider then those K of which pm, nq is a mandatory element. They fall
into three categories:

• Some pm, jq P K, for 1 ď j ď n ´ 1, but no pi, nq P K, for 1 ď i ď m ´ 1.
The number of such sets is Y pm, n´ 1, k´ 1q.

• No pm, jq P K, for 1 ď j ď n ´ 1, but some pi, nq P K, for 1 ď i ď m ´ 1.
The number of such sets is Y pm´ 1, n, k´ 1q.

• No pm, jq P K, for 1 ď j ď n´ 1, and no pi, nq P K, for 1 ď i ď m´ 1. The
number of such sets is Y pm´ 1, n´ 1, k´ 1q.

Induction yields
ÿ

k

p´1qkY pm, n, kq

“
ÿ

k

p´1qk
`

Y pm, n´ 1, k´ 1q ` Y pm´ 1, n, k´ 1q ` Y pm´ 1, n´ 1, k´ 1q
˘

“ ´
`

p´1qm`n´1`p`q`pq ` p´1qm´1`n`p`q`pq ` p´1qm´1`n´1`p`q`pq˘

“ p´1qm`n`p`q`pq,

as desired.
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Theorem 2: The Deviation Formula. For a module functor F and homo-
morphisms α1, . . . , αm, β1, . . . , βn, the following equation holds:

Fpα1 ˛ ¨ ¨ ¨ ˛ αmq ˝ Fpβ1 ˛ ¨ ¨ ¨ ˛ βnq “
ÿ

KĎrmsˆrns

F

˜

♦
pi,jqPK

αiβj

¸

.

Proof. We have

ÿ

KĎrmsˆrns

F

˜

♦
pi,jqPK

αiβj

¸

“
ÿ

KĎrmsˆrns

ÿ

LĎK

p´1q|K|´|L|F

¨

˝

ÿ

pi,jqPL

αiβj

˛

‚

“
ÿ

LĎrmsˆrns

ÿ

LĎKĎrmsˆrns

p´1q|K|´|L|F

¨

˝

ÿ

pi,jqPL

αiβj

˛

‚

“
ÿ

LĎrmsˆrns

p´1q|L|F

¨

˝

ÿ

pi,jqPL

αiβj

˛

‚

ÿ

LĎKĎrmsˆrns

p´1q|K|

“
ÿ

PˆQĎrmsˆrns

p´1q|P||Q|F

¨

˝

ÿ

pi,jqPPˆQ

αiβj

˛

‚p´1qm`n`|P|`|Q|`|P||Q|

“
ÿ

PĎrms

p´1qm´|P|F

˜

ÿ

iPP

αi

¸

ÿ

QĎrns

p´1qn´|Q|F

¨

˝

ÿ

jPQ

βj

˛

‚

“ Fpα1 ˛ ¨ ¨ ¨ ˛ αmqFpβ1 ˛ ¨ ¨ ¨ ˛ βnq.

In the fifth step the lemmata were used to evaluate the inner sum.

§4. Strict Polynomial Functors. Let us now recall the strict polynomial maps
(“lois polynomes”) from the work of Roby and the strict polynomial functors
introduced by Friedlander and Suslin. The base ring B may here be taken
commutative and unital only.

Definition 8 ([10], section 1.2). A strict polynomial map is a natural trans-
formation

ϕ : M b´ Ñ N b´

betwixt functors CAlg Ñ Set, where CAlg “ BCAlg designates the category of
commutative, unital algebras over the ring B, and Set denotes the category of
sets.

Definition 9 ([6], Definition 2.1). The functor F : XMod Ñ Mod is strict
polynomial of degree n if the arrow maps

F : HompM , Nq Ñ HompFpMq, FpNqq

have been given a (multiplicative) strict polynomial structure. The functor is
called homogeneous if all its arrow maps are.
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Strict polynomial maps and functors decompose as the direct sum of their
homogeneous components. We shall denote by Homn the abelian category of
homogeneous functors of degree n.

For strict polynomial, or even strict analytic (see [14], §0), functors, the
cross-evects may be decomposed further. Let F be a homogeneous functor.
The arrow map

F : HompM , Nq Ñ HompFpMq, FpNqq

will factor through the universal homogeneous map

HompM , Nq Ñ Γ
n HompM , Nq

(see [10], where the full details have been expounded upon), producing a linear
map

F : Γ
n HompM , Nq Ñ HompFpMq, FpNqq.

This gives meaning to the symbol FpαrAsq, when αa, for a P #A, are homo-
morphisms and A a multi-set of cardinality n. (Multi-sets will be discussed
below, in Section 1.)

Definition 10. Let F be a strict polynomial functor, and let A be a multi-set
whose support is rks. The multi-cross-effect of rank A is the multi-functor

crA FpM1, . . . , Mkq “ Im FpπrAsq,

where πi :
À

Mi Ñ
À

Mi denote the canonical projections.

In particular, the meaning of the symbol crA F , when A is a proper set, is
unequivocal.

Theorem 3: The Multi-Cross-Effect Decomposition. When F is a homoge-
neous functor of degree n, then

crrks FpM1, . . . , Mkq “
à

#A“rks
|A|“n

crA FpM1, . . . , Mkq,

and, consequently,

FpM1 ‘ ¨ ¨ ¨ ‘Mkq “
à

#AĎrks
|A|“n

crA F
`

pMaqaP#A
˘

.

Proof. See, for example, [12], Theorem 10.
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Section the First.

Multi-Sets

§1. Multi-Sets.

Definition 11. A multi-set is a pair

M “ p#M , degMq,

where #M is a set and
degM : #M Ñ Z`

is a function, called the degree or multiplicity. The underlying set #M is called
the support of M .

Obviously, the support is uniquely determined by the degree function,
whence it suHces to specify the latter.

The degree degM a counts the “number of times a P #M occurs in M”. The
degree of the whole multi-set M we define to be

deg M “
ź

xP#M

pdeg xq!.

Definition 12. The cardinality of M is

|M| “
ÿ

xPM

1 “
ÿ

xP#M

deg x.

The cardinality counts the number of elements with multiplicity. We ta-
citly assume all multi-sets under discussion to be finite, as these are the only
ones we will ever need.

Definition 13. The following operations are defined on multi-sets.

1. The union AY B of A and B is

degAYB “ maxpdegA, degBq.

2. The disjoint union A\ B of A and B is

degA\B “ degA`degB .

3. The intersection AX B of A and B is

degAXB “ minpdegA, degBq.

4. The relative complement AzB of B in A is

degAzB “ maxpdegA´degB, 0q.

11
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5. The direct product Aˆ B of A and B is

degAˆB “ degA ¨degB : #Aˆ#B Ñ Z`.

Definition 14. A is a sub-multi-set4 of B, written A Ď B, if

degA ď degB

(element-wise inequality).

§2. Multations.

Definition 15. Let A and B be multi-sets of equal cardinality. A multation
A Ñ B is a sub-multi-set of AˆB whose multi-set of first co-ordinates equals A
and whose multi-set of second co-ordinates equals B.

Informally, a multation pairs ov the elements of one multi-set with those
of another. The degree deg

µ
pa, bq counts the number of times a P A is paired

ov with b P B. A multation A Ñ B may be written as a two-row matrix,
with the elements of A on top of those of B, the way permutations are usually
written (indeed, multations should be thought of as generalised such).

