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Abstract

This paper continues the work done in [16] about the supremum norm
of eigenfunctions of desymmetrized quantized cat maps. N will denote
the inverse of Planck’s constant and we will see that the arithmetic prop-
erties of N play an important role. We prove the sharp estimate |¢]- =
O(NY*) for all normalized eigenfunctions and all N outside of a small
exceptional set. We are also able to calculate the value of the supremum
norms for most of the so called newforms. For a given N = p", with
n > 1, the newforms can be divided in two parts (leaving out a small
number of them in some cases), the first half all have supremum norm
about 2/4/1 £ 1/p and the supremum norm of the newforms in the second
half have at most three different values, all of the order N*/. The only
dependence of A is that the normalization factor is different if A has eigen-
vectors modulo p or not. We also calculate the joint value distribution of
the absolute value of n different newforms.

1 Introduction

This paper studies one of the simplest, and perhaps most popular, models in
quantum chaos, the so called quantized cat map. It is the quantization of the
discrete time chaotic dynamical system where in each time step the point x €
T? = R?/Z? is mapped to Ax € T? for some given hyperbolic (i.e. with |tr(A)| >
2) matrix A € SL(2,Z). The dynamics is quantized through a unitary operator
Un(A) (called the quantum propagator) acting on L?(Zy) = L*(Z/NZ), which
is referred to as the state space. This space is of course isomorphic to C¥ and
the interest lies mostly within studying the properties of the eigenfunctions of
Un(A) as the dimension N of the state space grows to infinity. The limit as N
goes to infinity is called the semiclassical limit and N~! can be interpreted as
Planck’s constant. One hopes to find properties that correspond to the fact that
the classical system is ergodic. It is for instance natural to study the measures
the eigenfunctions induce on the torus and see if they get close to the Lebesgue
measure in the limit. It is well known that Schnirelman’s theorem holds for
the cat map, or in other words, that the cat map is quantum ergodic [4, 19].
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This means that the induced limit of most eigenfunctions converge weakly to
the Lebesgue measure. More formally the statement can be written as follows:
Given a triangle of eigenfunctions ¢y ; € L?*(Z/NZ), where j = 1,2,..., N and
N =1,2,3, ... there exist sets E(N) € {1, ..., N} satisfying

lim LE(N)

N-ox N =1

such that for all functions f € C*(T?) and all maps j: N € N — j(N) € E(N)
we have

Jim Op (£ g s> = | fa)da.
— 00 T2

The obvious question is if we can replace “most eigenfunctions” with “all eigen-
function”, i.e., whether we can take F(N) = {1,2,3,..., N} in the statement
above or not. This is the question of quantum unique ergodicity (QUE). It
was proven by Faure, Nonnenmacher and De Biévre that the cat map is not
quantum unique ergodic [7]. Given any periodic orbit of the dynamics (for in-
stance the origin), they were able to construct sequences of induced measures
which converge to 1/2 times Lebesgue measure plus 1/2 times normalized Dirac
measure of the orbit. The phenomenon when induced measures concentrate on
periodic orbits is called scarring and the result shows that this can occur.

The reason that the quantum unique ergodicity fails is that for some N the
order of A modulo N is extremely small. Small order leads to large dimen-
sions of the eigenspaces of Uy (A) and that means a good possibility to find a
bad eigenfunction. To cope with this problem, Kurlberg and Rudnick viewed
Un(A) as an element in a group of commuting operators and studied their joint
eigenfunctions. In this way they desymmetrized the problem and made the di-
mensions of the studied subspaces small. In analogy with the theory of modular
forms they called the elements in the group Hecke operators and the common
eigenfunctions Hecke eigenfunctions. Kurlberg and Rudnick showed that the in-
duced measures of Hecke eigenfunctions converges weakly to Lebesgue measure,
i.e., that the desymmetrized model is quantum unique ergodic [13].

