ALGEBRAIC STRUCTURES

Xantcha

Solutions 16th December 2013

I. (a) -
(b) $48=-12$ has clearly order 5 .
(c) Clearly each element of $\langle 8,30\rangle$ is even, so $\langle 8,30\rangle \leqslant\langle 2\rangle$. Conversely, $2=4 \cdot 8-30 \in\langle 8,30\rangle$, so in fact

$$
\langle 8,30\rangle=\langle 2\rangle=\{0,2,4, \ldots, 58\}
$$

(d) The group \mathbf{Z}_{60}^{*} consists of those elements with multiplicative inverses modulo 60 . These are the numbers relatively prime to 60 , and there are 16 of those:
I, 7, II, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59.
2. (a) -
(b) A is closed under multiplication since

$$
2^{a} 3^{b} \cdot 2^{c} 3^{d}=2^{a+c} 3^{b+d} .
$$

Also I $=2^{\circ} 3^{\circ} \in A$ and $\left(2^{a} 3^{b}\right)^{-\mathrm{I}}=2^{-a} 3^{-b} \in A$. Therefore A is a subgroup of \mathbf{Q}^{+}.
(c) Define a map

$$
\varphi: \mathbf{Z} \times \mathbf{Z} \in A, \quad(a, b) \mapsto 2^{a} 3^{b}
$$

This is an homomorphism since

$$
\varphi(a, b) \varphi(c, d)=2^{a} 3^{b} \cdot 2^{c} 3^{d}=2^{a+c} 3^{b+d}=\varphi(a+c, b+d) .
$$

It is surjective by the very definition of A, and also injective, since $\mathrm{I}=\varphi(a, b)=2^{a} 3^{b}$ implies $a=b=0$.
3. (a) -
(b) K is a field if and only if the polynomial $p(x)=x^{4}+x+\mathrm{r}$ is irreducible over \mathbf{Z}_{2}. It has no linear factors, since $p(\mathrm{o})=p(\mathrm{r})=\mathrm{I}$. To search for quadratic factors, we try

$$
x^{4}+x+\mathrm{I}=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right),
$$

and are led to the system of equations

$$
\left\{\begin{aligned}
a+c & =\mathrm{o} \\
b+a c+d & =0 \\
a d+b c & =\mathrm{I} \\
b d & =\mathrm{I} .
\end{aligned}\right.
$$

From the first and last of these equations, we deduce $a=c$ and $b=d=\mathrm{r}$, which does not satisfy the third equation. Hence $p(x)$ is irreducible and K is a field.
Every element of K can be uniquely represented by a cubic polynomial:

$$
a+b x+c x^{2}+d x^{3}+(p(x)), \quad a, b, c, d \in \mathbf{Z}_{2} .
$$

Therefore the order of K is $2^{4}=16$.
(c) The multiplicative group of any finite field is cyclic.
(d) The extension $\mathbf{Z}_{2} \leqslant K$ is finite (it has degree 4), and so necessarily algebraic.
4. (a) -
(b) Calculate:

$$
\pi(x, y)+\pi(z, w)=x+y+z+w=\pi(x+z, y+w) .
$$

(c) Since $\pi(x, 0)=x$, the image of π is all of \mathbf{R}. The kernel is the set of all $(t,-t)$, where $t \in \mathbf{R}$.
(d) The kernel is the line of all $(t,-t)$, where $t \in \mathbf{R}$, and so the cosets will be lines parallel to it. The coset containing (x, y) is the set

$$
\{(x, y)+(t,-t) \mid t \in \mathbf{R}\} .
$$

5. (a) -
(b) By the Tower Isomorphism Theorem,

$$
\begin{aligned}
\mathrm{C}[x] /\left(x^{3}-\mathrm{I}\right) /\left(x-\mathrm{I}+\left(x^{3}-\mathrm{I}\right)\right) & =\mathrm{C}[x] /\left(x^{3}-\mathrm{r}\right) /(x-\mathrm{I}) /\left(x^{3}-\mathrm{I}\right) \\
& \cong \mathrm{C}[x] /(x-\mathrm{I}) \cong \mathrm{C}
\end{aligned}
$$

is a field, and therefore $\left(x-1+\left(x^{3}-1\right)\right)$ is maximal (and prime).
(c) One has