Given a multation
„

a1 a1 . . . a2 a2 . . .
b1 b1 . . . b2 b2 . . .



,

with mj appearances of the column
” aj

bj

ı

, we shall adopt the perspective of
viewing it as a formal product

„

a1
b1

rm1s „a2
b2

rm2s

. . .

of divided powers5.

Example 1. There exist two multations from the multi-set ta, a, bu to itself,
namely:

„

a a b
a a b



“

„

a
a

r2s „b
b

 „

a a b
a b a



“

„

a
a

 „

a
b

 „

b
a



.

4
4Some scholars would no doubt say multi-subset.
5The divided power zrns should be thought of as zn

n! .
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§3. The Multi-Set Category. Let µ : B Ñ C and ν : A Ñ B be two multations,
where |A| “ |B| “ |C| “ n. Their composition or product µ ˝ ν is found by
identifying the co-eHcient of xµyν in the equation

¨

˚

˚

˝

ÿ

bP#B
cP#C

xcb

„

b
c



˛

‹

‹

‚

rns

˝

¨

˚

˚

˝

ÿ

aP#A
bP#B

yba

„

a
b



˛

‹

‹

‚

rns

“

¨

˚

˚

˚

˚

˚

˝

ÿ

aP#A
bP#B
cP#C

xcbyba

„

a
c



˛

‹

‹

‹

‹

‹

‚

rns

,

thought of as an equality of divided powers in the formal variables x and y.
The composition may also be viewed thus. The formal multiplication of

columns, given by
„

b1
c



˝

„

a
b



“

$

’

&

’

%

«

a
c

ff

if b “ b1,

0 if b ‰ b1,

makes the free module of columns into an algebra A. Multation composition
is then simply the natural multiplication

urns ˝ vrns “ pu ˝ vqrns

on the module ΓnpAq of divided n’th powers.

Example 2. To calculate the composition
„

c d d
e e f



˝

„

a a b
c d d



,

we deploy the equation
ˆ

xec

„

c
e



` xed

„

d
e



` xfd

„

d
f

˙r3s

˝

ˆ

yca

„

a
c



` yda

„

a
d



` ydb

„

b
d

˙r3s

“

ˆ

xecyca

„

a
e



` xedyda

„

a
e



` xedydb

„

b
e



` xfdyda

„

a
f



` xfdydb

„

b
f

˙r3s

.

Identification of the co-eHcient of xecxedxfdycaydaydb yields
„

c d d
e e f



˝

„

a a b
c d d



“ 2
„

a a b
e e f



`

„

a a b
e f e



.

Similarly, by picking the co-eHcients of xecx2
edycay2

da, we shall find
„

c d d
e e e



˝

„

a a a
c d d



“ 3
„

a a a
e e e



.

4
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There is a simple, combinatorial rule for calculating the composition.
Namely, the composition of two ordinary products (not divided powers) of
columns is found by “summing over all possibilities of composing them”:

ˆ„

b1
c1



¨ ¨ ¨

„

bn
cn

˙

˝

ˆ„

a1
b1



¨ ¨ ¨

„

an
bn

˙

“
ÿ

σ

ˆ„

a1
cσp1q



¨ ¨ ¨

„

an
cσpnq

˙

,

where the sum is to be taken over all permutations σ : rns Ñ rns such that
bj “ bσpjq for all j. We leave it to the reader to check the accuracy of this rule.

Example 3. Computing according to this device, we find
„

c d d
e e f



˝

„

a a b
c d d



“

„

c
e

 „

d
e

 „

d
f



˝

„

a
c

 „

a
d

 „

b
d



“

„

a
e

 „

a
e

 „

b
f



`

„

a
e

 „

a
f

 „

b
e



“ 2
„

a a b
e e f



`

„

a a b
e f e



,

and similarly
„

c d d
e e e



˝

„

a a a
c d d



“
1
2

„

c
e

 „

d
e

 „

d
e



˝
1
2

„

a
c

 „

a
d

 „

a
d



“
1
4
¨ 2

„

a
e

 „

a
e

 „

a
e



“ 3
„

a a a
e e e



.

4

The identity multation ιA of a multi-set A is the multation in which every
element is paired ov with itself. It is clear that composition is associative and
that the identity multations act as identities.

Definition 16. The n’th multi-set category MSetn is a linear category. Its
objects are formal direct sums of multi-sets of cardinality exactly n. For two
multi-sets A and B, the arrow set MSetnpA, Bq is the free module generated by
the multations A Ñ B.

§4. Multi-Sets on Multi-Sets. Unfortunately, later considerations shall shew
the necessity of pushing abstraction up to the next level.

Definition 17. Let M be a multi-set. A multi-set supported in M is a multi-
set supported in the set

M# “
 

px, kq P #M ˆ Z`
ˇ

ˇ 1 ď k ď deg x
(

.

When speaking of multi-sets supported in a multi-set M , we will let “de-
gree over M” stand for “degree over M#”.

Example 4. Let M be the set ta, b, cu and N the multi-set tx, x, yu. There are
three multi-sets with support M and cardinality 4:

ta, a, b, cu, ta, b, b, cu, ta, b, c, cu.

14
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In like wise, since
N# “ tpx, 1q, px, 2q, py, 1qu,

there are three multi-sets with support N and cardinality 4:

tpx, 1q, px, 1q, px, 2q, py, 1qu, tpx, 1q, px, 2q, px, 2q, py, 1qu, tpx, 1q, px, 2q, py, 1q, py, 1qu.

These three multi-sets all have degree 2 over N .
We shall usually, when deemed suitable, identify these multi-sets with the

collection
tx, x, x, yu, tx, x, x, yu, tx, x, y, yu.

4

Section the Second.

Mazes

§1. Mazes. Let X and Y be finite sets. A passage from x P X to y P Y is a
(formal) arrow p from x to y, labelled with an element of B, denoted by p.
This we write as

p : x Ñ y or x
p // y .

Definition 18. A maze from X to Y is a multi-set of passages from X to
Y . It is required that there be at least one passage leading from every element
of X and at least one passage leading to every element of Y . (We, so to speak,
wish to prevent dead ends from forming.)

Because a maze is a multi-set, there can (and, in general, will) be multiple
passages between any two given elements.

It is perfectly legal to consider the empty maze Ø Ñ Ø. It is the only maze
into or out of Ø, and the only maze possessing no passages.

Definition 19. We say P : X Ñ Y is a submaze of Q : X Ñ Y if P Ď Q as
multi-sets. This will be denoted by the symbol P ď Q.

§2. The Labyrinth Category. Passages p : y Ñ z and q : x Ñ y are said to be
composable, seeing that one ends where the other begins.

Definition 20. If P : Y Ñ Z and Q : X Ñ Y are mazes, their cartesian
product P b Q is the multi-set of all pairs of composable passages:

P b Q “

" ˆ„

z y
poo



,
”

y x
qoo

ı

˙
ˇ

ˇ

ˇ

ˇ

„

z y
poo



P P ^

”

y x
qoo

ı

P Q
*

.

