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1 Algebra
Algebra, the art of symbolic reasoning, is at the heart of mathematics.
While the working mathematician can get along pretty well without
Number Theory, only know the most elementary Combinatorics, and be
completely lost at Geometry, there is not much he can accomplish without
invoking Algebra.

1.1 The Art of Symbolism
I’ve seen the Professor work lots of sums on the blackboard, and he claimed
anything could be done with x’s and y’s and a’s, and such things, by mixing
them up with plenty of plusses and minuses and equals, and so forth. But he
never said anything, so far as I can remember, about counting up to the odd
number of seventeen by the even numbers of twos.

— Baum, The Marvelous Land of Oz

Some problems are just about being clever, and playing around with
symbols. . .

1. Baltic Way 1990. Let ˚ denote an operation, assigning a real num-
ber a ˚ b to each pair of real numbers (a, b) (e.g., a ˚ b = a+ b

2 ´ 17).
Devise an equation which is true (for all possible values of vari-
ables) provided the operation ˚ is commutative or associative and
which can be false otherwise.

2. Baltic Way 1992. Given that a
2 + b

2 + (a + b)2 = c
2 + d

2 + (c + d)2,
prove that a

4 + b
4 + (a+ b)4 = c

4 + d
4 + (c+ d)4.

1.2 Helvetet i en Algebraisk Eqvation
[...] je donnerais bien cent sous au mathématicien qui me démontrerait par
une équation algébrique l’existence de l’enfer.

— Honoré de Balzac, La Peau de chagrin
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Ah! Nothing like solving a classical equation. At least there’s a problem
type we all recognise from school. But while the set-up may be familiar,
the equations encountered in competitions are usually a far cry from
those found in school textbooks.

1. Skolornas Matematiktävling 1995. Bestäm alla reella lösningar till
ekvationen (b

2 +
?
3
)x

+
(b

2´
?
3
)x

= 2x.

[Rewrite the equation in the simpler form a
x + b

x = 1. This equation

has one obvious solution and no further — why not?]

2. Baltic Way 1994. Let a ˝ b = a + b ´ ab. Find all triples (x, y, z) of
integers such that (x ˝ y) ˝ z+ (y ˝ z) ˝ x+ (z ˝ x) ˝ y = 0.

3. Baltic Way 1993. Solve the system of equations in integers:
$

’

’

&

’

’

%

z
x = y

2x

2z = 4x

x+ y+ z = 20.

[The problem is curiously phrased. Why not put z = y
2
for the first

equation? Why restrict attention to integers? — This is not number

theory, and the assumption does not simplify the problem.]

4. Baltic Way 1992. Find all integers satisfying the equation 2x ¨ (4´
x) = 2x+ 4. [Apparently 2x+4

4´x
ą 0. . . ]

5. Baltic Way 1995 (classified as Number Theory). Find all triples
(x, y, z) of positive integers satisfying the system of equations

#

x
2 = 2(y+ z)

x
6 = y

6 + z
6 + 31(y2 + z

2).

[(1) It is clear that x ą y, z (why?). (2) What can you do with that

information?]

1.3 Fearful Symmetry
Tyger Tyger, burning bright,
In the forests of the night:
What immortal hand or eye,
Could frame thy fearful symmetry?

— Blake, The Tyger

3



Systems of equations are like single ones, only more. Hence, the methods
of the preceding section apply.

However, if a system of equations is symmetrical — it consists of n

more or less identical equations — there is an obvious trick: Add all of
them together (or perhaps all but one of them).

1. Baltic Way 1993. Solve the system of equations:
$

’

’

’

’

&

’

’

’

’

%

x
5 = y+ y

5

y
5 = z+ z

5

z
5 = t+ t

5

t
5 = x+ x

5.

2. Baltic Way 1995. The real numbers a, b and c satisfy the inequalit-
ies |a| ě |b+ c|, |b| ě |c+a| and |c| ě |a+ b|. Prove that a+ b+ c = 0.
[Absolute values are absolutely horrendous and should never have

been invented, according to the venerable Dr Hans-Uno Bengtsson.

But one can get rid of them — how?]

1.4 The Call of Clhculhus
Clhculhus fhtagn

Calculus assumes an interesting position in the math competition pan-
theon. On an international level, it is universally banned and abhorred;
possibly because the school curricula of other countries concentrate on
algebra, and not calculus, as do the Nordic countries. On the other hand,
it sometimes comes in handy, and here Scandinavians are for once at an
advantage!

It may be remarked that the early days of the Baltic Way Contest ac-
tually featured some pure calculus problems, though this seems to have
fallen out of fashion in later years. Now the four branches algebra,
number theory, combinatorics and geometry are firmly rooted, and any
attempt to include calculus is seen as a sacrilege. We have known Ger-
many in particular to be quite militant about this.

For one thing, note the following fact: If a is a multiple root of
the polynomial equation p(x) = 0, then a is also a root of the equation
p
1(x) = 0. The converse also holds: If a is a single root of p(x) = 0, then

p
1(a) /= 0.

1. Skolornas Matematiktävling 1988. Låt P(x) vara ett tredjegradspoly-
nom med exakt tre olika reella nollställen. Hur många reella rötter
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har ekvationen
(P1(x))2 ´ 2P(x)P2(x) = 0?

2. Baltic Way 1991. Let a, b, c, d, e be distinct real numbers. Prove
that the equation

(x´ a)(x´ b)(x´ c)(x´ d)
+ (x´ a)(x´ b)(x´ c)(x´ e)
+ (x´ a)(x´ b)(x´ d)(x´ e)
+ (x´ a)(x´ c)(x´ d)(x´ e)
+ (x´ b)(x´ c)(x´ d)(x´ e) = 0

has 4 distinct real solutions.

3. Baltic Way 1992. A polynomial f (x) = x
3 + ax

2 + bx+ c is such that
b ă 0 and ab = 9c. Prove that the polynomial has three different
real roots.

1.5 Evil under the sin. . .
Why do you so seldom see mathematicians at the beach?
— Because they use the sin, and not the sun, to get their tan.

Trigonometry is always a trustworthy old friend, and not only in geo-
metry. Some impossibly difficult algebra problems rely on encoding some
innocent-looking equation in trigonometric formulæ.

1. Skolornas Matematiktävling 1994. Cirkeln C har medelpunkt i
origo och radien 1. Kan det finnas två punkter på C, på avstånd
1 ifrån varandra, vilkas koordinater är rationella?

2. Baltic Way 1995. Prove that sin3 18˝+sin2 18˝ = 1/8. [This is a warm-

up exercise, really. Use a full frontal attack with every trigonometric

formula you could think of!]

3. Baltic Way 1990. Let a0 ą 0, c ą 0 and

an+1 =
an + c

1´ anc
, n = 0, 1, . . . .