Instead of studying the induced limits this paper is devoted to studying
the supremum norm of the eigenfunctions. This question has received a lot
of attention in quantum chaos, for instance in [8, 1, 9, 17, 2, 3|, but in this
introduction we will try to focus on the results for the quantized cat map.
To understand these results two properties of Uy (A) are important to know:
First of all, if N = p"'p5?...p"" we can define Un(A) as the tensor product of

Upﬂ_mj (A) for j = 1,...,r. Thus we may restrict ourselves to the case N = p",
J

where p is a prime. Secondly, for N = p" we will define Uy (A) so that it gives a
representation of SL(2,Zy). This enables us to define the Hecke eigenfunctions
as elements in the representations corresponding to a specific character when Uy
is restricted to some abelian subgroup of SL(2,Zy) which contains the image
of Ain SL(2,Zy).

In [16] it was observed that there are large differences between the case n = 1
and all other possible values of n. One of the reasons for this is the existence of
invariant subspaces of L?(Zy) such that the functions in these subspaces have
their support on ideals of Zy. These representations are isomorphic to Uy for
some N'|N and this isomorphism is easy to write down. We will call the Hecke
eigenfunctions belonging to any of these subspaces oldforms, in analogy with the



0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 1: The supremum norm of all Hecke eigenfunctions of two different
matrices A. Both pictures are for the prime N = 1999, but in the left picture A
makes N split and in the right picture A makes IV inert. There exists an element
in the Hecke group such that the corresponding eigenvalues, when evaluated at
this element, are listed with growing phase in the interval (—m,7].

theory of modular forms. The Hecke eigenfunctions orthogonal to the oldforms
are called newforms. We will give an exact definition of oldforms and restate
the theorem mentioned above in Chapter 3.

Another large difference observed in [16] is that when N = p™ and n > 1 the
supremum norm of newforms have very distinct values (compare Figure 1 with
Figure 2). These values were calculated in the case when n was even. When N
is a prime we do not have this behavior. The main interest of this paper is to
generalize the ideas of [16] in order to prove the observation and calculate the
supremum norms also in the case when N = p™ and n > 3 is odd. We will see
that the results are very similar to the results obtained in [16]. More precisely
we will show that given a matrix A and a prime power N an arithmetic condition
will split the set of newforms in two parts of the same size, leaving out a small
number of newforms. In the first part all the newforms have supremum norm
in a very small interval just below 2/4/1 + 1/p, where the sign depends on if A
has eigenvectors or not modulo p. The newforms in the second part have much
larger supremum norms, all about N'/6. If n = 0 (mod 3) or if p = 2 (mod 3)
all newforms in this part have exactly the same supremum norm and otherwise
the supremum norms assumes at most 3 different values. Note that we need
to desymmetrize to get our results, since obviously the subspaces need to be
one dimensional if we want to calculate the supremum norm of its normalized
elements.

As a consequence of our formulas for the supremum norm of newforms we
get estimates on the supremum norm of general Hecke eigenfunctions. The
best result for the supremum norm of Hecke eigenfunctions for a general N was
obtained by Kurlberg and Rudnick in [14]. They prove that for a fixed hyper-
bolic matrix A, the supremum norm of a L?-normalized Hecke eigenfunction is
bounded by O(N3/8+€). Once again this is in great contrast to the estimates
one can get if N is a prime because then one can do much, much better. If N is
a prime, the supremum norm is bounded by 2/4/1 + 1/N, where the sign is the

same as in prime power case above [14, 12]. In Figure 1 we can see that these
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Figure 2: Here N = 113 and we only print the supremum norms of newforms.
The left picture is when 11 is split while the right picture is when 11 is inert.
The ordering is the same as above.

bounds are essentially sharp. As a consequence of these good bounds the tensor
decomposition tells us that if N is square free the supremum norm is bounded
by O(N€) [12]. However, the square free case is special because in [16] I showed
that for N = a2b there exists a Hecke eigenfunction such that its supremum
norm is at least a'/2. In particular if N = a? we have an oldform with supre-
mum norm N'/4. The theorem below tells us that this is the maximal value,
i.e. we show that the supremum norm is always O(N'/*). These estimates are
not for a general N, but almost. Fixing a hyperbolic matrix A we throw away
a finite number of “bad primes”; the first “bad prime” is 2, then all primes such
that A is upper triangular modulo p are “bad” and finally the primes such that
p|tr(A)? — 4 are “bad”. This is obviously a finite set of primes since A is not
upper triangular itself. Now choose a positive integer m. We say that N is good
with respect to m if no “bad prime” p is such that p™|N. It is easy to see that
the proportion of integers which are good tends to 1 as we let m grow. Our
theorem can now be stated as follows:

Theorem 1.1. Fiz a hyperbolic matriz A € SL(2,Z) and an integer m € Z .
If N is good with respect to m and 1) € L*(Zy) is a L’ -normalized Hecke eigen-
function, then

|9] = Om (N4,

Remark. The reason we do not study the exponents of “bad primes” is mostly
technical. I have no reason to suspect that the estimate should not hold for any
N, other than that calculations become much more difficult for “bad primes”.

