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Abstract

In this paper, we prove a generalization of Mertens’ theorem to Beurl-
ing primes, namely that limx→∞

1
ln x

Q
p≤x

`
1− p−1

´−1
= Aeγ , where γ is

Euler’s constant and Ax is the asymptotic number of generalized integers
less than x. Thus the limit M = limx→∞

“P
p≤x p

−1 − ln(lnx)
”

exists.

We also show that this limit coincides with limα→0+

“P
p p
−1(ln p)−α − 1/α

”
;

for ordinary primes this claim is called Meissel’s theorem. Finally, we will
discuss a problem posed by Beurling, namely how small |N(x)− [x]| can
be made for a Beurling prime number system Q 6= P , where P is the
rational primes. We prove that for each c > 0 there exists a Q such that
|N(x)− [x]| < c lnx and conjecture that this is the best possible bound.

Keywords. Analytic number theory, Zeta functions, Beurling primes, Mertens’
theorem, Beurling’s conjecture

1 Introduction
Beurling [1] considered sequences 1 < p1 ≤ p2 ≤ p3 ≤ ... of real numbers with
pn → ∞ and such that the multiplicative semigroup had N(x) ≈ Ax elements
less or equal to x, counting with multiplicities. He showed that if N(x) =
Ax + O (x/(lnx)η), where η > 3/2, then the number of pn ≤ x (henceforth
called π(x)) is equal to x/ lnx+ o (x/ lnx). Since the sequence pn satisfies the
prime number theorem, it is called a Beurling prime number system. Beurling
also showed that η > 3/2 is necessary in the sense that there is a “continuous
analog” of a prime number system, such that η = 3/2 and where the prime
number theorem does not hold. This idea has later been used by Diamond [2] to
produce a Beurling prime system with this property. The obvious interpretation
of the theorem of Beurling is that the theorem does not rely on the additive
structure of the natural numbers. This idea was known before Beurling, and
used by Landau [9] in 1903 in his proof of the prime ideal theorem, stating
∗Department of Mathematics, Uppsala University, P.O. Box 480, SE-75106 Uppsala, Swe-

den E-mail address: rikardo@math.uu.se The author is supported by grant KAW 2005.0098
from the Knut and Alice Wallenberg Foundation.

1



that given a fixed algebraic number field, the number of prime ideals in the
ring of integers with norm less than x is asymptotically x/ lnx. The proof uses
the multiplicative structure of the norms and the result of Weber [12] that the
number of ideals with norm less than x is Ax+O(xθ).

Our ambition is to generalize a theorem of Mertens [10] to Beurling systems,
giving a simple formula for calculating A given only the Beurling primes p.
Unless otherwise stated we will always assume that N(x) = Ax + o(x), where
A is a real number larger than 0.

Theorem 1.1. If P is a generalized prime number system for which N(x) =
Ax+ o(x) then

lim
x→∞

1
lnx

∏
p≤x

(
1− 1

p

)−1

= Aeγ .

Remark. γ is Euler’s constant defined by γ = limn→∞
∑n
k=1 k

−1 − lnn =
0.5772...

Let us introduce the function Π(x) =
∑∞
n=1(1/n)π

(
x1/n

)
. Under the as-

sumption π(x) = o(x) (which follows from N(x) = Ax + o(x), see the proof of
Lemma 2.3 for details) one can obtain that∫ x

1

dΠ(t)
t

+
∑
p≤x

ln
(

1− 1
p

)
= o(1)

as x→∞. Using this we see that if N(x) = Ax+ o(x) then

lim
x→∞

∫ x

1

dΠ(t)
t
− ln lnx = lnA+ γ.

As a special case of Theorem 1.1, we of course get a formula for the asymp-
totic number of ideals with norms less than x in the ring of integers of a fixed
algebraic number field.

The theorem does not look particularly surprising in itself, but let us remark
that at least one consequence is a bit peculiar. There is a well known heuris-
tic argument, using Mertens’ theorem together with the sieve of Eratosthenes
to estimate the number of primes less than x (see [5] for details). The argu-
ment produces the incorrect asymptotics 2e−γx/ lnx ≈ 1.12x/ lnx for ordinary
primes, and this calculation is valid for all Beurling prime systems and gives
the same asymptotics. In other words, the inconsistency between the sieve of
Eratosthenes and the prime number theorem seems to be caused by a general
property of all Beurling prime systems.