Recall that we, for a sub-multi-set U Ď P b Q, write U Ď P b Q to indicate
that the projections on P and Q are both surjective. Such a set U can be
naturally interpreted as a maze itself, viz.:

"

”

z x
pqoo

ı

ˇ

ˇ

ˇ

ˇ

ˆ„

z y
poo



,
”

y x
qoo

ı

˙

P U
*

15



Xantcha The Combinatorics of Polynomial Functors

(observe the order in which p and q occur). The surjectivity condition on the
projections will prevent dead ends from forming. Henceforth, this identifica-
tion will be made without comment.

Example 5. Consider the two mazes

P “

»

–

x
z

aee

b
{{y

fi

fl , Q “

»

–

xcyyz
yd
cc

fi

fl .

Their cartesian product is

P b Q “

"

´”

x zaoo
ı

,
”

z xcoo
ı¯

,
ˆ„

y zboo


,
”

z xcoo
ı

˙

,
ˆ

”

x zaoo
ı

,
„

z ydoo
˙

,
ˆ„

y zboo


,
„

z ydoo
˙*

,

which we identify with the maze
»

—

—

—

–

x xacoo

bc��
y y

ad
__

bd
oo

fi

ffi

ffi

ffi

fl

.

4

We now define the composition of two mazes. As for multi-sets, this com-
position will not in general be a maze, but rather a sum of mazes, and living
in the free module generated by those.

Definition 21. The composition or product of the mazes P and Q is the
formal sum

P ˝Q “
ÿ

UĎPbQ

U .

Example 6. Let P and Q be as above. Their composition is

PQ “

»

—

—

—

–

x xacoo

bc��
y y

ad
__

bd
oo

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

x xacoo

y y
bd
oo

fi

ffi

ffi

ffi

fl

`

»

—

—

–

x x

bc��
y y

ad
__

fi

ffi

ffi

fl

`

»

—

—

—

–

x x

bc��
y y

ad
__

bd
oo

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

x xacoo

y y

ad
__

bd
oo

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

x xacoo

bc��
y y

bd
oo

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

x xacoo

bc��
y y

ad
__

fi

ffi

ffi

ffi

fl

.

4
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That composition is associative follows from the observation that pPQqR
and PpQRq both equal

ÿ

W ĎPbQbR

W

(surjective projections on all three factors). There exist identity mazes

IX “
ď

xPX

!

x 1 // x
)

.

Definition 22. The Labyrinth Category Laby is a linear category. Its objects
are formal direct sums of finite sets. Given two sets X and Y , the arrow set
LabypX, Y q is the module generated by the mazes X Ñ Y , with the following
relations imposed, for any multi-set P of passages:

I.
«

P Y
!

˚
0 // ˚

)

ff

“ 0.

II.
«

P Y
"

˚
a`b // ˚

*

ff

“

«

P Y
!

˚
a // ˚

)

ff

`

«

P Y
"

˚
b // ˚

*

ff

`

«

P Y

#

˚
a //
b
// ˚

+ff

.

The second axiom may be generalised by means of mathematical induction
to yield the following elementary formulæ.

Theorem 4. In the Labyrinth Category, the following two equations hold:
«

P Y

#

˚

řn
i“1 ai // ˚

+ff

“
ÿ

ØĂIĎrns

«

P Y
ď

iPI

"

˚
ai // ˚

*

ff

«

P Y
n
ď

i“1

"

˚
ai // ˚

*

ff

“
ÿ

IĎrns

p´1qn´|I|
«

P Y

#

˚

ř

iPI ai // ˚

+ff

.

§3. The Quotient Labyrinth Categories. The theory developed unto this point
makes sense for an arbitrary base ring. In order to construct quotient categor-
ies of Laby, we need the assumption that B be binomial.

When A is a maze, let IA denote the maze

IA “
ď

rp : xÑysPA

!

x 1 // y
)

,

in which all passages of A have been re-assigned the label 1.

17
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Definition 23. The category Labyn is the quotient category obtained from
Laby when imposing the following relations, for any maze P:

III.
P “ 0, whenever |P| ą n.

IV.
P “

ÿ

#A“P

ź

pPP

ˆ

p
degA p

˙

IA.

(The sum is in fact finite, owing to the previous axiom.)

Example 7. When n “ 3, an instance of the fourth axiom is the following:
»

—

–

˚

a
��

b

FF˚

fi

ffi

fl

“

ˆ

a
1

˙ˆ

b
1

˙

»

—

–

˚

1
��

1

FF˚

fi

ffi

fl

`

ˆ

a
2

˙ˆ

b
1

˙

»

—

–

˚

1
��

1
**

1

FF˚

fi

ffi

fl

`

ˆ

a
1

˙ˆ

b
2

˙

»

—

–

˚

1
��

1 44

1

FF˚

fi

ffi

fl

.

4

The original Labyrinth Category Laby encodes arbitrary module functors.
Axioms III and IV have been appended in order to encode polynomial and
numerical functors, respectively. It may be shewn that, over the integers, Ax-
iom IV is actually implied by Axiom III, comparable to how numerical and
polynomial functors are equivalent in this setting.

We shall have reason to impose upon the Labyrinth Category yet another
axiom. This will be for encoding quasi-homogeneous functors (of degree n).
It will be proved presently that the category Labyn is free over B, and so, in
particular, torsion-free, leading to an inclusion of categories

Labyn Ď QbZ Labyn.

When P is a maze and a is a scalar (in a binomial base ring), denote by
a d P the maze obtained from P by multiplying the labels of all passages by a:

a d P “
" „

y x
apoo


ˇ

ˇ

ˇ

ˇ

„

y x
poo



P P
*

.

Definition 24. The category Labyn is the quotient category obtained from
Labyn upon the imposition of the following axiom, for any maze P:

V.
anP “ a d P, a P QbZ B.

18
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Example 8. The fifth axiom considers the ideal generated in Q bZ Labyn,
rather than Labyn. The slightly sharper requirement will first make a diver-
ence in degree 4. Dividing out by the ideal generated in ZLaby4 by elements of
the form a4P ´ a d P makes it possible to prove

2

»

—

—

–

˚

˚

1 00
1
::

1

II

1 $$
˚

fi

ffi

ffi

fl

` 2

»

—

—

–

˚

˚

1 ::

1
::

1
$$1 $$
˚

fi

ffi

ffi

fl

` 2

»

—

—

–

˚

˚

1 ::

1
$$1 $$
˚

fi

ffi

ffi

fl

“ 12

»

—

—

–

˚

˚

1 ::

1
$$
˚

fi

ffi

ffi

fl

,

whereas we shall be needing a stronger statement. The full force of Axiom V
authorises a division by 2, thus establishing

»

—

—

–

˚

˚

1 00
1
::

1

II

1 $$
˚

fi

ffi

ffi

fl

`

»

—

—

–

˚

˚

1 ::

1
::

1
$$1 $$
˚

fi

ffi

ffi

fl

`

»

—

—

–

˚

˚

1 ::

1
$$1 $$
˚

fi

ffi

ffi

fl

“ 6

»

—

—

–

˚

˚

1 ::

1
$$
˚

fi

ffi

ffi

fl

.

4

Section the Third.

The Ariadne and Theseus Functors

We propose to investigate how the Multi-Set and Labyrinth Categories are
related. A functor in one direction is readily found; viz. the Ariadne functor

An : LabyÑMSetn,

so called because it leads the way out of the labyrinth. In the case of a binomial
base ring, it will factor:

An : LabyÑ Labyn Ñ Labyn
ÑMSetn.