Let us turn to the question of value distribution of the Hecke eigenfunctions.
We will let N = p", where n > 1 is fixed and let p grow to infinity. In [14]
Kurlberg and Rudnick studied the same problem, but for n = 1 and A diag-
onalizable modulo p. They showed that the value distribution of the absolute
values converge to a semi-circle measure on the interval [0,2] and that the con-
vergence of the values of different eigenfunctions are statistically independent.
The semi-circle measure can be interpreted as the image of Haar measure of
SU(2) under the map g — |tr(g)|. They went on in [15] to conjecture that the
fluctuations of the normalized matrix elements converge, as N go to infinity



through the primes, to random variables given by sums of independent random
variables with the measure given by the image of Haar measure of SU(2) under
the map g — tr(g). In [10] Kelmer showed that for N = p", with n > 1 fixed,
the fluctuations do indeed converge to a sum of independent random variables
in the conjectured manner. The distribution of the random variables in this case
is however not the same as when N is prime, instead the distribution is given
by the image of the Haar measure of the normalizer of the maximal torus of
SU(2) under the map g — tr(g). With this result in mind and the conjecture of
Kurlberg and Rudnick it seems like a good guess to hope to show that the value
distribution of the absolute value of newforms converge to the image of Haar
measure of the normalizer of the maximal torus under the map g — | tr(g)|. This
is also precisely our result. We also show that if d newforms are chosen from
different subspaces (to be specified later) their absolute values are statistically
independent. The exact statement is the following:

Theorem 1.2. Fix n > 1 and let p grow through the primes. Let f be a
continuous bounded function on R® and let Yy, € Vo, for some C; € Z;Wz]
where j = 1,2,....,d be d sequences of normalized newforms. Assume also that

C; # C; (mod p) for i # j. Then

lim = 3 (@) ()@ = [ 100
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Remark. The measure p is written down explicitly in Equation 13 and the spaces
Ve are defined in Definition 3.7 for n odd and Definition 5.5 in [16] for even n.

Theorem 1.2 says that the distribution of the absolute value of “generic”
newforms will converge to the limiting measure and that this convergence is
statistically independent if the C; are different modulo p.

Making only small corrections to the proof of Theorem 1.2 one can also
evaluate autocorrelation functions by showing that the absolute value of i at
different points (“generically chosen”) is also statistically independent. In other
words, one can easily obtain:

Theorem 1.3. Fix n > 1 and let p grow through the primes. Let f be a
continuous bounded function on R? and let Yp € Vo for some C € Z;[nm be a
sequence of normalized newforms. Let x, ;, where j = 1,2,...,d be d sequences
of points xp ; € Zyn such that xp; # xp; (mod p) for i # j. Then

lim i Z f(|¢p($+$p,l)|a Wp(x‘i'xpﬂ)‘a e Wp(x‘i'xp,d)‘) = fRd f(y)dud(y).

—w P
P p TELpn

Remark. We will only prove Theorem 1.2 and leave the corrections in order to
prove Theorem 1.3 to the reader.

Note that there is no interest in studying also the oldforms, since their
value distribution trivially converges to zero. We also remark that our value
distribution (in contrast to the semi-circle measure) shows a large probability
to be close to 2 (see the beginning of Chapter 1.2 for a more explicit formula
for the value distribution) and this explains why we obtain our lowest line in
Figure 2 and why we do not see this line in Figure 1.