In the third chapter we will discuss a problem posed by Beurling [3] con-
cerning the smallest possible non-zero size of |N(x) − [x]|. We conjecture the
following:

Conjecture 1.2. If P is a Beurling prime system different from the set of
rational primes, then

lim sup
x→∞

|N(x)− [x]|
lnx

> 0.

We will prove this for some Beurling systems and give some indications of
why one should expect this. If the conjecture is true, it is sharp in the following
sense:
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Theorem 1.3. For every c > 0 there exists a generalized prime number system
other than the rational primes for which

|N(x)− [x]| < c lnx

for all x ≥ 1.

2 Mertens’ theorem
In this chapter we will prove Theorem 1.1. The proof uses integration theory for
Riemann integrals, and all integrals should be thought of as Riemann integrals,
rather than Lebesgue integrals. For instance, Lemma 2.4 is not true for Lebesgue
integrals. The proof will also make frequent use of the following lemma, which
can be found in many text-books (see for instance [6]) and which is just a special
case of integration by parts for Stieltjes integrals:

Lemma 2.1. Suppose that λn, n = 1, 2, ... is a nondecreasing sequence such
that λn →∞ when n→∞. Define C(t) =

∑
λn≤t cn and let φ(t) be a function

which is defined and has a continuous derivative for t ≥ λ1. Then∑
λn≤x

cnφ(λn) = C(x)φ(x)−
∫ x

λ1

C(t)φ′(t) dt.

Let us define what we mean by the Beurling integers corresponding to the
Beurling primes pn :

Definition 2.1. The Beurling integers are all commutative monomials in the
variables pn and the value of the Beurling integer is the corresponding product of
the values of pn. Furthermore, let N(x) denote the number of Beurling integers
such that their value is less than or equal to x.

Let us stress that we think of two Beurling integers (two monomials) as
different, even though their values (seen as real numbers) are the same. We can
also think of the Beurling integers as real numbers with multiplicities, but we
will adopt this equivalent formulation.

Definition 2.2. Given a Beurling prime number system P we define the func-
tion ζP (s) for Re(s) > 1 by

ζP (s) =
∞∑
i=1

1
nsi
,

where ni are the values of all Beurling integers.

Since the Beurling integers obey unique factorization by construction, the
zeta function has the usual Euler product

ζP (s) =
∏
p

(
1− 1

ps

)−1

.

Looking at Theorem 1.1 it is easy to realize that the theorem is related to the
behavior of ζP (s) near s = 1. Let us therefore study this behavior:
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Lemma 2.2. If P is a generalized prime number system for which N(x) =
Ax+ o(x) then

lim
s→1+

(s− 1)ζP (s) = A.

Proof. Let R(x) = N(x) − Ax = o(x). Choose X so that |R(x)| < εx/2 for
x > X, and s > 1 so that

s− 1 <
ε

2
∫X
1
|R(t)|
t2 dt

.

We have∣∣∣∣(s− 1)
∫ ∞

1

R(t)
ts+1

dt

∣∣∣∣ ≤
∣∣∣∣∣(s− 1)

∫ X

1

R(t)
ts+1

dt

∣∣∣∣∣+
∣∣∣∣(s− 1)

∫ ∞
X

R(t)
ts+1

dt

∣∣∣∣
≤ ε

2
+ (s− 1)

∫ ∞
X

ε

2ts
dt <

ε

2
+
ε

2
= ε,

and therefore
lim
s→1+

(s− 1)
∫ ∞

1

R(t)
ts+1

dt = 0.

Using Lemma 2.1 we have

lim
s→1+

(s− 1)ζP (s) = lim
s→1+

(s− 1)s
∫ ∞

1

N(t)
ts+1

dt

= lim
s→1+

(s− 1)s
[∫ ∞

1

A

ts
dt+

∫ ∞
1

R(t)
ts+1

dt

]
= lim
s→1+

[
sA+ (s− 1)

∫ ∞
1

R(t)
ts+1

dt

]
= A.