A minor modification of the category Labyn will enable us to define a
functor in the reverse direction. This is the Theseus functor Tn, going into the
labyrinth. These two functors are inverse to each other. The modifications
necessary to undertake on Labyn in order to define Tn, indicate the precise
obstructions that may prevent a numerical (polynomial) functor from being
strict polynomial. Confer the Polynomial Functor Theorem, Theorem 23,
below.

§1. The Ariadne Functor. For the duration of this section, let n be a fixed
natural number.

Let P be a maze. Consider the following sum of multations:

AnpPq “
ÿ

#A“P
|A|“n

¨

˝

1
degP A

ź

rp : xÑysPA

p
„

x
y



˛

‚“
ÿ

#A“P
|A|“n

¨

˝

ź

rp : xÑysPP

pdegA p
„

x
y

rdegA ps
˛

‚.
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This will provide a functor from Laby to MSetn, as we now set out to prove.
It is clear that AnpPq “ 0 if a single passage of P be labelled 0. Now to shew
that

An

˜

P Y
"

u a`b // v
*

¸

“ (1)

An

˜

P Y
!

u a // v
)

¸

` An

˜

P Y
"

u b // v
*

¸

` An

˜

P Y

#

u
a //
b
// v

+¸

.

Denote, when A is a multi-set of passages with support P,

µA “
1

degP A

ź

rp : xÑysPA

p
„

x
y



.

Since

An

˜

P Y
"

u a`b// v
*

¸

“

n
ÿ

m“1

ÿ

#A“P
|A|“n´m

˜

µA ¨ pa` bqm
„

u
v

rms
¸

An

˜

P Y
!

u a // v
)

¸

“

n
ÿ

m“1

ÿ

#A“P
|A|“n´m

˜

µA ¨ am
„

u
v

rms
¸

An

˜

P Y
"

u b // v
*

¸

“

n
ÿ

m“1

ÿ

#A“P
|A|“n´m

˜

µA ¨ bm
„

u
v

rms
¸

An

˜

P Y

#

u
a //
b
// v

+¸

“

n
ÿ

m“1

ÿ

#A“P
|A|“n´m

ÿ

i`j“m
i,jě1

˜

µA ¨ aibj
„

u
v

ris „u
v

rjs
¸

,

the relation (1) follows from the equation

px` yqrms “ xrms ` yrms `
ÿ

i`j“m
i,jě1

xrisyrjs,

valid in every divided power algebra.
Hence An gives a well-defined map on the mazes of the Labyrinth Category.

We now prove that it is, in fact, a functor.

Theorem 5. The formulæ

AnpXq “
à

#A“X
|A|“n

A
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AnpPq “
ÿ

#A“P
|A|“n

¨

˝

ź

rp : xÑysPP

pdegA p
„

x
y

rdegA ps
˛

‚

provide a linear functor
An : LabyÑMSetn.

Proof. Let P : Y Ñ Z and Q : X Ñ Y be two mazes. A straight-forward calcul-
ation gives at hand:

AnpPq ˝ AnpQq

“
ÿ

#A“P
|A|“n

¨

˝

ź

rp : yÑzsPP

pdegA p
„

y
z

rdegA ps
˛

‚˝
ÿ

#B“Q
|B|“n

¨

˝

ź

rq : xÑysPQ

qdegB q
„

x
y

rdegB qs
˛

‚

“
ÿ

#CĎPbQ
|C|“n

¨

˝

ź

rr : xÑzsP#C

rdegC r
„

x
z

rdegC rs
˛

‚

“
ÿ

RĎPbQ

ÿ

#C“R
|C|“n

¨

˝

ź

rr : xÑzsPR

rdegC r
„

x
z

rdegC rs
˛

‚“ An

¨

˝

ÿ

RĎPbQ

R

˛

‚“ AnpPQq.

The only possibly dubious step here is the third, which follows from the equa-
tion

¨

˝

ÿ

rp : yÑzsPP

p
„

y
z



˛

‚

rns

˝

¨

˝

ÿ

rq : xÑysPQ

q
„

x
y



˛

‚

rns

“

¨

˚

˚

˝

ÿ

rp : yÑzsPP
rq : xÑysPQ

pq
„

x
z



˛

‹

‹

‚

rns

,

after noting that restricting attention to monomials pAqB with #A “ P and
#B “ Q in the left-hand side corresponds to considering monomials ppqqC
satisfying the three relations

#C Ď P b Q, C1 “ A, C2 “ B

(canonical projections) in the right-hand side.

Definition 25. The functor An is called the n’th Ariadne functor.

Lemma 3. When x is an element of a divided power algebra over a binomial ring
B, then

amxrms “
8
ÿ

k“1

ˆ

a
k

˙

ÿ

g1`¨¨¨`gk“m
giPZ`

xrg1s ¨ ¨ ¨ xrgks, a P B, m P Z`.
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Proof. The lemma will be an easy consequence of the formula

am “
8
ÿ

k“1

ˆ

a
k

˙

ÿ

g1`¨¨¨`gk“m

ˆ

m
g1, . . . , gk

˙

,

established by a simple combinatorial argument. When a P N, both sides
count the number of ways to colour m objects in one of a available colours.
Since both sides are polynomials, this extends to negative integers as well. For
the case of an arbitrary binomial ring, invoke the Binomial Transfer Principle
of [15].

Theorem 6. The Ariadne functor factors through the quotient category Labyn,
producing a functor

An : Labyn ÑMSetn.

Proof. It is clear that AnpPq “ 0 when |P| ą n. In order to prove that An
respects the relation

P “
ÿ

#A“P

ź

pPP

ˆ

p
degA p

˙

IA,

it will be suHcient to establish that

An

´

QY

!

u a // v
)¯

“

8
ÿ

k“1

ˆ

a
k

˙

An

˜

QY
ď

k

!

u 1 // v
)

¸

for any maze Q; one then performs induction on the passages of P. This
formula follows from a suitable application of the lemma, by which

An

´

QY

!

u a // v
)¯

“

8
ÿ

m“1

ÿ

#B“Q
|B|“n´m

¨

˝

ź

rq : xÑysPQ

qdegB q
„

x
y

rdegB qs
˛

‚am
„

u
v



is brought to co-incide with

An

˜

QY
ď

k

!

u 1 // v
)

¸

“

8
ÿ

m“1

ÿ

#B“Q
|B|“n´m

ÿ

g1`¨¨¨`gk“m
giPZ`

¨

˝

ź

rq : xÑysPQ

qdegB q
„

x
y

rdegB qs
˛

‚

„

u
v

rg1s

¨ ¨ ¨

„

u
v

rgks

.

Theorem 7. The Ariadne functor factors through the quotient category Labyn,
producing a functor

An : Labyn
ÑMSetn.
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Proof.

Anpa d Pq “
ÿ

#A“P
|A|“n

¨

˝

ź

rp : xÑysPP

papqdegA p
„

x
y

rdegA ps
˛

‚“ anAnpPq.

The process of factorisation has now terminated, for passing to the cat-
egory Labyn has the evect of making the Ariadne functor faithful, which is
easily inferred from Theorem 10 below.