Since the entropy of quantum states has received so much recent attention it
seems appropriate to observe that the value distribution gives us the asymptotic



behavior of the Shannon entropy of the newforms. We see that the entropy is
maximal, i.e., the following corollary holds:

Corollary 1.4. The Shannon entropy of any sequence ¥y of normalized new-

forms fulfills
h(¢)

Nl—II}L 1ogN -

This is in great contrast to the entropy of oldforms, which can be as small
as 1/2log N.
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3 Basic definitions and concepts

The dynamical system we will quantize can be described as a matrix A €
SL(2,Z) acting on the torus R?/Z? by ordinary multiplication. The assumption
that the entries are integers makes this well defined and the assumption that
the determinant is one makes the action measure preserving with respect to
the Lebesgue measure of the torus. If we assume that |tr(A)| > 2 (A4 is then
called hyperbolic) the system will be chaotic. The quantization of a dynamical
system is often divided into a quantization of the kinematics and a quantization
of the dynamics, but for our purposes we are only interested in the quantization
of the dynamics. This is a unitary operator Uy (A) acting on the state space
L?(Z/NZ) with the inner product

G =5 X QU@

QEZLN

The integer N plays the role of the inverse of Planck s constant. In order for
our quantization to be consistent with the quantization of the kinematics we
will make the assumption that A is congruent to the identity modulo 2 and if N
is even we assume that A is congruent to the identity modulo 4. Note that these
assumptions does not tell us anything about the image of A in SL(2,Zy) when
N is odd, which will be the main concern in this paper. Let N = pj*..plm.
The Chinese remainder theorem gives us an isomorphism between L? (Zy) and

®;-n:1 L2 (Zpr_bj) . Using this decomposition we define Uy (A) := ®]., Ui (4),
J : J
where U n; (A) is the Weil representation of the image of A in SL(2, Zpr_zj) for

J J
odd p and something similar for p = 2. Let us first assume that p is odd and
come back to the special case p = 2 later. For odd p this representation of
SL(2,Zyn) is easiest to describe by its action on the elements

10 t 0 01
ny = , Gy = and w =
01 0¢t ! —-10

which generate the group. Before we write down the formulas for the action on
the generators, let us first introduce some notation to simplify the expressions:



We will use the notation e(x) = ¢*>™ and denote the inverse of 2N /p" modulo

p" by r. We will use the Legendre symbol (%) and also write

- (3

1 if n is even
e(p) (%) if nis odd ’

and

where
(p) — lifp=1 (mod 4)
W=Viifp=3 (mod 4) °

Definition 3.1. For odd p, U,» is the unique representation of SL(2,Zyn)
acting on L*(Z,») satisfying

rbr?

Uy () th(a) = ( " ) b(@) )
U (a0 ib() = A(tw:c) @)

Upn (W)t () = \/;T Uezzln Wy <2my> 3)

For p = 2 the construction is similar but one has to be very careful. First
of all we identify A with its image in SL(2,Zon+1) and note that due to our
assumption above we know that the image lies within the subgroup of matrices
congruent to the identity modulo 4. This subgroup is generated by a;, ns, and
nl where t =1 (mod 4) and b = ¢ = 0 (mod 4). We now define Uy~ acting on
L*(Zyn) by

Uz u)o) = (o ) w0 (@)

Uarlai(o) = (2) vtea) )
Upn(nF) = H 'Usn (n_.)H, (6)

where

@) = = % v (37). ™

YEZLan

Hecke operators of quantized cat maps are often introduced in the language
of algebraic number theory. Our definition is equivalent, but use a more well
known vocabulary:

Definition 3.2. The Hecke operators corresponding to the matrix A are all the
operators written as Uy (g), where g = I +yA and g has determinant congruent
to 1 modulo N. A function which is an eigenfunction of all Hecke operators is
called a Hecke eigenfunction.

Definition 3.3. For n > m > k we let

Su(m.k) = {f € L* (Zyn) :p™ |z —y = f(x) = f(y) A p" f 2= f(z) =0}.



In other words is S, (m, k) the set of all functions with period p"” and with
support on the ideal kapn. We are interested in these subspaces because of the
following theorem in [16]:

Theorem 3.1. Let p be an odd prime. S,(n—m,m) is invariant under the ac-
tion of Upn and this action is isomorphic to the action of Upn—2m on L2(an72m).
The intertwining operator Ty, : Sp(n —m,m) — L*(Zyn-2m) is given by

(Tmt)(x) = p~ "2y (p™ ).