To prove Theorem 1.1 we need some estimate on the density of the set of
primes. It would for instance be enough to have the prime number theorem,
but due to the work done by Beurling [1] and Diamond [2], which we mentioned
in the introduction, we know that this is too much to hope for. Instead of
counting each prime with weight 1 we will count each prime with the weight
ln p/p. This gives us a weaker asymptotic formula, but this asymptotic formula
will be enough. The proof of the lemma uses the estimate π(x) = o(x). Even
though this may be thought of as well known to experts on Beurling primes, we
have still added a proof of this claim for the readers’ convenience.

Lemma 2.3. If P is a generalized prime number system then

lim
x→∞

1
lnx

∑
p≤x

ln p
p

= 1.

Proof. Let N(x) = Ax + R(x), where R(x) = o(x). If xn denote the values of
all Beurling integers, we define T (x) to be

T (x) = ln

 ∏
xn≤x

xn

 =
∑
xn≤x

lnxn = N(x) lnx−
∫ x

1

N(t)
t

dt = Ax lnx+ o(x lnx).
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Counting the times exp{T (x)} is divisible by the primes p we get the estimate

T (x) =
∑
p≤x

(
N

(
x

p

)
+N

(
x

p2

)
+ ...

)
ln p =

∑
p≤x

N

(
x

p

)
ln p+O(x).

It follows that

Ax
∑
p≤x

ln p
p

=
∑
p≤x

N

(
x

p

)
ln p+

∑
p≤x

(
Ax

p
−N

(
x

p

))
ln p

= Ax lnx−
∑
p≤x

R

(
x

p

)
ln p+ o(x lnx)

and therefore we are done if we can show that

∑
p≤x

R

(
x

p

)
ln p = o

x∑
p≤x

ln p
p

+ o(x lnx). (1)

From Lemma 2.2 and the Euler product, we may deduce that
∏
p

(
1− 1

p

)−1

is
divergent. Let p1, p2, ..., pr be the first Beurling primes and let Hr(x) be the
number of generalized integers less than x which are not divisible by pj for any
j = 1, 2, ..., r. Using the inclusion-exclusion principle we may write

Hr(x) = N(x)−
r∑
j=1

N

(
x

pj

)
+

r∑
j=2

j−1∑
k=1

N

(
x

pjpk

)
+ ...+ (−1)rN

(
x

p1p2...pr

)

= Ax

r∏
j=1

(
1− 1

pj

)
+ or(x)

and if we first choose r large enough and then x large enough this is less than
εx. But the Beurling primes pr+1, pr+2, ..., pπ(x) are less than x and not divisible
by any pj with j = 1, 2, ..., r and this gives the estimate

π(x)
x
≤ Hr(x)

x
+
r

x
.

This shows that π(x)/x = o(1) and we now have the tools needed to prove
equation (1). Take ε > 0. Since R(x) = o(x) there exists an x0 such that
|R(x)| ≤ εx for all x ≥ x0. R(x) is of course bounded on the interval [1, x0] and
we assume that |R(x)| < C for x ≤ x0. We also assume Cπ(x) ≤ εx. This gives
us∑
p≤x

R

(
x

p

)
ln p =

∑
x/x0≤p≤x

R

(
x

p

)
ln p+

∑
p<x/x0

R

(
x

p

)
ln p

≤ C
∑

x/x0≤p≤x

ln p+ εx
∑

p<x/x0

ln p
p
≤ Cπ(x) lnx+ εx

∑
p≤x

ln p
p

≤ εx
∑
p≤x

ln p
p

+ εx lnx.
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Using the previous lemmata it is possible to follow the proof of Mertens’
theorem from [7] closely:

Proof of Theorem 1.1. Take s > 1, φ(t) = ln(1 − t−s) and let x → ∞ in
Lemma 2.1 to get

ln ζP (s) = −
∑
p

ln(1− p−s) = s

∫ ∞
p1

π(t)
t(ts − 1)

dt

= s

∫ ∞
p1

(
π(t)− t

ln t

)
t−s−1 dt+ s

∫ ∞
p1

π(t)
ts+1 (ts − 1)

dt+ s

∫ ∞
p1

t−s

ln t
dt

= s

∫ ∞
p1

(
π(t)− t

ln t

)
1
t2
t−(s−1) dt+

∫ ∞
p1

π(t)
t2 (t− 1)

dt+
∫ ∞
p1

t−s

ln t
dt+ o(1)

as s → 1+. The third integral can be simplified using the change of variables
u = (s− 1) ln t, followed by integration by parts. The resulting formula is∫ ∞

p1

t−s

ln t
dt = ln

(
1

s− 1

)
− ln ln p1 +

∫ ∞
0

e−u lnudu+ o(1).

However, it is well known (see for instance [4]) that
∫∞
0
e−u lnudu = Γ′(1) = −γ,

thus

ln ζP (s) = s

∫ ∞
p1

(
π(t)− t

ln t

)
1
t2
t−(s−1) dt+

∫ ∞
p1

π(t)
t2 (t− 1)

dt+ ln
(

1
s− 1

)
− ln(ln p1)− γ + o(1).

From this it follows that I(s − 1) =
∫∞
p1

(π(t)− t/ ln t) t−2t−(s−1) dt can be
estimated using Lemma 2.2 as

sI(s− 1) = ln ζP (s)−
∫ ∞
p1

π(t)
t2 (t− 1)

dt− ln
(

1
s− 1

)
+ ln(ln p1) + γ + o(1)

= lnA−
∫ ∞
p1

π(t)
t2 (t− 1)

dt+ ln(ln p1) + γ + o(1).

To prove that I(0) is convergent we want to use a Tauberian theorem, Theorem
434 in [7], stating that:

Lemma 2.4. Let a > 1 and assume that the integral

I(δ) =
∫ ∞
a

x−δf(x) dx

is convergent for all δ > 0, that I(δ)→ l when δ → 0+ and that
∫ x
a

ln(t)f(t) dt =
o(lnx), when x→∞. Then I(0) is convergent as a generalized Riemann integral
and I(0) =

∫∞
a
f(x) dx = l.

The only thing we needed to verify in order to use the Lemma 2.4 is that for
f(t) = (π(t)−t/ ln t)t−2 we have

∫ x
p1

ln tf(t) dt = o(lnx). Using that π(x) = o(x)
together with Lemma 2.3 and Lemma 2.1 we see that∫ x

p1

ln tf(t) dt =
∫ x

p1

π(t) ln t
t2

dt−
∫ x

p1

dt

t
=
∑
p≤x

ln p
p

+ o(lnx)− lnx = o(lnx),

6



which means that

I(0) = lnA−
∫ ∞
p1

π(t)
t2 (t− 1)

dt+ ln(ln p1) + γ.

Once again using Lemma 2.1 we get

lim
x→∞

[∑
p≤x

ln
(

1− 1
p

)
+ ln(lnx)

]
= lim
x→∞

[
− π(x)

x
−
∫ x

p1

(
π(t)− t

ln t

)
t−2 dt

−
∫ x

p1

π(t)
t2 (t− 1)

dt−
∫ x

p1

dt

t ln t
+ ln(lnx)

]
= −I(0)−

∫ ∞
p1

π(t)
t2 (t− 1)

dt+ ln(ln p1) = − lnA− γ.

After changing signs and exponentiating we obtain

lim
x→∞

1
lnx

∏
p≤x

(
1− 1

p

)−1

= Aeγ .

By taking logarithms in Theorem 1.1, Taylor expanding − ln(1 − 1/p) and
then using Möbius inversion, we reach the equivalent form

M = lim
x→∞

∑
p≤x

1
p
− ln(lnx)

 = γ + lnA+
∞∑
k=2

µ(k)
k

ln ζP (k).

For rational primes Mertens calculated the limit to be M ≈ 0.2614972128 in
his article [10] from 1874. However, this limit is often called Meissel’s constant,
because as early as 1866, Ernst Meissel announced that∑

p

1
p(ln p)α

≈ 1
α

+ 0.2614972128

for “very small” α. The similarity of the numerical constants is of course no
coincidence, and the fact that they really coincide was proven by Schinzel [11].
In the next theorem we generalize Schinzel’s theorem to Beurling primes.