Is it possible that the first 1990 terms a0,a1, . . . ,a1989 are all positive
but a1990 ă 0? [Here’s the one I prepared for earlier. The recursion

formula bears a haunting familiarity to the addition formula for

the tangent: tan(x+ y) = tan x+tan y

1´tan x tan y
.]
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4. Baltic Way 1994. Find the largest value of the expression

xy+ x

a

1´ y2 + y

a

1´ x2 ´
a

(1´ x2)(1´ y2).

[x and
?
1´ x2 together definitely look suspicious, and always call

for a substitution x = sin α and
?
1´ x2 = cos α.]

5. Nordic Mathematical Contest 1989. Låt S vara mängden av alla tal
t i det slutna intervallet [´1, 1] sådana att talföljden x0, x1, x2, . . . ,
definierad genom xn+1 = 2x2n ´ 1, x0 = t, har egenskapen att det
finns ett positivt heltal N sådant att xn = 1 för alla n ě N. Visa att
S har oändligt många element.

1.6 Softcore Inequalities
Liberté, inegalité, fraternité. . .

The following problems are about estimating quantities.

1. Baltic Way 1990. Integers 1, 2, . . . ,n are written (in some order) on
the circumference of a circle. What is the smallest possible sum of
moduli of the differences of neighbouring numbers? [You know the

Triangle Inequality, don’t you: |a|+ |b| ď |a+ b|?]

2. Baltic Way 1991. Let A, B, C be the angles of an acute-angled
triangle. Prove the inequality

sinA+ sinB ą cosA+ cosB+ cosC.

3. Baltic Way 1992. Let a = 1992
?
1992. Which number is greater:

a
a
a

¨¨¨a
)

1992

or 1992? [Try first replacing 1992 by a smaller number, like 2, to see

what ought to be the greater number. Then prove your assertion.]

1.7 Hardcore Inequalities
Liberté, inegalité, fraternité — ou la Mort!

Inequalities are stapleware in mathematics competitions. They have
come to be established as one of only two really standardised problem
types; the other being functional equations.

There are literally hundreds and hundreds of known inequalities out
there for the budding student to memorise and master. It is possible
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that for each of these, there exists a competition problem that it actually
solves, but we would not swear to it. For the Baltic Way Contest, two1
inequalities will crack most problems, once applied correctly.

The first of these is – — the inequality of arithmetic and geomet-

ric mean. In its simplest form, it states

a+ b

2 ě
?
ab,

for positive numbers a and b, with equality if and only if a = b. (Proof:
Square both sides.) There are several generalisations of it, though.
Firstly, we may consider any number n of variables a1, . . . ,an, again
assumed positive:

a1 + ¨ ¨ ¨+ an

n
ě n
?
a1 . . .an

with equality if and only if a1 = ¨ ¨ ¨ = an.
Secondly, these are, by no means, the only means. Given numbers

a1, . . . ,an, we may also form their harmonic mean

n

1
a1

+ ¨ ¨ ¨+ 1
an

,

and their quadratic mean
c

a2
1 + ¨ ¨ ¨+ a2

n

n
.

We then have the glorious chain of inequalities known as –––:
c

a2
1 + ¨ ¨ ¨+ a2

n

n
ě

a1 + ¨ ¨ ¨+ an

n
ě n
?
a1 . . .an ě

n

1
a1

+ ¨ ¨ ¨+ 1
an

,

with equality if and only if bla, bla, bla.
The second inequality the student should be desperate to learn, is the

Cauchy–Schwarz Inequality. It states that, given two sequences a1, . . . ,an

and b1, . . . , bn of positive numbers, we have

(a1b1 + ¨ ¨ ¨+ anbn)2 ď
(
a
2
1 + ¨ ¨ ¨+ a

2
n

) (
b
2
1 + ¨ ¨ ¨+ b

2
n

)
In this case, equality holds if and only if the sequences are propor-

tional to each other (this includes the case when one or both of them are
identically zero).

1A third inequality will also fit into the Baltic Way canon, namely Jensen’s Inequality.
The reader is encouraged to look it up.
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1. Baltic Way 1994 (classified as Geometry). Let α, β, γ be the angles of
a triangle opposite to its sides with lengths a, b and c, respectively.
Prove the inequality

a ¨

(
1
β
+ 1

γ

)
+ b ¨

(
1
γ
+ 1

α

)
+ c ¨

(
1
α
+ 1

β

)
ě 2 ¨

(
a

α
+ b

β
+ c

γ

)
.

[Split it up into parts; prove the inequality

a

β
+ b

α
ě

a

α
+ b

β
.

No advanced inequalities are required here.]

2. Baltic Way 1991. For any positive numbers a, b, c prove the in-
equalities

1
a
+ 1

b
+ 1

c
ě

2
a+ b

+ 2
b+ c

+ 2
c+ a

ě
9

a+ b+ c
.

3. Baltic Way 1992. Prove that for any positive x1, x2, . . . , xn and y1,
y2, . . . , yn the inequality

n
ÿ

i=1

1
xiyi

ě
4n2

řn

i=1(xi + yi)2

holds.

4. Baltic Way 1995. Prove that for positive a, b, c, d
a+ c

a+ b
+ b+ d

b+ c
+ c+ a

c+ d
+ d+ b

d+ a
ě 4.

[Split into two parts; first prove

a+ c

a+ b
+ c+ a

c+ d

is greater than something (not 2).]

5. Baltic Way 1996. For which positive real numbers a, b does the
inequality

x1 ¨x2+x2 ¨x3+¨ ¨ ¨+xn´1 ¨xn+xn ¨x1 ě x
a

1 ¨x
b

2 ¨x
a

3+x
a

2 ¨x
b

3 ¨x
a

4+¨ ¨ ¨+x
a

n ¨x
b

1 ¨x
a

2

hold for all integers n ą 2 and positive real numbers x1, x2, . . . , xn?
[First substitute “nice” values for the xk to establish what values a

and b must have. Then prove the resulting inequality.]

6. Nordic Mathematical Contest 1987. Låt a, b, c vara positiva reella
tal. Bevisa att

a

b
+ b

c
+ c

a
ď

a
2

b2
+ b

2

c2
+ c

2

a2 .
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Equation Solution
f (x) + f (y) = f (x+ y) f (z) = az

f (x)f (y) = f (x+ y) f (z) = e
az

f (x) + f (y) = f (xy) f (z) = a ln z

f (x)f (y) = f (xy) f (z) = z
a

T : Functional Equations and their solutions f : R Ñ R, assuming
continuity or monotony.

1.8 Functional Food
att vara en funktion av allt som inte fungerar
att vara något annat eller inte vara alls

— Erik Lindgren, mannen utan väg XXVIII

Functional equations are staple foods at the olympiads, being the only
truly standardised problem type, save for inequalities. Some noteworthy
points:

I. Standard method: Extract information by trying special values for
the variables: x = 0, y = 1, x = y, y = 1

x
, and so on.