§2. Pure Mazes. The Ariadne Functor sheds light on the internal structure of
the Labyrinth Categories.

Definition 26. A maze of which all passages carry the label 1, is called a
pure maze.

Theorem 8. The pure mazes are linearly independent in the category Laby.

Proof. Suppose we have a relation
ÿ

j

ajPj “ 0,

where the Pj are distinct pure mazes in LabypX, Y q, for some aj P B. Suppose
all mazes have cardinality at least n. Applying the n’th Ariadne functor will
kill all mazes of cardinality greater than n, and the end result will be

ÿ

|Pj |“n

ajAnpPjq “ 0.

Since the Pj are distinct pure mazes, the AnpPjq will all be distinct multations,
which are linearly independent in MSetn. Hence all those aj “ 0. The claim
now follows by induction.

Theorem 9. The pure mazes constitute a basis for the category Labyn.

Proof. Linear independence goes through exactly as before. From the defining
equations for Labyn, it follows that any maze will reduce to pure ones.

Theorem 10. The pure mazes with exactly n passages are linearly independent in
the category Labyn and generate the category over QbZ B.

Proof. Linear independence goes through as before. The defining equation for
Labyn can be written

anP “
ˆ

a
P

˙

P `
ÿ

#A“P
|P|ă|A|ďn

ˆ

a
A

˙

A.

Since an ‰
`a

P
˘

if |P| ă n, such a P may be expressed in terms of mazes with
more passages, provided division by integers be permissible.
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Theorem 11. The following categories are isomorphic:

BLabyn – BbZ ZLabyn BLaby
n
– BbZ ZLaby

n

Proof. The first equation is a quick corollary of Theorem 9. Let us prove the
second. By Theorem 10, Labyn is torsion-free. From the definition of Labyn,

QbZ BLaby
n
– QbZ BbZ ZLaby

n.

The category BLaby
n (canonically) embeds in the former and B bZ ZLaby

n in
the latter.

Because the Ariadne functor embeds ZLaby
n in ZMSetn, which is free, it

follows that ZLaby
n is free as well. By the isomorphism above, BLaby

n will
then be free for arbitrary B, though it seems to possess no preferred basis.

§3. The Theseus Functor. It is the purpose of the present section to adjoin
objects to the category Q bZ Labyn to the evect that certain sets split into
direct sums. This will enable us to define an inverse to the Ariadne functor.

Lemma 4. Let M be a torsion-free module, and let ppxq P M b Brxs. Then p “ 0
if and only if ppaq “ 0 for all integers a.

Lemma 5. In the category QbZ Labyn, the following equation holds, for any set
X:

IX “
ÿ

#S“IX
|S|“n

1
deg S

S.

Proof. Use Lemma 4. Identify the co-eHcient of an in the defining equation
for Labyn:

anIX “
ÿ

#S“P
|S|ďn

ˆ

a
S

˙

S.

The mazes 1
deg S S, occurring in the lemma, satisfy

1
deg S

S ˝
1

deg T
T “

#

0 if S ‰ T ,
1

deg S S if S “ T .

They can thus be said to form a direct sum system, although the objects them-
selves of the system do not exist. There is a simple remedy for this: adjoin
to the category Q bZ Labyn an object Im 1

deg S S for each such S. The category
QbZ Labyn is not, however, the minimal localisation of Labyn for which this
procedure makes sense.

Let us say that passages p : x Ñ y and q : x Ñ y, sharing starting and ending
points, are parallel, and that a simple maze is one which contains no (pairs of)
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parallel passages. By means of the Labyrinth Axioms I and II, any maze can
be written as the sum of simple mazes.

It may be verified that the mazes 1
degP A A, where |A| “ n and #A “ P for

some pure and simple maze P, form a basis for a subcategory C of Qb Labyn

which contains Labyn.

Definition 27. To the category C, adjoin an object Im 1
deg S S for each maze

S, which, as a multi-set, is supported in some maze IX , and denote the resulting
category by Laby‘n.

By Lemma 5, the set X will now split into components:

X “
à

#S“IX
|S|“n

Im
1

deg S
S.

Example 9. It is a consequence of the equation
„

˚
1 //
1
// ˚



“ 2
”

˚
1 // ˚

ı

that no localisation will be required in the case n “ 2, so that, anomalously,
the categories Laby2 and Laby‘2 are isomorphic. 4

Example 10. Consider

P “

»

–

1
1 //
1
// 1

2 1
// 2

fi

fl and Q “

»

–

1 1 // 1
2

1 //
1
// 2

fi

fl .

In Q bZ Laby3, the equations 2It1,2u “ P ` Q and PQ “ QP “ 0 hold; hence,
the mazes 1

2 P and 1
2 Q would form a direct sum system, were it not for the

non-existence of the desired objects. By adjoining these, we obtain the refined
category Laby‘3, in which the set t1, 2u splits up into two:

t1, 2u “ Im
1
2

P ‘ Im
1
2

Q.

4

Definition 28. The n’th Theseus functor

Tn : MSetn Ñ Laby‘n

is given by the following formulæ:

A ÞÑ Im
1

deg A

ď

aPA

!

a 1 // a
)

µ ÞÑ
1

deg µ

ď

pa,bqPµ

!

a 1 // b
)

.
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It should be clear that this is indeed a (linear) functor, as composition in
both categories is evectuated by “summing over all possibilities”.

Theorem 12. There is an isomorphism of categories:

Laby‘n An //MSetn
Tn

oo

Proof. We first shew that the Ariadne functor actually factors through the
category Laby‘n. Suppose P is a pure and simple maze, and let A be supported
in P, with |A| “ n. Then

AnpAq “
ź

p“r1 : xÑysPA

„

x
y



“ deg A ¨
ź

p“r1 : xÑysPP

„

x
y

rdegA ps

,

and hence we may extend An by letting

1
degP A

A ÞÑ
ź

p“r1 : xÑysPP

„

x
y

rdegA ps

.

Moreover, An maps the “virtual” biproduct system

IX “
ÿ

#B“X
|B|“n

1
deg B

ď

bPB

!

b 1 // b
)

in Labyn onto the “real” biproduct system
ÿ

#B“X
|B|“n

ιB

in MSetn, and we may consequently extend An to Laby‘n by defining

An

˜

Im
1

deg B

ď

bPB

!

b 1 // b
)

¸

“ B.

It is now easy to see that Tn and An are inverse to each other.

§4. The Category of Surjections. For reference, we devote this paragraph to
investigating the connexion between the Labyrinth Category and the Category
of Surjections explored in [3]. For want of space, we merely sketch the relevant
constructions. The reader anxious to learn the full details is referred to Section
5 of loc. cit.

Let C be a category possessing weak pull-backs. For two objects X, Y P C,
a correspondence or span from X to Y is a diagram

Y Uoo // X
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in C, intended to be read from right to left. Construct an additive category pC
in the following way. Its objects are those of C. Its arrows are formal sums
of correspondences of C (identified under an obvious equivalence relation),
living in the free abelian group they generate. The composition of two cor-
respondences is found by summing over weak pull-backs. The category pC is
called the category of correspondences on C.