A Hecke eigenfunction ) € L?(Z,n) is called an oldform if 1) € Sy, (n —1,1)
and a newform if ¢» € S,,(n — 1,1)". In the rest of this chapter and in Chapter 4
we will assume that N = p?**1, where p is an odd prime. Observe that many
of our calculations will be done modulo p*, and that this is something else than
modulo N. We also make the assumption that A is not upper triangular modulo
.

In [16] we introduced a “preferred basis” in order to evaluate the newforms
at specific points, this time we have to study more than just one basis. If we let
0, denote the function d, : Zny — C which is 1 at  and 0 at every other point,
the interesting functions can be defined by:

Definition 3.4. Given z = <i1> € Z% and j € Fp, let (j, : Zy — C be
2

defined by
rjt? Tt
Ga= D, ¢ (7) e (W) Oy pht-

tEZPk+1
Also define
x1t
C’L,z = \/ﬁ Z 6( L >6I2+pk+1t.

k
p
tEZpk

Remark. Note that the functions (; . are normalized so that [[(;.[3 = p~*.

In particular we can select two preferred orthogonal bases corresponding to
j = 0and j = oo in the definition. If j = 0 we let 1 € {1,2,...,p"*'} and
xo € {1,2,....,pF} and if j = o0 we let x; € {1,2,...,pF} and x5 € {1,2,...,p"*1}.
We will use the fact that if we pick other representatives for Z,r+1 x Z,x and
Dy X Zipr+1 Tespectively, this only changes the functions by multiplication by
a phase. Easy calculations, using disjointness of support and geometric sums,
show the following lemma:

Lemma 3.2. Ifz # 2’ (mod p*) then ((j,(jr 2 = 0.

It was observed in [16] that the assumption made above stating that A is not
upper triangular makes it possible for us to assume, without any further loss of
generality, that the Hecke operators are given by {Un(h);h € Hp}, where Hp
is defined by:

Definition 3.5. Given D € Zy we let

a bD
Hp = ) ca,beZn , a?—=Db?> =1}.
a



We will use the following standard terminology from algebraic number the-
ory: If D is a quadratic residue modulo p then A and all the matrices in Hp
are diagonalizable modulo N and we say that p is split. If D is not a quadratic
residue modulo p then it is not possible to diagonalize A or any matrix in Hp
modulo N and we say that p is inert. Finally if p|D then p is called ramified.

Definition 3.6. Let ./ : Zf}k — Zy be defined by A (z) = 27 — Da3.
Definition 3.7. For C € Z,» we define

VC = C_B (CCO,I'

$€ZPk+1 XZpk
N (x)=—C

Note that Sopi1(2k,1) = (—Bp‘x Céo,z S ®p2\CVC' On the other hand it is
obvious that @Z)z‘c Ve S El')p\c Ve, but if 22 — D22 = 0 (mod p) implies that
z =0 (mod p), ie., if p is inert, then P, Vo = D,, Clow = S2k+1(2k,1).
Note also that Lemma 3.2 implies that (; , € Vo iff A (z) = —C.

ab

Definition 3.8. For B =
cd

) € SL(2,F,) we let T(B) : P'(F,) —» P'(F,)
be defined by

aj +b

cj+d

j»—)

Remark. By this we mean that o0 — a/c and that T(B)j = o whenever the
denominator is zero. Note that if the denominator is zero, then the numerator
is nonzero.

4 Main calculations

We want to study the functions (; . because they transform in a simple manner
when we act with Uy (B).

ab
Lemma 4.1. Assume B = p € SL(2,Zy) and let ' = Bx. Then
c

Un (B) (.« is equal to (p(p); o multiplied with some phase. If j € F,, is such
that p f cj + d we have that

Un (B)Gjm — (cj + d) . (T(:Z:'lzc'Q — T1T2)

» N ) Cr(B)j.a-

Proof. The following identities are straightforward to check (similar calculations



were done in [16]):

Un ()i = (Tb“)cmb)j,w Vj € P(F,)

UN<at><”=(]§)<Ta, ¥j e P(F,)
<”=(;> (“’“‘“2)@ s ViEFS
oo ()