II. Frequently, it is possible to determine the function f on all rational
numbers. If the function f is assumed continuous, the matter will
be settled, for two continuous functions that are equal on all ra-
tional numbers must be equal everywhere. This fortuitous assump-
tion is not always provided, however, and an extension to all real
numbers must then be secured through more ingenious means.

III. The classical equations occurring in Table 1 have only the unique
solutions indicated, assuming that f be either continuous or mono-

tonous.

1. Baltic Way 1996. Consider the functions f defined on the set of
integers such that

f (x) = f (x2 + x+ 1),

for all integers x. Find

(a) all even functions,

(b) all odd functions of this kind.

2. Baltic Way 1997. Determine all functions f from the real numbers
to the real numbers, different from the zero function, such that

9



f (x)f (y) = f (x´ y) for all real numbers x and y. [Try y = 0, x, x

2 , in

turn.]

3. Baltic Way 1995. Find all real-valued functions f defined on the set
of all non-zero real numbers such that:

(i) f (1) = 1,

(ii) f

( 1
x+ y

)
= f

(1
x

)
+ f

( 1
y

)
for all non-zero x, y, x+ y,

(iii) (x+ y)f (x+ y) = xyf (x)f (y) for all non-zero x, y, x+ y.

[Try x = y.]

4. Baltic Way 1998. Let R be the set of all real numbers. Find all
functions f : R Ñ R satisfying for all x, y P R the equation f (x) +
f (y) = f (f (x)f (y)). [Play around with an arbitrary f (a) = b.]

2 Number Theory
Number Theory is the only discipline of Olympiad Mathematics that ac-
tually constitutes an active area of research. Alas, there is no ongo-
ing research in Geometry as Euclid knew it, and the problems that the
working combinatorist or algebraist devotes his life to, are usually quite
unlike the recreational puzzles here appearing in the Algebra and Com-
binatorics sections. On the other hand, Fermat’s Great Theorem

x
n + y

n /= z
n, n ě 3,

looks innocent enough and certainly indistinguishable from genuine
competition problems (but those are usually required to be soluble in
somewhat less than 400 years).

Number Theory thus forms a branch of serious mathematics, and all
of its theorems may be invoked when solving a particular problem. This
includes Fermat’s Great Theorem, by the way, though we know not of a
single instance where this would have provided or simplified a solution!
We do know of a singular problem where the Twin Prime Conjecture
played a part — see below.

But while certain classical results occasionally come to the rescue
— see below for Fermat’s Little Theorem — number-theoretical problems
often suffer from a striking uniformity in their methods of attack. Hence
the rather few sections of this chapter.
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2.1 Be More Than Just a Number
Primtalen

Euklides har visat med full evidens
att primtalens antal är utan gräns,
o jubel, o glädjekälla!
Nu kan skolbarnet sitta förnöjt i sin sal
och tänka sig större och större tal
som alla är originella.
Men detta är icke vad skolbarnen gör;
de tycks icke ha nödig förståelse för
vad det har med dem att beställa.

— Alf Henriksson

Lots of fun can be had just playing with numbers. . .

1. Baltic Way 1992. Let p and q be two consecutive odd prime numbers.
Prove that p + q is a product of at least three positive integers
greater than 1 (not necessarily different). [Just a Quicky.]

2. Baltic Way 1993. Let’s call a positive integer “interesting” if it is
a product of two (distinct or equal) prime numbers. What is the
greatest number of consecutive positive integers all of which are
“interesting”?

3. Baltic Way 1994. Let p ą 2 be a prime number and 1 + 1
23 + 1

33 +
¨ ¨ ¨+ 1

(p´1)3 = m

n
where m and n are relatively prime. Show that m is

a multiple of p. [Use symmetry. The sum cannot be calculated, but

try adding the first and the last term.]

4. Baltic Way 1995. The positive integers a, b, c are pairwise relatively
prime, a and c are odd and the numbers satisfy the equation a

2 +
b
2 = c

2. Prove that b+ c is a square of an integer.

5. Baltic Way 1996. Let a and k be positive integers such that a
2 + k

divides (a´ 1)a(a+ 1). Prove that k ě a.

6. Baltic Way 1996. Let a, b, c d be positive integers such that ab = cd.
Prove that a+b+c+d is not prime. [This is a quicky, though it may

still be tricky. One solution may seem counter-intuitive. Multiply

the given number by a, and see what happens. The more standard

technique is to factor out greatest common divisors: Write a = a
1
r

and c = c
1
r, where now (a1, c1) = 1, and similarly for the pair b

and d.]
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7. Baltic Way 1999. Does there exist a finite sequence of integers c1,
c2, . . . , cn such that all the numbers a + c1, a + c2, . . . , a + cn are
primes for more than one but not infinitely many different integers
a? [The Twin Prime Conjecture will help you here.]

8. Nordic Mathematical Contest 1990. Låt m, n och p vara positiva
udda heltal. Visa att talet

(n´1)p
ÿ

k=1
k
m

är delbart med n.

2.2 Divide and Conquer
Oss emellan anser jag det för ett pedanteri, ty hvartill tjenar att säga 1/3
R:dr? kan man icke så gerna säga 16 sk., så slipper man både nämnare och
täljare. Att addera 1/2 R:dr till 3/4 R:dr, som låter så konstigt, är rätt och slätt
bara att lägga ihop 24 sk. med 36 sk., det gör:

24
36
60

Således 60 skilling, som man bringar till riksdaler, genom att dividera med
48; blir 1 R:dr 12 sk. jemt, och så behöfs ingen bråkräkning i hushållslifvet,
utan endast hela tal. Men yttra för Guds skull icke detta för herrarne på
Gräseholm! De skulle blott göra narr af dig, ty karlar lägga alltid vigt på
vetenskaper, som bringa fruntimmer i bryderi. Jag nekar också icke, att bråk-
kalkyler kunna vara behagliga och bra i Astronomi och Artilleri och mera,
men icke för oss. Det slår icke felt, att Constance kan lefva och blifva gift
sådant förutan. Att göra till lika nämnare! ha ha ha! och maximus dimunis
covisor!

— Almqvist, Amalia Hillner

The key to solving number-theoretical problems is divisibility. The argu-
ment goes thus:

From the equation, we see that a must be even; hence we can write
a = 2a1. A factor 2 can be divided away, and now we see that b must be
odd. Therefore, we may write b = 2b1+1, and substitute back. We expand
and simplify, and — oh dear! — c must be divisible by 7! Write c = 7c1,
. . .

And so on. Surpringly many problems yield to this naïve method of
attack.