$$
\left(x-\mathrm{I}+\left(x^{3}-\mathrm{I}\right)\right)\left(x^{2}+x+\mathrm{I}+\left(x^{3}-\mathrm{I}\right)\right)=x^{3}-\mathrm{I}+\left(x^{3}-\mathrm{I}\right)=\mathrm{o}+\left(x^{3}-\mathrm{I}\right),
$$

but neither of the factors is in $\left(0+\left(x^{3}-\mathrm{r}\right)\right)$.
(d) The ideals of $\mathrm{C}[x] /\left(x^{3}-\mathrm{I}\right)$ are of the form $(p(x)) /\left(x^{3}-\mathrm{I}\right)$, where $(p(x))$ is an ideal of $\mathrm{C}[x]$ that contains $x^{3}-\mathrm{I}$, which means that $p(x) \mid x^{3}-\mathrm{I}$. When that is the case,

$$
\mathrm{C}[x] /\left(x^{3}-\mathrm{I}\right) /(p(x)) /\left(x^{3}-\mathrm{I}\right) \cong \mathrm{C}[x] /(p(x)) .
$$

This is an integral domain precisely when $(p(x))$ is a maximal ideal of $\mathbf{C}[x]$, which holds if and only if $p(x)$ is irreducible. It is a field precisely when $(p(x))$ is a prime ideal of $\mathbf{C}[x]$, which holds if and only if $p(x)$ is irreducible or zero. Hence the only possibility for a prime ideal which is not maximal is given by $p(x)=0$, but $p(x)$ is not a divisor of x^{3} - 1 .
(e) Maximal ideals are always prime.
6. (a) -
(b) Factorise:

$$
x^{5}-x^{4}-x+\mathrm{I}=(x-\mathrm{I})\left(x^{4}-\mathrm{I}\right)=(x-\mathrm{I})^{2}(x+\mathrm{I})(x-i)(x+i)
$$

The splitting field is $\mathbf{Q}(i)$. Any automorphism of $\mathbf{Q}(i)$ fixing \mathbf{Q} must permute $\pm i$. Consequently, the Galois group contains precisely two elements: the identity map and the complex conjugation map. It is isomorphic to \mathbf{Z}_{2}.
(c) Obviously.
7. (a) Calculate:

$$
\begin{gathered}
\varphi(x y)=(x y)^{3}=x^{3} y^{3}=\varphi(x) \varphi(y) \\
\varphi(x+y)=(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=x^{3}+y^{3}=\varphi(x)+\varphi(y) \\
\varphi(\mathrm{r})=\mathrm{r}^{3}=\mathrm{I}
\end{gathered}
$$

(b) We show that φ is injective. Suppose $o=\varphi(z)=z^{3}$ for some $z \neq 0$. Then

$$
(z+1)^{3}=z^{3}+3 z^{2}+3 z+1=1
$$

so that $z+\mathrm{r}$ is inversible. By the assumption on L, also z will be inversible. But it cannot be, since $z^{3}=0$. This contradiction shows that φ is injective. Since the ring L is finite, φ must then also be bijective.
(c) φ is a permutation on the finite set L, and so φ^{n} is the identity map for some n. Then $x=\varphi^{n}(x)=x 3^{n}$ for all x.
(d) Using that $x^{3^{n}}=x$, we compute:

$$
\left(x^{3^{n}-\mathrm{I}}+\mathrm{I}\right)^{2}=x^{2 \cdot 3^{n}-2}+2 x^{3^{n}-\mathrm{I}}+\mathrm{I}=x^{3^{n}-\mathrm{I}}+2 x^{3^{n}-\mathrm{I}}+\mathrm{I}=\mathrm{I} .
$$

(e) We prove that an arbitrary $x \neq 0$ is inversible. We have $x^{3^{n}-\mathrm{I}} \neq \mathrm{o}$, for $x^{3^{n}-1}=0$ would imply $x=x^{3^{n}}=0$.
By part (d), $x^{3^{n}-\mathrm{r}}+\mathrm{I}$ is inversible, from which it follows, using the assumption on L, that $x^{3^{n}-1}$ is also inversible.
The element x cannot be a zero divisor, for $x y=0$ would imply $x^{3^{n}-\mathrm{I}} y=0$, and therefore $y=0$, since $x^{3^{n-1}}$ is inversible.
By part (c), $x\left(x^{3^{n}-\mathrm{r}}-\mathrm{r}\right)=0$, and, x not being a zero divisor, it must be that $x^{3^{n}-1}=\mathrm{I}$, and so x is inversible.