Theorem 2.5. If M is defined as above, then

lim
α→0+

[∑
p

1
p(ln p)α

− 1
α

]
= M.

Proof. Let Li(x) be the function defined for x > 1 by

Li(x) = lim
ε→0+

∫ 1−ε

0

dt

ln t
+
∫ x

1+ε

dt

ln t
.
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Put π(x) = Li(x) +R(x) and use Lemma 2.1 to get

M = lim
x→∞

∑
p≤x

1
p
− ln(lnx)

 =
Li(p1)
p1

− ln(ln p1) +
∫ ∞
p1

R(t)
t2

dt.

Using Lemma 2.1 again we have that∑
p

1
p(ln p)α

=
∫ ∞
p1

π(t)
t2(ln t)α

dt+ α

∫ ∞
p1

π(t)
t2(ln t)α+1

dt = I(α) + αI(α+ 1).

Since both
∫∞
p1

Li(t)t−2(ln t)−α dt and
∫∞
p1
R(t)/t2 dt are convergent for α > 0,

we see that I(α) is convergent for α > 0. Defining J(α) =
∫∞
p1

Li(t)t−2(ln t)−α dt
and using integration by parts we get that

J(α+ 1) =
1
α

1
(ln p1)α

Li(p1)
p1

+
1
α2

1
(ln p1)α

− 1
α
J(α).

This means that

lim
α→0+

[∑
p

1
p(ln p)α

− 1
α

]
= lim
α→0+

[
I(α)− 1

α

]
= lim
α→0+

[
J(α)− 1

α

]
+M − Li(p1)

p1
+ ln(ln p1)

= lim
α→0+

[
−αJ(α+ 1) +

1
(ln p1)α

Li(p1)
p1

+
1
α

(
1

(ln p1)α
− 1
)]

+M − Li(p1)
p1

+ ln(ln p1) = M.

3 Beurling’s conjecture
Finally, we shall study a problem posed by Beurling [3]. The problem can be
stated as follows:

Which estimation functions E(x) are such that |N(x)− [x]| < E(x) implies
that P is in fact the rational primes?

This question is of course still a bit vague, for instance, do we want the
estimate to hold for all x, or just for x large enough? Theorem 1.3 however
shows that E(x) = c lnx do not have this property for any c > 0, even if we
demand it for all x ≥ 1. This means that if Conjecture 1.2 is true, the question
of which x the estimate should hold for, is not essential.

Proof of Theorem 1.3. Given c > 0 we choose two rational primes pi and pj
such that the number q = pipj/(pi + pj − 1) satisfies that ln q > 8/c. We want
to prove that the system composed of the rational primes without pi and pj ,
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but with q instead, satisfies |N(x) − [x]| < c lnx. Let N1(x) be the number of
positive integers relatively prime to pipj , this is of course

N1(x) = [x]−
[
x

pi

]
−
[
x

pj

]
+
[
x

pipj

]
,

which can be seen using the principle of inclusion-exclusion. Summing over the
different powers of q we get

N(x) =
∞∑
a=0

N1

(
x

qa

)
.

This means that

N(x)− [x] = f

(
x

q

)
− f

(
x

pi

)
− f

(
x

pj

)
+ f

(
x

pipj

)
,

where f(x) =
∑∞
a=0

[
x
qa

]
. We can estimate f(x) by

f(x) =
∞∑
a=0

[
x

qa

]
<

∞∑
a=0

x

qa
=

xq

q − 1

and

f(x) =
∞∑
a=0

[
x

qa

]
=

[ ln x
ln q ]∑
a=0

[
x

qa

]
>

[ ln x
ln q ]∑
a=0

(
x

qa
− 1
)

>
xq

q − 1
− lnx

ln q
− 1− q

q − 1
=

xq

q − 1
− lnx

ln q
− 2− 1

q − 1

≥ xq

q − 1
− lnx

ln q
− 4.