1. Skolornas Matematiktävling 1995. Är det möjligt att något av
heltalen x och y är delbart med 3 om

x
2 ´ y

2 = 1995?
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2. Baltic Way 1990. Prove that none of the numbers

Fn = 22n

+ 1, n = 0, 1, . . . ,

is a cube of an integer.

3. Baltic Way 1993. Prove that for any odd positive integer n, n12 ´

n
8 ´ n

4 + 1 is divisible by 29.

4. Baltic Way 1994. Find all pairs of positive integers (a, b) such that
2a + 3b is the square of an integer.

2.3 Modular Arithmetic
Faut-il qu’avec les soins qu’on prend incessamment
On ne te puisse apprendre à parler congrûment?

— Molière, Les Femmes sçavantes

The method of the preceding section can be refined, and turned into
modular arithmetic, with which we assume the reader is familiar. Occa-
sionally, Fermat’s Little Theorem

2 is useful:

a
p´1 ” 1 modp,

where p is a prime not dividing a. As a consequence,

a
p ” a modp

for any prime p and any a.

1. Skolornas Matematiktävling 1992. Är (1992 ´ 9129)/90 ett naturligt
tal?

2. Baltic Way 1991. Prove that there are no positive integers n and
m ą 1 such that 1021991 + 1031991 = n

m. [The formula x
p + y

p =
(x+ y)(xp´1 ´ x

p´2
y+ ¨ ¨ ¨+ y

p´1
, for odd p, will prove useful.]

3. Baltic Way 1996. A sequence of integers a1,a2, . . . , is such that
a1 = 1, a2 = 2 and for n ě 1

an+2 =
#

5an+1 ´ 3an if an ¨ an+1 is even,
an+1 ´ an if an ¨ an+1 is odd.

Prove that an /= 0. for all n.
2The reader may also want to learn its generalisation to composite numbers p, called

Euler’s Theorem.
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2.4 “Maximus Dimunis Covisor”
Oscar hade den godheten, att under sin geometri med lilla Constance tillika
bese några exempel, som jag uträknat på försök. Han smålog här och der:
på ett ställe hade det varit mig komplett ogörligt att bringa bråken till lika
nämnare, ty det är af hela kalkylen det bedröfligaste. Han for öfver mina
siffror med en lätt hand, nändes icke stryka ut dem, men visade mig på en
särskild papperslapp huru man rätt skall begagna sin “Minimus communis
Dividuus”, och huru man med dess tillhjelp får lika nämnare som en dans.
Ett ljus uppgick för min själ! Jag kan icke beskrifva huru lycklig jag kände
mig: det gifs icke många fruntimmer i Sverige, som nu kunna hvad jag kan.

— Almqvist, Amalia Hillner

Given two positive integers a and b, their greatest common divisor (a, b)
is the greatest number that divides both a and b. Also, the least common
multiple (a, b) is the least number that both a and b divide. We then
have the theorem

(a, b)(a, b) = ab.

(Proof: Consider the prime factors of a and b.)
Frequently useful is Bézout’s Identity, which states that, given two

relatively prime integers a and b, it is possible to find integers s and t so
that

sa+ tb = 1.

More generally, it is always possible to find integers s and t so that
sa+ tb = (a, b).

1. Baltic Way 1990. Let m and n be positive integers. Prove that
25m+3n is divisible by 83 if and only if 3m+7n is divisible by 83.
[Try finding a suitable linear combination of these numbers.]

2. Baltic Way 1996. Consider the sequence

x1 = 19,
x2 = 95,

xn+2 = lcm(xn+1, xn) + xn,

for n ą 1, where lcm(a, b) means the least common multiple of a

and b. Find the greatest common divisor of x1995 and x1996.
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2.5 Neo-Constructivism
So Pooh rose and sat down and said “Thank you,” which is the proper thing to
say when you have been made a Knight, and he went into a dream again, in
which he and Sir Pump and Sir Brazil and Factors lived together with a horse,
and were faithful knights (all except Factors, who looked after the horse) to
Good King Christopher Robin. . .

— Milne, The House at Pooh Corner

A common problem type is to prove there are infinitely many numbers
having a certain property. There are two ways to go about this. One is
to provide an explicit construction — to actually exhibit a collection of
infinitely many numbers with the desired property. The other is to shew
how to, given one number possessing the property, construct another.
It must then be verified that this process will actually yield infinitely
many different numbers — and also, of course, that a first number with
the property can be constructed!

1. Baltic Way 1990. Prove that the equation x
2 ´ 7y2 = 1 has infin-

itely many solutions in natural numbers. [Try the second method

suggested above.]

2. Baltic Way 1990. Do there exist 1990 relatively prime numbers
such that all possible sums of two or more of these numbers are
composite numbers? [To guarantee that something is composite, try

numbers of the form k+N!, where k ă N.]

3. Baltic Way 1992. Denote by d(n) the number of all positive divisors
of a positive integer n (including 1 and n). Prove that there are
infinitely many n such that n

d(n) is an integer. [Try an especially

simple form for n.]

4. Baltic Way 1994. Prove that for any integer a ě 5 there exist
integers b and c, c ě b ě a, such that a, b, c are the lengths of the
sides of a right-angled triangle.

5. Baltic Way 1996. Let n and k be integers, 1 ă k ď n. Find an integer
b and a set A of n integers satisfying the following conditions:

(i) No product of k´ 1 distinct elements of A is divisible by b.

(ii) Every product of k distinct elements of A is divisible by b.

(iii) For all distinct a, a1 in A, a does not divide a
1.
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3 Combinatorics
Combinatorics is the art of counting. Here we find the most fanciful
problem formulations — sometimes embroidered into little novellas that
even the non-mathematician can (sometimes) understand. The solutions
are usually very elementary, but clever.

Nordic kids tend to be very good at Combinatorics. They may not
know as many advanced inequalities as their Russian fellows, but they
are no less clever. As a consequence, Scandinavian ambassadors try to
opt for difficult Combinatorics problems (and easy problems of any other
kind).

3.1 Elementary Principles of Counting
“Hallo, Rabbit. Fourteen, wasn’t it?”
“What was?”
“My pots of honey what I was counting.”
“Fourteen, that’s right.”
“Are you sure?”
“No,” said Rabbit. “Does it matter?”
“I just like to know,” said Pooh humbly. “So as I can say to myself: ‘I’ve
got fourteen pots of honey left.’ Or fifteen, as the case may be. It’s sort of
comforting.”
“Well, let’s call it sixteen,” said Rabbit.

— Milne, The House at Pooh Corner

First some problems requiring just some ingenuity. . .

1. Baltic Way 1991. All positive integers from 1 to 1 000 000 are
divided into two groups consisting of numbers with odd or even
sums of digits respectively. Which group contains more numbers?

2. Baltic Way 1993. On each face of two dice some positive integer is
written. The two dice are thrown and the numbers on the top faces
are added. Determine whether one can select the integers on the
faces so that the possible sums are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, all equally likely? (Each sum must occur in exactly three of the
possible thirty-six outcomes. How could the sum 2 arise?)