It will now be observed that the category Sur of finite sets and surjections
possesses weak pull-backs. It is thus possible to build the category ySur of
surjection correspondences. We form a quotient category ySurn by forcing

”

Y Uoo // X
ı

“ 0 whenever |U| ą n.

Theorem 13.

ySurn – ZLabyn.

Proof. Define the functor

Ξ : ySurn Ñ ZLabyn

to be the identity on objects. The correspondence

ϕ “

«

Y U
ϕ˚oo ϕ

˚

// X

ff

in ySurn shall map to the pure maze X Ñ Y with exactly
ˇ

ˇpϕ˚, ϕ˚q
´1px, yq

ˇ

ˇ

passages going X Q x Ñ y P Y .
A simple and straight-forward calculation confirms that this yields a func-

tor, which is inversible because the pure mazes form a basis.

Curiously enough, the categories ySur and ZLaby are themselves not iso-
morphic. This stems from the fact that ZLaby encodes functors from the
category of free abelian groups, while ySur was built to encode functors from
the category of free commutative monoids. These functor categories are not
originally equivalent, but they will be, once polynomiality is brought into
evect.

Section the Fourth.

The Combinatorics of Functors

§1. Module Functors. Our first aim is to shew how general module functors
are encoded by the Labyrinth Category. The base ring B is presumed unital
only, not necessarily commutative. It will be expedient to point out that fi-
nitely generated, free modules are automatically bimodules. For homomorph-
isms, however, the left–right distinction is essential, and we hereby declare all
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maps under consideration to be right module homomorphisms (and hence left
multiplication by a matrix of ring elements).

Let
σyx : BX Ñ BY , x P X, y P Y

denote the canonical transportations, mapping a 1 in position x to a 1 in position
y, and everything else to 0.

Moreover, let crX FpBq denote the cross-evect of rank X of the functor F ,
evaluated on |X| copies of the module B. Similarly, when ζ : F Ñ G is a natural
transformation, let

pcrX ζqB : crX FpBq Ñ crX GpBq

denote the evaluation of crX ζ on |X| copies of B.
We propose a study of the functor

Φ : FunpXMod,Modq Ñ LinpLaby,Modq,

defined as follows. Given a module functor F : XModÑMod, the correspond-
ing labyrinth functor ΦpFq : LabyÑMod should take:

X ÞÑ crX FpBq

rP : X Ñ Y s ÞÑ

«

F

˜

♦
rp : xÑysPP

pσyx

¸

: crX FpBq Ñ crY FpBq

ff

.

Of course, one ought to restrict the action to the appropriate cross-evects, but
this turns out to be an unnecessary caution:

Lemma 6. The map

υ “ F

˜

♦
rp : xÑysPP

pσyx

¸

: FpBXq Ñ FpBY q

is in fact a map crX FpBq Ñ crY FpBq, in the sense that there is a commutative
diagram:

FpBXq

��

υ // FpBY q

crX FpBq
υ
// crY FpBq

OO

Lemma 7. ΦpFq is a functor LabyÑMod.

Proof. That ΦpFq respects the relations in Laby follows from

ΦpFq
´

P Y t x 0 // y u
¯

“ Fp¨ ¨ ¨ ˛ 0q “ 0
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and

ΦpFq
ˆ

P Y t x a`b // y u
˙

“ Fp¨ ¨ ¨ ˛ pa` bqσyxq

“ Fp¨ ¨ ¨ ˛ aσyxq ` Fp¨ ¨ ¨ ˛ bσyxq ` Fp¨ ¨ ¨ ˛ aσyx ˛ bσyxq

“ ΦpFq
´

P Y t x a // y u
¯

`ΦpFq
ˆ

P Y t x b // y u
˙

`ΦpFq

˜

P Y t x
a //
b
// y u

¸

.

Functoriality of ΦpFq is a consequence of the Deviation Formula and the
definition of maze composition.

Let ζ : F Ñ G be a natural transformation. Define Φpζq : ΦpFq Ñ ΦpGq by
restriction to the appropriate cross-evects:

ΦpζqX “ pcrX ζqB : crX FpBq Ñ crX GpBq.

Lemma 8. Φ is a functor

FunpXMod,Modq Ñ LinpLaby,Modq.

Proof. Follows from the functoriality of crX .

Lemma 9. Φ is fully faithful.

Proof. The natural transformation ζ can be uniquely re-assembled from its
components crX ζ.

We now construct the inverse of Φ. Given a labyrinth functor H : Laby Ñ
Mod, the corresponding module functor Φ´1pHq should take:

BA ÞÑ
à

XĎA
HpXq

»

—

–

ÿ

aPA
bPB

sbaσba : BA Ñ BB

fi

ffi

fl

ÞÑ
ÿ

KĎBˆA

H

¨

˝

ď

pb,aqPK

"

b a
sbaoo

*

˛

‚.

Lemma 10. Φ´1pHq is a module functor.

Proof. Functoriality is established thus:

Φ
´1pHq

¨

˚

˝

ÿ

bPB
cPC

scbσcb

˛

‹

‚

˝Φ
´1pHq

¨

˚

˝

ÿ

aPA
bPB

tbaσba

˛

‹

‚

“
ÿ

IĎCˆB

H

¨

˝

ď

pc,bqPI

"

c b
scboo

*

˛

‚˝
ÿ

JĎBˆA

H

¨

˝

ď

pb,aqPJ

"

b a
tbaoo

*

˛

‚
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“
ÿ

IĎCˆB

ÿ

JĎBˆA

ÿ

KĎtppc,bq,pb,aqqPIˆJu

H

¨

˝

ď

ppc,bq,pb,aqqPK

"

c a
scbtbaoo

*

˛

‚

“
ÿ

MĎCˆBˆA

H

¨

˝

ď

pc,b,aqPM

"

c a
scbtbaoo

*

˛

‚

“
ÿ

LĎCˆA

H

¨

˝

ď

pc,aqPL

#

c a
ř

bPB scbtbaoo

+

˛

‚“ Φ
´1pHq

¨

˚

˝

ÿ

aPA
cPC

˜

ÿ

bPB

scbtba

¸

σca

˛

‹

‚

,

where Theorem 4 was used in the fifth step.

Lemma 11.

ΦpΦ´1pHqq “ H .

Proof. Let P : X Ñ Y be a maze. We calculate:

ΦpΦ´1pHqqpPq “ Φ
´1pHq

˜

♦
rp : xÑysPP

pσyx

¸

“
ÿ

SĎP

p´1q|P|´|S|Φ´1pHq

¨

˝

ÿ

pPS

pσyx

˛

‚

“
ÿ

SĎP

p´1q|P|´|S|
ÿ

KĎS

HpKq “
ÿ

KĎP

HpKq
ÿ

KĎSĎP

p´1q|P|´|S| “ HpPq.

Assembling these results, we conclude that Φ is fully faithful and repres-
entative, and thence we obtain our main theorem.

Theorem 14: Labyrinth of Fun. The functor

Φ : FunpXMod,Modq Ñ LinpLaby,Modq,

where ΦpFq : LabyÑMod takes

X ÞÑ crX FpBq

rP : X Ñ Y s ÞÑ

«

F

˜

♦
rp : xÑysPP

pσyx

¸

: crX FpBq Ñ crY FpBq

ff

,

is an equivalence of categories.

