ALGEBRAIC STRUCTURES

Xantcha

Solutions 23rd April 2014
I. (a) -
(b) -
(c) Since $2014=2 \cdot 19 \cdot 53$, there is exactly one abelian group of order 2014, the cyclic group \mathbf{Z}_{2014}.
(d) There is, for example, the dihedral group $D_{\text {roō }}$.
2. (a) -
(b) If $a^{2}, b^{2} \in B$, then also
$a^{2} b^{2}=(a b)^{2} \in B, \quad a^{2}+b^{2}=(a+b)^{2} \in B \quad$ and $\quad-a^{2}=a^{2} \in B$.
(c) If $A=\mathbf{Z}_{2}[x]$, then $\mathrm{I}=\mathrm{r}^{2} \in B$, but $x \cdot \mathrm{I}=x \notin B$.
(d) If $A=\mathbf{Z}$, then $\mathrm{I}=\mathrm{r}^{2} \in B$, but $\mathrm{I}+\mathrm{r}=2 \notin B$.
3. (a) -
(b) It is known from linear algebra that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
(c) Since $\mathrm{SL}_{n}(\mathbf{C})=$ Ker det, it is a normal subgroup. Alternatively, one may show directly that if $\operatorname{det} A=\mathrm{I}$ and M is arbitrary, then

$$
\operatorname{det} M A M^{-\mathrm{r}}=\operatorname{det} M \operatorname{det} A \operatorname{det} M^{-\mathrm{r}}=\operatorname{det} A=\mathrm{r},
$$

so that $M A M^{-\mathbf{1}} \in \mathrm{SL}_{n}(\mathbf{C})$.
(d) The Fundamental Homomorphism Theorem gives

$$
\mathrm{GL}_{n}(\mathbf{C}) / \mathrm{SL}_{n}(\mathbf{C})=\mathrm{GL}_{n}(\mathbf{C}) / \text { Ker det } \cong \operatorname{Im} \operatorname{det}=\mathbf{C}^{*} .
$$

4. (a) -
(b) Since $\mathbf{Z}_{4}[x] /(x) \cong \mathbf{Z}_{4}$ is not an integral domain, (x) is neither prime nor maximal.
(c) Since $\mathbf{Z}_{4}[x] /(2, x) \cong \mathbf{Z}_{2}$ is a field, $(2, x)$ is both maximal and prime.
(d) Since $\mathbf{Z}_{4}[x] /(2) \cong \mathbf{Z}_{2}[x]$ is an integral domain, but not a field, the ideal (2) is prime, but not maximal.
(e) No. Maximal ideals are always prime.
5. (a) -
(b) Factorise

$$
\begin{aligned}
p(x) & =x^{8}-x^{2}=x^{2}\left(x^{6}-\mathrm{I}\right)=x^{2}\left(x^{2}-\mathrm{I}\right)\left(x^{4}+x^{2}+\mathrm{r}\right) \\
& =x^{2}(x+\mathrm{r})(x-\mathrm{I})\left(x^{2}+x+\mathrm{r}\right)\left(x^{2}-x+\mathrm{I}\right) .
\end{aligned}
$$

The roots o and $\pm \mathrm{r}$ are rational. The remaining roots are $\pm \frac{1}{2} \pm \frac{1}{2} \sqrt{3} i$. Hence the splitting field is $\mathbf{Q}(\sqrt{3} i)$, which is of degree 2 over \mathbf{Q}. Therefore the Galois group is \mathbf{Z}_{2}.
6. (a) -
(b) If $f(x)=a x+b$ and $g(x)=c x+d$ are affine functions, then so is $g \circ f$:

$$
g(f(x))=c(a x+b)+d=a c x+(b c+d) .
$$

Function composition is associative. The identity function $i(x)=x$ is affine. Moreover, $f(x)=a x+b$ has an inverse $f^{-1}(x)=a^{-1}-a^{-1} b$, since

$$
\begin{aligned}
& f^{-1}(f(x))=a^{-1}(a x+b)-a^{-1} b=x \\
& f\left(f^{-1}(x)\right)=a\left(a^{-1} x-a^{-1} b\right)+b=x .
\end{aligned}
$$

Consequently, A is a group.
(c) This is more or less evident from the definition, since $f(g(x))=$ $(f \circ g)(x)$ and $i(x)=x$.
(d) Since $x+b$ transforms the point p to $p+b$ and the constant b may be chosen arbitrarily, the orbit of p is $A p=\mathbf{R}$.
$f(x)=a x+b$ stabilises p if and only if $p=f(p)=a p+b$, which means the stabiliser of p equals

$$
A_{p}=\{f(x)=a x+p(\mathrm{r}-a) \mid a \neq \mathrm{o}\} .
$$

7. (a) -
(b) Write $q(x)=x^{3}+a x^{2}+b x+c$. By Viète's Formulæ, there is a relation $\alpha+\beta+\gamma=-a \in \mathrm{Q}$, which means the splitting field is

$$
\mathbf{Q}(\alpha, \beta, \gamma)=\mathbf{Q}(\alpha, \beta,-a-\alpha-\beta)=\mathbf{Q}(\alpha, \beta) .
$$

(c) If $q(x)=(x-\mathrm{r})^{3}$, then the splitting field is $\mathbf{Q}(\mathrm{r})=\mathbf{Q}$.
(d) If $q(x)=x^{3}-2$, then the splitting field is

$$
\mathbf{Q}\left(\sqrt[3]{2}, \sqrt[3]{2} e^{\frac{2 \pi i}{3}}, \sqrt[3]{2} e^{\frac{4 \pi i}{3}}\right)=\mathbf{Q}\left(\sqrt[3]{2}, e^{\frac{2 \pi i}{3}}\right)
$$

which is of degree 6 over \mathbf{Q}. However,

$$
\mathbf{Q}(\sqrt[3]{2}), \quad \mathbf{Q}\left(\sqrt[3]{2} e^{\frac{2 \pi i}{3}}\right) \quad \text { and } \quad \mathbf{Q}\left(\sqrt[3]{2} e^{\frac{4 \pi i}{3}}\right)
$$

are all of degree 3 over \mathbf{Q}, so they must be proper subfields.