3. Baltic Way 1995. In how many ways can the set of integers t1, 2,
. . . , 1995u be partitioned into three nonempty sets so that none of
these sets contains two consecutive integers? (Build it from the
bottom up!)
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3.2 The Odd One Out
J’inventai la couleur des voyelles! — A noir, E blanc, I rouge, O bleu, U vert.

— Rimbaud, Une Saison en Enfer

The classical Combinatorics argument goes by colouring. We want to
prove the non-existence of a certain construction. To do this, we colour
things black and white, and then count the objects of each colour. Or we
might label the objects ’ +́1, and then add things together. Either way, we
get an equation with no roots. Therefore, the construction is impossible.

A famous example asks us to prove the impossibility of covering a
chessboard with 1 ˆ 2 dominoes, after two opposite corner cells have
been removed. This serves as a very didactical example, for the squares
of the chessboard are already coloured in black and white, with 32 black
and 32 white cells. Plainly, a domino will cover one white and one black
cell, so for the construction to be possible, there must be an equal number
of black and white squares. But the two opposite corner have the same
colour; this results in 32 black and 30 white squares (or, as it may be, 30
black and 32 white squares). Hence the construction is impossible. ...

1. Skolornas Matematiktävling 1991. I en regelbunden 3982-hörning
indelas hörnen i par och de båda punkterna i varje par förbinds med
en rät linje. Visa att de 1991 sträckor som erhålls inte alla kan ha
olika längd. [Colour the vertices alternately black and white.]

2. Baltic Way 1991. The vertices of a convex 1991-gon are enumer-
ated with integers from 1 to 1991. Each side and diagonal of the
1991-gon is coloured either red or blue. Prove that, for an arbit-
rary renumeration of vertices, one can find integers k and l such
that the line connecting vertices with numbers k and l before the
renumeration has the same colour as the line between the vertices
having these numbers after the renumeration. [If all the segments

swap colours, then there has to be an equal number of red and blue

segments. . . ]

3. Baltic Way 1995. There are n fleas on an infinite sheet of triangu-
lated paper. Initially the fleas are in different small triangles, all
of which are inside some equilateral triangle consisting of n

2 small
triangles. Once a second each flea jumps from its original triangle
to one of the three small triangles having a common vertex but no
common side with it. For which natural numbers n does there exist
an initial configuration such that after a finite number of jumps all
the n fleas can meet in a single small triangle? [Any flea ca’n’t

relocate just anywhere. Which triangles can it reach?]

17



4. Baltic Way 1998. Is it possible to cover a 13 ˆ 13 chessboard with
forty-two tiles of size 4 ˆ 1 so that only the central square of the
chessboard remains uncovered? (It is assumed that each tile covers
exactly four squares of the chessboard, and the tiles do not overlap.)
[No, and there are actually two colourings of the chessboard that

demonstrate this: one bichromatic and one tetrachromatic.]

3.3 The Pigeon-Hole Principle
[. . . ]
Et, dans tous les Romans où j’ay jetté les yeux,
Je n’ay rien rencontré de plus ingénieux.

— Molière, Les Femmes sçavantes

The essence of the Pigeon-Hole Principle is: Cram sufficiently many ob-

jects into a sufficiently small space, and there will be over-crowding some-

where. This is admittedly very vague. What “over-crowding” means de-
pends of course on the particular problem, but, in general, look out for
the following hints:

• You are presented with an impossibly complicated situation with
“much too many free variables”. An explicit formula or case-by-
case analysis is out of the question.

• Yet, you are to shew that somewhere, something interesting hap-
pens.

1. Skolornas Matematiktävling 1988. På ett schackbräde kallas två
rutor närliggande om de har en kant eller ett hörn gemensamt. De
64 rutorna på ett schackbräde numreras i godtycklig ordning med
talen från 1 till 64. Visa att det alltid finns två närliggande rutor
vilkas nummer har en positiv differens som är högst 16. [Compare

what was outlined above. We don’t know how the numbers have

been distributed, and yet somewhere two numbers will come “close

together” — simply because there isn’t too much space. Split the

board into 16 squares of size 2ˆ2. These are the pigeon-holes — but

where are the pigeons?]

2. Skolornas Matematiktävling 1988. På ytan av en damm, som har
formen av en cirkel med radien 5 meter, simmar 6 ankungar. Visa
att i varje ögonblick två av ankungarna simmar på ett avstånd av
högst 5 meter. [Again: We have six ducks thrown into a small pond,

which means that somewhere, they must be swimming close to one

other. Try dividing the pond into sectors.]
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3. Baltic Way 1991 (classified as Number Theory). There are 20 cats
priced from $12 to $15 and 20 sacks priced from 10 cents to $1 for
sale (all prices are different). Prove that each of two boys, John and
Peter, can buy a cat in a sack paying the same amount of money.

4. Baltic Way 1991. An equilateral triangle is divided into 25 con-
gruent triangles enumerated with numbers from 1 to 25. Prove
that one can find two triangles having a common side and with the
difference of the numbers assigned to them greater than 3. [The
trick from Problem 1 doesn’t seem to work here. The triangle cannot

be nicely subdivided into cells and, moreover, one must shew that

some difference is large, rather than small. Consider the numbers 1

and 25, which differ by 24. In a sequence of eight numbers, begin-

ning with 1 and ending in 25, what can be said about the seven

consecutive differences?]

5. Baltic Way 1994 (classified as Number Theory). Prove that any ir-
reducible fraction p

q
, where p and q are positive integers and q is

odd, is equal to a fraction n

2k´1 for some positive integers n and
k. [There is, in fact, a number-theoretical solution. Consider binary

expansions.]

3.4 The Useful Arithmetic
“What age were you when you went to Lowood? ”
“About ten.”
“And you stayed there eight years: and are now, then, eighteen?”
I assented.
“Arithmetic, you see, is useful: without its aid, I should hardly have been able
to guess your age. [. . . ]”

— Brontë, Jane Eyre

Many Combinatorics problems require us to count something in a
clever way. (Confer Section 3.2.) The crux is rooting out what is supposed
to be counted and how.

1. Baltic Way 1990. Positive integers 1, 2, . . . , 100, 101 are written in
the cells of a 101ˆ 101 square grid so that each number is repeated
101 times. Prove that there exists either a column or a row con-
taining at least 11 different numbers. [Consider the number of rows

and columns containing a certain number. Sum over all rows and

columns.]

19



2. Baltic Way 1992. All faces of a convex polyhedron are parallel-
ograms. Can the polyhedron have exactly 1992 faces? [Consider
closed loops of faces running round the polyhedron, all common

edges parallel. Two such loops must have exactly two faces in com-

mon. (The problem was ill formulated; and this statement may not

quite follow from the hypotheses as they stand, depending on how

degenerate the polyhedra may be.) Now count things, and arrive at

an equation with no solutions.]