§2. Polynomial Functors. Since mazes correspond to deviations, this very
simple characterisation of polynomiality should come as no surprise.

Theorem 15. The module functor F is polynomial of degree n if and only if ΦpFq
vanishes on sets with more than n elements; or, equivalently, on mazes with more
than n passages.
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Proof. Assume first that F is polynomial of degree n. Since mazes with n ` 1
passages correspond to n’th deviations, ΦpFq will certainly vanish on mazes
with more than n passages.

Suppose now, conversely, that ΦpFq annihilates mazes with more than n
passages. Then each cross-evect of F of rank exceeding n will vanish, and F is
polynomial of degree n.

§3. Numerical Functors. We now investigate how to interpret numericality in
the labyrinthine setting. The base ring B will of course be assumed binomial.

Lemma 12. Let r P B, and let w1, . . . , wq be natural numbers. Then

q
ź

j“1

ˆ

r
wj

˙

“

8
ÿ

m“0

ˆ

r
m

˙ m
ÿ

k“0

p´1qm´k
ˆ

m
k

˙ q
ź

j“1

ˆ

k
wj

˙

.

Proof. When r is an integer, both sides of the given equality count the number
of ways to choose subsets W1, . . . , Wq Ď rrs with |Wi| “ wi. This is because,
for a fixed subset S Ď rrs with |S| “ m, there are, by the Principle of Inclusion
and Exclusion, exactly

m
ÿ

k“0

p´1qm´k
ˆ

m
k

˙ q
ź

j“1

ˆ

k
wj

˙

subsets W1, . . . , Wq Ď rrs such that |Wi| “ wi and
Ť

Wi “ S.
When r is an element of an arbitrary binomial ring, we invoke the Bino-

mial Transfer Principle of [15].

Recall that, when A is a maze (hence a multi-set), the symbol IA betokens
the result of substituting 1 for the labels of all the passages of A.

Theorem 16. The module functor F is numerical of degree n if and only if ΦpFq
vanishes on sets (or mazes) with more than n elements, and, withal, satisfies the equa-
tion

ΦpFqpPq “
ÿ

#A“P

ź

pPP

ˆ

p
degA p

˙

ΦpFqpIAq

for any maze P; so that ΦpFq factors through Labyn. The functor Φ induces an
equivalence of categories

Numn Ñ LinpLabyn,Modq.

Proof. By the previous theorem, ΦpFq vanishing on sets with more than n
elements is equivalent to polynomiality. It is then clear from Theorem 10 of
[14] that numerical functors satisfy the stated requirements.
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Suppose now, conversely, that ΦpFq satisfies the conditions of the theorem.
We wish to use Criterion A1 in Theorem 9 of [14] and thus seek to evaluate

Fpr ¨ 1Bnq “
ÿ

PĎrdIrns

ΦpFqpPq “
ÿ

JĎrns

ΦpFq

¨

˝

ď

jPJ

!

j r // j
)

˛

‚

and
8
ÿ

m“0

ˆ

r
m

˙

F
ˆ

♦
m

1Bn

˙

“

8
ÿ

m“0

ˆ

r
m

˙ m
ÿ

k“0

p´1qm´k
ˆ

m
k

˙

Fpk ¨ 1Bnq

“

8
ÿ

m“0

ˆ

r
m

˙ m
ÿ

k“0

p´1qm´k
ˆ

m
k

˙

ÿ

JĎrns

ΦpFq

¨

˝

ď

jPJ

"

j k // j
*

˛

‚.

To verify the equality

Fpr ¨ 1Bnq “

8
ÿ

m“0

ˆ

r
m

˙

F
ˆ

♦
m

1Bn

˙

,

it will then be suHcient to check that the terms corresponding to a certain
fixed J are equal. There will be no loss of generality in considering the special
case J “ rqs only. Our object will thus be to verify

ΦpFq

¨

˝

ď

jPrqs

!

j r // j
)

˛

‚“

8
ÿ

m“0

ˆ

r
m

˙ m
ÿ

k“0

p´1qm´k
ˆ

m
k

˙

ΦpFq

¨

˝

ď

jPrqs

"

j k // j
*

˛

‚.

By assumption, the left-hand side equals

ÿ

w1`¨¨¨`wqďn
wjě1

q
ź

j“1

ˆ

r
wj

˙

ΦpFq

¨

˝

ď

jPrqs

ď

wj

!

j 1 // j
)

˛

‚

and the right-hand side

8
ÿ

m“0

ˆ

r
m

˙ m
ÿ

k“0

p´1qm´k
ˆ

m
k

˙

ÿ

w1`¨¨¨`wqďn
wjě1

q
ź

j“1

ˆ

k
wj

˙

ΦpFq

¨

˝

ď

jPrqs

ď

wj

!

j 1 // j
)

˛

‚,

so that the equality follows after deployment of the lemma.

Example 11. As a simple example, a labyrinth module H corresponding to
a cubical functor will satisfy the equation

H

»

—

–

˚

a
��

b

?? ˚

fi

ffi

fl

“

ˆ

a
1

˙ˆ

b
1

˙

H

»

—

–

˚

1
��

1

?? ˚

fi

ffi

fl
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`

ˆ

a
2

˙ˆ

b
1

˙

H

»

—

–

˚

1
��

1 ++

1

?? ˚

fi

ffi

fl

`

ˆ

a
1

˙ˆ

b
2

˙

H

»

—

–

˚

1
��

1 33

1

?? ˚

fi

ffi

fl

.

4

The main result of Baues, Dreckmann, Franjou, and Pirashvili in [3]:

ZNumn – LinpySurn, ZModq,

will now be obtained as a simple corollary from the category equivalences
exhibited in Theorems 13 and 16.

§4. Quasi-Homogeneous Functors.

Theorem 17. The module functor F is quasi-homogeneous of degree n if and only
if ΦpFq satisfies the equation

ΦpFqpa d Pq “ an
ΦpFqpPq

for any maze P and scalar a; so that ΦpFq factors through Labyn. The functor Φ

induces an equivalence of categories

QHomn Ñ LinpLabyn,Modq.

Proof. Let F be quasi-homogeneous, and let a P QbZ B. For any deviation, we
have

Fpaα1 ˛ ¨ ¨ ¨ ˛ aαkq “ anFpα1 ˛ ¨ ¨ ¨ ˛ αkq,

and we may calculate for a pure maze P:

an
ΦpFqpPq “ anF

˜

♦
rp : xÑysPP

pσyx

¸

“ F

˜

♦
rp : xÑysPP

apσyx

¸

“ ΦpFqpa d Pq.

Conversely, assume ΦpFq factors via Labyn. Then, for any k P N,

anFp1Bkq “ an
ÿ

KĎrks

ΦpFqpIKq “
ÿ

KĎrks

ΦpFqpa d IKq “ Fpa ¨ 1Bkq,

and F is quasi-homogeneous.

§5. Strict Polynomial Functors. The following theorem was first formulated
by Salomonsson in terms of Mackey functors, and later reformulated in [12]
using multations.

Theorem 18 ([11], Theorem I.2.3; [12], Theorem 10.9). The functor

Ψ : Homn Ñ LinpMSetn,Modq,
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where
ΨpFq : MSetn ÑMod

takes

A ÞÑ Im FpπrAsq

rµ : A Ñ Bs ÞÑ
”

Fpσrµsq : crA FpBq Ñ crB FpBq
ı

,

is an equivalence of categories.