Using these estimates, we get

N(x)− [x] = f

(
x

q

)
− f

(
x

pi

)
− f

(
x

pj

)
+ f

(
x

pipj

)

>
q

q − 1

(
x

q
− x

pi
− x

pj
+

x

pipj

)
−

ln
(
x
q

)
ln q

− 4−
ln
(

x
pipj

)
ln q

− 4

= − 2
ln q

lnx− 7 +
ln(pipj)

ln q
> − 2

ln q
lnx− 5,

and in the same way, N(x)− [x] < 2
ln q lnx+ 6. This means that |N(x)− [x]| <

2
ln q lnx + 6. Since pi, pj > q, we have that N(x) − [x] = 0 for x < q and this
gives us

|N(x)− [x]| < 2
ln q

lnx+
6

ln q
lnx < c lnx.
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The most natural object to study in order to try to estimate the difference
R(t) = N(t) − [t] is the difference between ζP (s) and ζ(s), where ζ(s) is the
Riemann zeta function. Using Lemma 2.1 we see that

ζP (s)− ζ(s) = s

∫ ∞
1

R(t)
ts+1

dt (2)

for Re(s) > 1. We are interested in the case when R(t) is small and in this
case the right hand side of (2) is well defined for larger half planes. If we, for
instance, assume that R(t) = O((ln t)n) for some n, then the right hand side
gives an analytic continuation to Re(s) > 0. However, it is not possible to get
estimates that would allow us to pass even further to the left. This can be seen
through the following proposition:

Proposition 3.1. Let Q be a system of Beurling primes. We have that
|N(t)− [t]| = o(1) if and only if Q = P, where P is the rational primes.

Proof. Let R(t) = N(t) − [t]. Since R(t) is integer valued the only possibility
to get R(t) = o(1) is if R(t) = 0 for all t ≥ t0. This implies that the value of
all Beurling integers must be rational integers, since if some Beurling integer is
not an integer, then there exists arbitrarily large Beurling integers, which are
non-integers and that is a contradiction. In the same way we see that no integer
can appear as a Beurling integer twice. Using these observations we see that
R(t) = o(1) imply Q = P and the other implication is obvious.

Proposition 3.1 shows that one needs something more than just an estimate
on R(t) if one wants to make a meromorphic continuation of ζP (s) to something
larger than Re(s) > 0. Thus the line Re(s) = 0 can be thought of as some kind
of natural boundary for the zeta functions. The general idea is of course that the
further to the left we can push the analytic continuation, the better asymptotics
we will get and nice boundary behavior will also lead to good asymptotics. Our
main belief is that it is not possible to extend the function (ζP (s) − ζ(s))/s
analytically beyond the line Re(s) = 0 and that the behavior at Re(s) = 0 is
never better than an infinite number of simple poles and that this gives the
property in Conjecture 1.2.

Let us look at Beurling systems Q constructed as

Q = (P\{p1, p2, ..., pm})
⋃
{q1, q2, ..., qn}, (3)

where P is the set of rational primes and qj are real numbers larger than 1.
It was a system of this kind that we used to show Theorem 1.3 and since we
believe this theorem to be sharp, we believe that these systems give the best
possible estimates. Similar systems, but where the “added primes” are integers,
have been studied by Lagarias in [8]. His main result states that all Beurling
prime systems, such that all Beurling integers are integers themselves and such
that the system have the so called Delone property, are systems of this type,
i.e., the Beurling primes are given by (3), where P is the set of rational primes
and qj are integers. The Delone property is the property that all gaps between
two consecutive Beurling integers are bounded and bounded away from zero. In
the case of integers, the last property is of course the same as the property that
two different Beurling integers always have different values (unique factorization
as Lagarias calls it). We should observe that if two different Beurling integers
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have the same value α, then there are at least n+ 1 different Beurling integers
having the value αn, hence the remainder term is of at least logarithmic growth.
This shows that a counterexample to Conjecture 1.2 must consist of Beurling
integers which all have different values. One can develop this idea further to
show that a counterexample to Conjecture 1.2 must have really bad Diophantine
approximation properties, but to show the conjecture in such a way seems very
hard. There is an open problem (given by Lagarias) of classifying all Beurling
systems with the Delone property. To prove that there are no Beurling systems
with Delone property such that some Beurling integer is a non-integer (and
thereby answering Lagarias question) seems like a first step towards the kind of
Diophantine approximation properties that are needed.