3. Baltic Way 1993. An equilateral triangle ABC is divided into 100 con-
gruent equilateral triangles. What is the greatest number of ver-
tices of small triangles that can be chosen so that no two of them
lie on a line that is parallel to any of the sides of the triangle ABC?
[Consider the distances from each chosen vertex to the edges of the

triangle ABC. Sum over the chosen vertices.]

4. Baltic Way 1994. The Wonder Island Intelligence Service has 16
spies in Tartu. Each of them watches on some of his colleagues. It
is known that if spy A watches on spy B then B does not watch on A.
Moreover, any 10 spies can be numbered in such a way that the
first spy watches on the second, the second watches on the third,
. . . , the tenth watches on the first. Prove that any 11 spies can
also be numbered in a similar manner. [Consider, for each spy,

the number of colleagues spied on, spying on him, and remaining

neutral, respectively.]

3.5 Game on! Choose your tactics.
Rivalen, med en stor och öfverlägsen mine, svarade intet, men började trumfa
för att visa sin styrka. Då föll olyckligtvis öfverstens sista trumfhacka, och
han bröt ut: “Såhå — såhå verkligen? vi skola således trumfa ut hvarann,
vi, som spela ihop? mins herrn icke, att begge fruntimmerna äro renonce,
hvarföre då för fan trumfa? Tricken går ifrån oss! Skönt! Och dermed
roberten! ty de stå redan på åtta, och hafva två honnörer. Jaha — de gå ut
— åh det är magnifikt!”

— Almqvist, Araminta May

Finite-length games without draws are always determined. One of the
players must have a winning strategy. (Tacit assumption: the players
should both possess “perfect information” on the game-play — that means
Poker and Old Maid (“Svarte Petter”) don’t count.)

For suppose Player 1 has no winning strategy. Then, with each move
he makes, Player 2 will have a choice on how to play not to lose. Let him
follow this strategy. After Player 2 has laboured long enough with this
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simple aim of not losing, the game will be over, because it is of finite
length. Since he didn’t lose and a draw is impossible, he must have won
the game. Hence his strategy was winning.

1. Baltic Way 1990. In two piles there are 72 and 30 sweets respect-
ively. Two students take, one after another, some sweets from one
of the piles. Each time the number of sweets taken from a pile must
be an integer multiple of the number of sweets in the other pile.
Is it the beginner of the game or his adversary who can always
assure taking the last sweet from one of the piles? [Recall what

was said above: One of the players must have a winning strategy.

Observe that opening by taking 30 sweets forces the opponent to re-

spond by the same move, leading to the same situation as if the first

player had opened by taking 60, except that the rôles have been
reversed. Now if one of the players had a winning strategy, what

would happen if his adversary were to play by the same design?]

2. Baltic Way 1993. An equilateral triangle is divided into n
2 congru-

ent equilateral triangles. A spider stands at one of the vertices, a
fly at another. Alternately each of them moves to a neighbouring
vertex. Prove that the spider can always catch the fly.

3. Baltic Way 1995. Consider the following two person game. A num-
ber of pebbles are situated on the table. Two players make their
moves alternately. A move consists of taking off the table x pebbles
where x is the square of any positive integer. The player who is
unable to make a move loses. Prove that there are infinitely many
initial situations in which the second player can win no matter how
his opponent plays. [Argue by contradiction. Suppose the first player

had a winning strategy for all large initial numbers of pebbles.

What would happen if the second player were to play by the same

stratagem? Naturally, that he be able to do so requires there being

sufficiently many pebbles left after the first move that the strategy

applies. But perhaps that can be arranged for? Choose an initial

situation where the first move ca’n’t reduce the number of pebbles

by too much.]

4. Baltic Way 1996. On an infinite checkerboard, two players altern-
ately mark one unmarked cell. One of them uses ˆ, the other ˝.
The first who fills a 2 ˆ 2 square with his symbols wins. Can the
player who starts always win? [In order to stop the first player,

one must devise a procedure to systematically destroy any square he

could attempt to form. . . ]
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4 Geometry
And lastly, we have arrived at Geometry, the very subject which embodied
Mathematics to the Greeks. Mathematics, to them, was Geometry (even
though Euclid managed to squeeze quite a bit of Number Theory into his
Elements).

Put bluntly, in any Baltic Way (or ) team, there is usually exactly
one kid who loves indulging in problems involving triangles and circles
(the more, the merrier), and four (or five) others who are very good at
Mathematics in general, but strive to avoid Geometry at any cost. (The
author falls into the latter category.)

Unlike the situation for Number Theory, where grand results like Fer-
mat’s Great Theorem are of absolutely no assistance, there is a plethora
of obscure theorems of Euclidean Geometry the student ought to be con-
versant with. Knowing these results undeniably makes life simpler.

4.1 The Elements
Baron Oscar gör sin sak ganska väl. Han lär Constance hvad en triangel vill
säga här i verlden; han visar henne hvilken “lutning” en linie måste hafva
till en annan, för att deraf må kunna blifva spetsig vinkel, samt huru en rät
vinkel ser ut. Om jag icke ännu kan inse nyttan häraf för oss fruntimmer, så
har jag dock ej erfarit någon skada; tvertom, Constance ritar alltid med större
precision den dagen hon studerat geometri och fixerat baron Oscars plancher:
och jag sjelf, hvem skulle hafva trott det? har börjat fatta tycke för parallela
linier, alternatanglar och qvadrater. Jag sätter flere gånger ifrån mig bågen
och gör mig till en elev i sällskap med Constance. Baron Oscar demonstrerar
gång efter gång allt bättre, lifligare och — jag bekänner, att geometrien är
icke det sämsta.

— Almqvist, Amalia Hillner

Some problems can be solved exclusively through “Euclidean” tools, which
in this setting does not refer to ruler and compass, but congruence and
similarity.

We state these general guidelines for solving Geometry problems:

I. Calculate all angles, or introduce variables for some, and express
the others in these. Some problems are solved entirely by ambitious
angle chasing.

II. Equal angles, and equal or proportional lengths, indicate that con-
gruent or similar triangles are lurking in the neighbourhood.

III. Do you recall the Angle Bisector Theorem? The parts in which an
angle bisector divides the opposite side, are proportional to the ad-
jacent sides.
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Now try these appetisers. . .

1. Baltic Way 1990. Let ABCD be a quadrangle, |AD| = |BC|, =A+=B =
120˝ and let P be a point exterior to the quadrangle such that P

and A lie at opposite sides of the line DC and the triangle DPC is
equilateral. Prove that the triangle APB is also equilateral.