It will be of interest to spell out a formula for the inverse. When J :
MSetn ÑMod, the functor Φ´1pJq : XModÑMod is defined by

BX ÞÑ
à

#AĎX
|A|“n

JpAq

»

—

—

–

ÿ

xPX
yPY

syxσyx : BX Ñ BY

fi

ffi

ffi

fl

ÞÑ
ÿ

#AĎX, #BĎY
|A|“|B|“n

ÿ

µ : AÑB

sµJpµq

(where, of course, X and Y are sets, but A and B range over multi-sets).

Section the Fifth.

Numerical versus Strict Polynomial Functors

In this final section, we provide a comparison of the two strains of functors:
numerical (polynomial) and strict polynomial.

§1. Quadratic Functors. We first propose to examine quadratic functors in
detail, and thus seek to fathom the structure of Num2. The key point lies
in unravelling the structure of the category Laby2. It contains three non-
isomorphic objects: r0s, r1s, and r2s. By Theorem 8, the pure mazes form a
basis. Those are identity mazes, along with the quadruple:

A “

«

1 1 //

1
&&
1
2

ff

, B “

«

1 1 // 1
2 1
88
ff

, C “

„

1
1 //
1
// 1


, S “
„

1
1
&&
1

2
1 88

2



.

The (skeletal) structure of the category Laby2 is thus reduced to the following,
promptly suggesting the nick-name dogegory:

r0sI
))

r1s

A
$$

I

33

C
��

r2s

B

dd

S

ss

I

SS

An inspection of the multiplication table, given in Table 1, reveals that the
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˝ A B C S
A – I ` S 2A –
B C – – B
C – 2B 2C –
S A – – I

Table 1: Multiplication table for
Laby2.

˝ α β σ

α – ι` σ –
β 2ι – β

σ α – ι

Table 2: Multiplication table for
MSet2.

mazes A, B, C, and S are not algebraically independent, for C “ BA and
S “ AB ´ I . We thus recuperate the now classical classification of quadratic
(integral) functors from [1]:

Theorem 19. A quadratic numerical functor is equivalent to a diagram of mod-
ules and homomorphisms as indicated, subject to the two relations:

βαβ “ 2β, αβα “ 2α.

K X
α // Y
β

oo

To determine Hom2, we proceed similarly. The (skeletal) structure of the
category MSet2 is:

t1, 1u

α

&&
t1, 2u

β

ff
σ
qq

Every multation reduces to a linear combination of identity multations and
the subsequent triplet, with multiplication given in Table 2:

α “

„

1 1
1 2



β “

„

1 2
1 1



σ “

„

1 2
2 1



Theorem 20. A quadratic homogeneous functor is equivalent to a diagram of
modules and homomorphisms as indicated, subject to the single relation:

βα “ 2.

X
α // Y
β

oo

We then obtain the following characterisation of homogeneous quadratic
functors.
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Theorem 21. Consider the labyrinthine description of a quadratic functor F:

K X
α // Y
β

oo

The following conditions are equivalent:

A. F is quasi-homogeneous of degree 2.

B. F may be (uniquely) extended to a homogeneous quadratic functor.

C. K “ 0 and βα “ 2.

Proof. The equivalence of B and C follows from the two preceding theorems;
that of A and B is a consequence of the isomorphisms

MSet2 – Laby‘2
– Laby2,

exhibited in Example 9 and Theorem 12.

Example 12. A wee example will serve to illustrate the theorem, and also
to point out its subtlety. This same delicacy was observed in [14], Example 1.
Consider, over the ring Z, the following labyrinth module:

0 Z{2Z
0 // 0
0
oo

Since it satisfies the conditions of the theorem, it has a unique structure of
homogeneous quadratic functor — viz. the functor G given by:

Z{2Z
0 // 0
0
oo

Yet it is possible to exhibit another strict polynomial structure F on this same
underlying functor, this one linear. As a multi-set module

2
à

n“0
MSetn ÑMod,

it is given by the formulæ

tu ÞÑ 0 t1, 1u ÞÑ 0
t1u ÞÑ Z{2 t1, 2u ÞÑ 0.

On the level of functors, F “ Z{2Zb´ and G “ pZ{2Zqp1q b´, the symbol p1q
indicating Frobenius twist. 4
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§2. The Ariadne Thread. By the theory previously wrought out (Theorems 16
and 18), there are category equivalences

Φ : Numn Ñ LinpLabyn,Modq, Ψ : Homn Ñ LinpMSetn,Modq.

Connecting the combinatorial categories is the Ariadne functor An : Labyn Ñ
MSetn.

Theorem 22: The Ariadne Thread. Pre-composition with the Ariadne functor
An begets the forgetful functor

Homn Ñ Numn,

so that
Φ ˝Ψ

´1 “ pAnq
˚.

Proof. Let J : MSetn ÑMod and let P : X Ñ Y be a maze. We compute:

ΦΨ
´1pJqpPq “ Ψ

´1pJq

˜

♦
rp : xÑysPP

pσyx

¸

“
ÿ

IĎP

p´1q|P|´|I|Ψ´1pJq

¨

˝

ÿ

pPI

pσyx

˛

‚

“
ÿ

IĎP

p´1q|P|´|I|
ÿ

#AĎI
|A|“n

J

¨

˝

ź

pP#A

pdegA p
„

x
y

rdegA ps
˛

‚

“
ÿ

#AĎP
|A|“n

J

¨

˝

ź

pP#A

pdegA p
„

x
y

rdegA ps
˛

‚

ÿ

#AĎIĎP

p´1q|P|´|I|

“
ÿ

#A“P
|A|“n

J

¨

˝

ź

pP#A

pdegA p
„

x
y

rdegA ps
˛

‚“ JAnpPq,

whence ΦΨ´1pJq “ JAn, as required.

§3. The Polynomial Functor Theorem. Let us finally record the exact ob-
struction for a numerical functor, of arbitrary degree, to be strict polynomial.

Theorem 23: The Polynomial Functor Theorem. Let F be a quasi-homogene-
ous functor of degree n, corresponding to the labyrinth module H : Labyn

Ñ Mod.
Imposing the structure of homogeneous functor upon F is equivalent to exhibiting a
factorisation of H through Laby‘n.

Proof. It will suHce to recall the isomorphism Laby‘n
–MSetn from Theor-

em 12.

A word of admonishment: the existence of a factorisation of H through
Laby‘n does not imply its uniqueness. As was seen in Example 12, there are,
in general, many strict polynomial structures on the same functor, even of
diverent degrees.
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Example 13. We wish to draw the reader’s attention to one particular case,
when factorisation always takes place. If B is a Q-algebra, the categories

Labyn
“ Laby‘n

–MSetn

are isomorphic. This mirrors the well-known fact that, over a Q-algebra,
numerical and strict polynomial functors co-incide. 4

Example 14. For affine functors (degree 0 and 1), there is no discrepancy
between numerical and strict polynomial functors. This will no longer be the
case in higher degrees. Yet, the quadratic case will retain some regularity,
in that, according to Theorem 21, any quasi-homogeneous functor necessarily
admits a unique homogeneous structure. 4
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