Let us try to illustrate the connection between the boundary behavior of ζP
and the size of R(t). We use the simple case of when we throw away a finite
number of primes and add a finite number of Beurling primes. First of all we
may observe that ζQ(s) = ψ(s)ζ(s), where ζ(s) is the Riemann zeta function
and

ψ(s) =

∏m
i=1

(
1− 1

ps
i

)
∏n
i=1

(
1− 1

qs
i

) .
We see that ψ(s) has poles on Re(s) = 0 with a few exceptions. If there exists an
injection j such that for all qi there is a corresponding pj(i) such that qki

i = pj(i)
for some positive integer ki, then ψ(s) has no poles, but otherwise we have an
infinite sequence of simple poles on the line Re(s) = 0. Let us try to understand
this injection criterion a little better. First of all it is easy to realize that if such
an injection exists then N(x) = Ax + O(1). Let us prove this: We let Z be all
integers which are products of the primes

(P\{p1, p2, ..., pm})
⋃
{pj(1), pj(2), ..., pj(n)}.

Z is nothing but all integers relatively prime to some product of thrown away
primes. It is easy to see that the number of elements in Z less than x is
A1x+O(1). Let B denote the finite set

B =

{
n∏
i=1

qlii ; 0 ≤ li < ki

}
.

Our full system of Beurling integers is BZ, and this clearly has Ax + O(1)
elements less than x. In Lemma 3.2 we will show that A 6= 1 if the injection
exists.

If j is not injective, then we will have two different Beurling integers with
the same value, and by the argument above this gives that N(x) − Ax grows
like C lnx for a sequence of x. The more interesting case is if we add a new
Beurling prime q, which is not the k:th root of one of the pi. Also in this case
R(x) = N(x) − Ax will be of the order C lnx for an infinite sequence of x. To
see this we use the inclusion-exclusion principle to write

N(x) =
∑

d|
Qm

i=1 pi

∑
k≥0

µ(d)
[
x

qkd

]
,
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where we have used the multi-index notation qk =
∏n
i=1 q

ki
i and µ(d) denotes

the Möbius function. Since

A =
∑

d|
Qm

i=1 pi

∑
k≥0

µ(d)
1
qkd

=
∑
qkd<x

µ(d)
1
qkd

+O

(
1
x

)
,

this implies that

R(x) =
∑
qkd<x

µ(d)
{

x

qkd

}
+O(1), (4)

where {y} denotes the fractional part of y. If qk = pi, the identity qk × d =
1× (pid) gives large cancellation in the sum above, but otherwise we can choose
x so that the cancellation is small. Since the sum contains C(lnx)n terms
asymptotically, we will get rather large R(x) for some x. In other words, in
general we have that

N(x)−Ax = R(x) = O ((lnx)n) , (5)

but if there are no identities of the form qk = pi, then for some x, this is a good
approximation. Let us make this even simpler, just to illustrate what happens.
Let us look at two different Beurling prime systems, in both systems we have
thrown away the prime 2, but in the first case we add the prime

√
2 and in the

second case we add the prime 4. In the first case we have ζQ(s) = ζ(s)(1+2−s/2),
a zeta function without poles on Re(s) = 0 and the Beurling integers are Z∪

√
2Z,

which gives N(x) = [x] + [x/
√

2]. In the second case ζQ(s) = ζ(s)(1 + 2−s)−1,
which have poles for s = iπn/ ln 2, where n is an odd integer. The Beurling
integers are the ordinary integers such that the number of times they are divisible
by 2 is even. Equation (4) shows that we have

N(x) =
2
3
x+

[log2 x]∑
k=0

(−1)k
{ x

2k
}

+O(1).

Choosing x written in binary notation as 1010...10 gives |N(x) − 2/3x| ≈
1/6 log2 x.