2. Baltic Way 1995. In the triangle ABC, let l be the bisector of the
external angle at C. The line through the midpoint O of the segment
AB parallel to l meets the line AC at E. Determine |CE|, if |AC| = 7
and |CB| = 4. [It is very tempting to draw the line through O parallel

to BC. . . ]

3. Baltic Way 1996. Let α be the angle between two lines containing
the diagonals of a regular 1996-gon, and let β /= 0 be another such
angle. Prove that α/β is a rational number.

4.2 “Algebraic” Geometry
Bort med papper / och bleck; bort böker / Cirklar4 / och pännor;
Skulle du smitta dijn hand / dijn’ Adlige miölk-hwijte finger /
Skulle de fläckias i bleck; huru wille du Frustugun wittia?

— Stiernhielm, Hercules

Some problems are only artifically geometrical. Once variables have
been assigned to the lengths and areas involved, the problem transforms
nicely into a set of algebraical equations. For some problems, there is
even no need to introduce trigonometry (which will be treated in the
next section)! We have designated these “algebraic” geometry. (The
reason for enclosing the word “algebraic” within quotation marks is that
there already exists a discipline of mathematics by the name Algebraic
Geometry — extremely abstract, and as far removed from Euclidean
Geometry as is conceivable. It deals with something called “schemes”,
and we are quite certain they are evil ones.)

1. Baltic Way 1991. Let two circles C1 and C2 (with radii r1 and r2)
touch each other externally, and let l be their common tangent. A
third circle C3 (with radius r3 ă min(r1, r2)) is externally tangent to
the two given circles and tangent to the line l. Prove that

1
?
r3

= 1
?
r1

+ 1
?
r2

.

4passare
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F : Three half-circles.

2. Baltic Way 1991. Let the coordinate planes have the reflection prop-
erty. A beam falls onto one of them. How does the final direction of
the beam after reflecting from all three coordinate planes depend
on its initial direction?

3. Baltic Way 1996. In the figure below (Figure 1), you see three half-
circles. The circle C is tangent to two of the half-circles and to the
line PQ perpendicular to the diameter AB. The area of the shaded
region is 39π, and the area of the circle C is 9π. Find the length of
the diameter AB.

4.3 Cosplay
Je trône dans l’azur comme un sphinx incompris;
J’unis un cœur de neige à la blancheur des cygnes;
Je hais le mouvement qui déplace les lignes,
Et jamais je ne pleure et jamais je ne ris.

— Baudelaire, La Beauté

Trigonometry tends to lead to a mess of formulæ, and is arguably a
clumsy way to solve a problem when a smooth Euclidean proof is avail-
able. None the less, for those who do not feel comfortable with classical
geometrical reasoning (as stated above, approximately 4/5 of the popu-
lation), it is comfortable to know that many problems which are highly
graphical in nature can be transformed into a set of re-assuring (ana-
lytical) equations.

1. Skolornas Matematiktävling 1988. På periferin av en cirkel ligger
punkterna P, Q och R så att triangeln PQR är liksidig. S är en
godtycklig punkt på cirkelperiferin. Betrakta längderna av sträck-
orna PS, RS och QS. Visa att en av dem är summan av de två
övriga. [This one is very slick with trigonometry, but it is instruct-

ive to try to find a synthetic solution. There is a trick involved,
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which it might be worth knowing. To shew |RS| = |PS|+ |QS|, choose
a point X on RS with |XS| = |PS|.]

2. Baltic Way 1992. Quadrangle ABCD is inscribed in a circle with
radius 1 in such a way that one diagonal, AC, is a diameter of the
circle, while the other diagonal, BD, is as long as AB. The diagonals
intersect in P. It is known that the length of PC is 2

5 . How long is
the side CD?

3. Baltic Way 1994. Does there exist a triangle such that the lengths
of all its sides and altitudes are integers and its perimeter is equal
to 1995?

4.4 Triangle Trivia
Hjernan ännu i mig wrides
när jag tänker på Euclides
ock på de Trianglarna
a b c — ock c d a —
Swetten ur min Panna gnides,
Wärre än på Golgatha.

— Bellman, Lefnadsbeskrifning

Some situations call for heavier machinery. A full account of the many
properties of triangles is far beyond the scope of these notes, but the
following basic facts concerning a triangle ABC with sides a, b, c should
be borne in mind.

I. The medians of a triangle are concurrent, and meet in a point G

called the centroid (centre of gravity).

II. The altitudes of a triangle are concurrent, and meet in a point H

called the orthocenter.

III. The perpendicular bisectors of the sides of the triangle are concur-
rent, and meet in a point O called the circumcentre. It is the centre
of the circumscribed circle, whose radius is called the circumradius

R.

IV. The angle bisectors are concurrent, and meet in a point I called
the incentre. It is the centre of the inscribed circle, whose radius is
called the inradius r.

V. The points O, G, H are collinear, in this order, and 2|GO| = |GH|.
The line they lie upon is called the Euler line of the triangle.
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VI. The Law of Sines states, in its extended form, that

a

sinA
= b

sinB
= c

sinC
= 2R.

VII. Let p denote the semiperimeter of the triangle, so that 2p = a+b+c.
According to Heron’s formula, the area of the triangle is

|ABC| =
a

p(p´ a)(p´ b)(p´ c).

VIII. The area of the triangle is also given by

|ABC| = pr = abc

4R .

While these facts are not always needed to solve a problem, they can
often considerably simplify matters.

1. Skolornas Matematiktävling 1992. I en triangel är sidorna a, b och
c, där c ě a och c ě b. Omskrivna cirkelns radie är R. Visa att om
a
2 + b

2 = 2Rc så är triangeln rätvinklig.

2. Baltic Way 1992. Show that in a non-obtuse triangle the perimeter
of the triangle is always greater than two times the diameter of the
circumcircle.

3. Baltic Way 1992. Let a ď b ď c be the sides of a right triangle, and
let 2p be its perimeter. Show that p(p ´ c) = (p ´ a)(p ´ b) = S (the
area of the triangle).

4. Baltic Way 1996. Let ABCD be a cyclic convex quadrilateral and
let ra, rb, rc, rd be the radii of the circles inscribed in the triangles
BCD, ACD, ABD, ABC respectively. Prove that ra + rc = rb + rd.

5. Nordic Mathematical Contest 1992. Visa att av alla trianglar, vars
inskrivna cirkel har radien 1, har den liksidiga triangeln den min-
sta omkretsen.

4.5 Circular Reasoning
Their Houses are very ill built, the Walls bevil without one right Angle in any
Apartment; and this Defect ariseth from the Contempt they bear to practical
Geometry; which they despise as vulgar and mechanick, those Instructions
they give being too refined for the Intellectuals of their Workmen; which oc-
casions perpetual Mistakes. And although they are dexterous enough upon a
Piece of Paper in the Management of the Rule, the Pencil, and the Divider, yet
in the common Actions and Behaviour of Life, I have not seen a more clumsy,

26



awkward, and unhandy People, nor so slow and perplexed in their Conceptions
upon all other Subjects, except those of Mathematicks and Musick. They are
very bad Reasoners, and vehemently given to Opposition, unless when they
happen to be of the right Opinion, which is seldom their Case.