Let us prove that the zeta functions of systems discussed above have poles
on Re(s) = 0 as long as N(x) = x+ o(x) :

Lemma 3.2. Let p1, p2, ..., pm be rational primes and let q1, q2, ..., qn be ordinary
real numbers larger than one. Define ψ(s) to be

ψ(s) =

∏m
i=1

(
1− 1

ps
i

)
∏n
i=1

(
1− 1

qs
i

)
and assume that ψ(1) = 1 and that ψ(s) 6≡ 1. Then ψ(s) has a pole ρ with
Re(ρ) = 0.

Proof. If n = 0, then ψ(1) = 1 shows thatm = 0, which gives ψ(s) ≡ 1. Thus we
may assume that n > 0. Furthermore, we assume that ψ(s) has no pole ρ with
Re(ρ) = 0. We can without loss of generality assume that pi 6= qj for i = 1, ...,m
and j = 1, ..., n. ψ(s) will have a pole at s = 2πi/ ln qj unless one of the pi fulfill
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pi = qkj , where k ≥ 2. If pi = qk1j = qk2l then (1 − p−si )(1 − q−sj )−1(1 − q−sl )−1

will have a pole at s = 2πik1k2/ ln pi and therefore we may order pi in a way
so that pi = qki

i for i = 1, ..., n and ki ≥ 2. From this it is obvious that we must
have m ≥ n. The condition ψ(1) = 1 can now be rewritten as

m∏
i=n+1

(
1− 1

pi

)−1

=
n∏
i=1

1− 1

q
ki
i

1− 1
qi

=
n∏
i=1

(
1 +

1
qi

+ ...+
1

qki−1
i

)

=
k1−1∑
a1=0

k2−1∑
a2=0

...

kn−1∑
an=0

1∏n
i=1 q

ai
i

=
1∏n

i=1 q
ki−1
i

k1−1∑
a1=0

k2−1∑
a2=0

...

kn−1∑
an=0

n∏
i=1

qai
i .

We observe that
∏n
i=1 q

ai
i is the natural basis for the field extension Q(q1, q2..., qn)

and in particular the right hand side must be an irrational number. But the
left hand side is obviously rational and therefore we have a contradiction and
we draw the conclusion of the theorem.

We have tried to illustrate that a close analysis of the behavior of the zeta
functions on the line Re(s) = 0 might be the key to proving Conjecture 1.2.

Proposition 3.3. There are no Beurling prime number systems such that ζP
has a pole of order n at s = 0 and such that |N(x)− [x]| = o((lnx)n).

Proof. Assume that |N(x)− [x]| = o((lnx)n). For Re(s) > 0 we have that

ζP (s) = ζ(s) + s

∫ ∞
1

N(t)− [t]
ts+1

dt,

and the estimate above and the fact that ζ(s) does not have a pole at s = 0
immediately gives

ζP (s) = o

(
s

∫ ∞
1

(ln t)n

ts+1
dt

)
= o(s−n)

as s→ 0+. This clearly shows that ζP can not have a pole of order n at s = 0.

An analogous calculation shows that if the zeta function of a Beurling system
has a pole of order n at s ∈ iR, then it does not have the property that |N(x)−
[x]| = o((lnx)n−1). Unfortunately we can no longer rule out that |N(x)− [x]| =
o((lnx)n), which is what we want to rule out. To get a better theorem we will
have to assume that the number of poles is infinite. However, in some cases
Proposition 3.3 is enough, and gives us the estimates we have argued for above
more directly:

Corollary 3.4. Let Q = (P\{p1, p2, ..., pm})
⋃
{q1, q2, ..., qn}, where P is the

rational primes, m < n and qj > 1 for j = 1, 2, ..., n. Then we have

lim sup
x→∞

|N(x)− [x]|
lnx

> 0.

13



Proof. We have that ζQ(s) = ψ(s)ζ(s), where ζ(s) is the Riemann zeta function
and

ψ(s) =

∏m
i=1

(
1− 1

ps
i

)
∏n
i=1

(
1− 1

qs
i

) .
Since ψ(s) has a pole at s = 0 and ζ(0) 6= 0 we are done.
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