— Swift, Gulliver’s Travels into Several Remote Nations of the World

When it comes to circles, the following facts should be known and re-
membered:

I. The Inscribed Angle Theorem: A peripheral angle subtended by a
circle arc is exactly half the central angle subtended by the same
arc.

II. Two immediate corollaries: All peripheral angles subtended by the
same arc are equal. The peripheral angle subtended by a half-circle
is right.

III. The Chordal Theorem: If two chords divide each other into the parts
a, b, and c, d, then

ab = cd.

Observe: This is true even if the point of intersection lies on or
outside the circle!

IV. As a corollary: Given a point P. Draw any line through P, inter-
secting the circle in points A and B. The product

PA ¨ PB

is a constant, independent of the line. It is called the power of the

point P with respect to the circle.

V. A cyclic quadrilateral is one having all its vertices on a circle,
which is the case if and only if opposite angles sum to 180˝. This is
the customary procedure to shew four points are concyclic — prove
that opposite angles are supplementary.

VI. Ptolemy’s Theorem: If the sides of a cyclic quadrilateral be labelled
a, b, c, d, and its diagonals x and y; then

xy = ac+ bd.

The converse is equally valid: if this relation be true, then the
quadrilateral is cyclic.
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And, speaking of quadrilaterals, we remind the reader that connect-
ing the midpoints of an arbitrary quadrilateral results in a parallelo-
gram, called the Varignon parallelogram (this seems to have been dis-
covered surprisingly late; the first published proof appears in 1731).

1. Skolornas Matematiktävling 1995. På en cirkel med medelpunkt O

och radien r är punkterna A, B, C, D (i denna ordning) utplacerade
på följande sätt. Kordorna AB, BC och CD har samma längd, s. Talet
s är sådant att längden av kordan AD är s + r. Man vet också att
s ă r. Bestäm vinklarna i fyrhörningen ABCD.

2. Baltic Way 1994. Let NS and EW be two perpendicular diameters
of a circle C. A line l touches C at point S. Let A and B be two
points on C, symmetric with respect to the diameter EW . Denote
the intersection points of l with the lines NA and NB by A

1 and B
1,

respectively. Show that |SA1| ¨ |SB1| = |SN|2.

3. Baltic Way 1993. A convex quadrangle ABCD is inscribed in a circle
with the centre O. The angles =AOB, =BOC, =COD and =DOA, taken
in some order, are of the same size as the angles of quadrangle
ABCD. Prove that ABCD is a square.

4. Baltic Way 1995. Let M be the midpoint of the side AC of a triangle
ABC and let H be the foot point of the altitude from B. Let P and Q

be the orthogonal projections of A and C on the bisector of angle B.
Prove that the four points M, H, P and Q lie on the same circle.

5. Nordic Mathematical Contest 1993. En sexhörning är inskriven i en
cirkel med radien r. Två av dess sidor har längd 1, två har längd 2
och de återstående två har längd 3. Visa att r är rot till ekvationen

2r3 ´ 7r ´ 3 = 0.

4.6 Squeeze
“The fact is,” said Rabbit, “you’re stuck.”
“It all comes,” said Pooh crossly, “of not having front doors big enough.”
“It all comes,” said Rabbit sternly, “of eating too much. I though at the time,”
said Rabbit, “only I didn’t like to say anything,” said Rabbit, “that one of us
was eating too much,” said Rabbit, “and I knew it wasn’t me,” he said.

— Milne, Winnie-the-Pooh

From time to time there appear packing problems, in which the smallest
enclosure of some shape (circle, square,. . . ) that can contain a given
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F : A Hedgehog.

assortment of objects is sought. First, of course, the minimal solution
must be found. Usually it is the symmetric, or “obvious” one. Then, it
must be proved that this gives indeed the minimum, a feat which might
be achieved through the Pigeon-Hole Principle.

1. Baltic Way 1991. Is it possible to put two tetrahedra of volume 1
2

without intersection into a sphere with radius 1? [One of them has

to contain the centre of the sphere.]

2. Baltic Way 1994. Find the smallest number a such that a square of
side a can contain five disks of radius 1 so that no two of the disks
have a common interior point. [The symmetrical arrangement will

most probably give the optimum. Use the Pigeon-Hole Principle to

prove it.]

3. Baltic Way 1995 (classified as Combinatorics). The Wonder Island is
inhabited by Hedgehogs. Each Hedgehog consists of three segments
of unit length having a common endpoint, with all three angles
between them equal to 120˝ (see Figure 2). Given that all Hedgehogs
are lying flat on the island and no two of them touch each other,
prove that there is a finite number of Hedgehogs on Wonder Island.
[Prove that the centra of two Hedgehogs have to be a certain distance

apart.]

4.7 The Unusual Suspects
P F  S. “There were originally but three Muses — Melete,
Mneme, Aœde — meditation, memory and singing.” You may make a great
deal of that little fact if properly worked. You see it is not generally known,
and looks recherché. You must be careful and give the thing with a downright
improviso air.

— Poe, How to Write a Blackwood Article
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A charming feature of Baltic Way, probably unique in the world, is the
inclusion of highly original, one-of-a-kind problems. After all, in a set of
twenty problems, there is some room for innovation. Nowhere is this as
striking as in the Geometry department, where some truly unexampled
problems have been presented. As a contrast, it is extremely rare to find
an  geometry problem which does not follow the usual points–lines–
circles pattern.

1. Baltic Way 1990. Two equal triangles are inscribed into an ellipse.
Are they necessarily symmetrical with respect either to the axes or
to the centre of the ellipse? [Instead of inscribing two triangles into

the same ellips, inscribe the same triangle into two equal ellipses.]

2. Baltic Way 1993. Let’s consider three pairwise non-parallel straight
lines in the plane. Three points are moving along these lines
with different non-zero velocities, one on each line (we consider the
movement as having taken place for infinite time and continuing
infinitely in the future). Is it possible to determine these straight
lines, the velocities of each moving point and their positions at
some “zero” moment in such a way that the points never were, are
or will be collinear? [Yes, it is possible. As usual, aim for symmetry.

Try lines located to form an equilateral triangle.]

3. Baltic Way 1995. Prove that if both coordinates of every vertex of
a convex pentagon are integers, then the area of this pentagon is
not less than 5

2 .

4. Baltic Way 1999. Prove that for any four points in the plane, no
three of which are collinear, there exists a circle such that three
of the four points are on the circumference and the fourth point is
either on the circumference or inside the circle.
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