Since all elements in SL(2,Zy) can be written as a product of ny, a; and w,
the first part of the lemma follows directly. To prove the second part we note
that the identity holds for the generators and that both sides of the equality is
multiplicative. However the identity holds only for j # oo and p } ¢j + d. This
means that if we think of Un(B) as a product of Ux(nsp), Un(a;) and Uy (w),
and try to apply the identity above we might run into trouble if the “new” j does
not have this property. Looking through the table above, it is easy to see that
the only time that this can happen is if we are forced to apply Un(w) to (o.-
But since the result at the end will be some phase times (j .+, where j’ # 00, we
know that we later must apply Uy (w) to some (, »» (once again looking through
the table above). From this it is easy to realize that it is enough to check that
Un(w)Un (B )Un(w)Co 5 is what it should be for all B’ which is a product of
matrices of the form n, and a; (i.e. upper triangular with determinant one).
But such matrices can be written as just nyas, thus it is enough to show that

U @UNUn (U () = (21 ) ¢ (2 G

Observing that

and applying the identities above this is straightforward. [l

We see that these functions behave a lot like the (,—functions in [16] (see
Lemma 5.1 in [16] for details). The difference is that we now have to intro-
duce the extra parameter j. The main problem is how to use the theory for
(,—functions even though we have this new parameter. The (, —functions were
similar to the functions studied by Knabe [11] and he offers a solution to this
problem in a special case: He only studied the case when NN is a square, but
in the end of the paper, he remarks that his construction can be carried out,
not only if IV is a square, but also if A has an eigenvector modulo N. In our
language this corresponds to the case that p is not inert and this can be seen
also in our case because if p is not inert there exists some jo € P'(F,) such that
T(h)jo = jo for all h € Hp. That means that the basis (j, , is transformed to
itself as the (,—basis did. The case jo = 0 is equivalent to p ramified, jo = o0 is
equivalent to A upper triangular modulo p and if jo € F)’ p is split. Note that

10



if p is inert no such jy exist. The main disadvantage with this approach is that
there seem to be no way to handle the inert case with this method. Since we
want a general theorem we will instead use Lemma 4.3 to handle the problems
caused by j.

We also note the resemblance between our functions and the basis studied
by Degli Esposti et al in [5, 6]. They also study the situation where A has an
eigenvector modulo N.

Corollary 4.2. If iy € Vo, then

1 tp*D rCt
U (tp’”l )i (p—’“> v
Proof. 1) can be written as a linear combination of (y , such that 4 (z) = —C.
1 tpk+1D
Put 2’ = x. We see that
tpk+1 1

1 "D R r(z)xh — x122) R
l =€ _— z!
N 1 0, N 0,

r (x% + Da:%) t (xl + tpk+1Dx2) s
=e - % Z € 1l 6I2+tpk+111+spk
p SEZpk+1 p
T (x% + DI%) t x1 (s — tpxy)
=€ k Z € k+1 Oy 4sph
p SEZL k+1 p
r A (x)t
I
p
from which the statement follows. O

In the rest of this chapter we will assume that N = p?**! fulfills that k& > 0,
i.e., that IV is not a prime.

Lemma 4.3. If ¢ is a normalized Hecke eigenfunction then there exists an
element C' € Z,. such that ¢p € Vo. If p neither divides C nor D, then the
following holds:

1. For all (o 5 € Vo such that p | 2 we have

1

e

2. For all ( , € Vo such that p f x1 we have

¥, Co.e)| =

s
N——
3
[
ol

[<¥, Co )l =

11



Proof. That v € Vg for some C follows directly from Corollary 4.2 since an
eigenfunction can not be a sum of eigenfunctions corresponding to different
eigenvalues. For y € ZZQ,, let 4, denote the projection of ¢ onto the space

@ (CCO.,z-

z=y (mod p)

We observe that 1), is the zero function unless .4 (y) = —C (mod p), in other
words 1 = Y 1,, where the sum is taken over the elements in Zg such that
A (y) = —C (mod p). These y form an orbit since if y and ' fulfill A (y) =
A (y') = —C (mod p) then there exists an h € Hp such that h is congruent to

(x’l x’2D> (xl x2D>1
modulo p. This matrix maps y to 3’ and this shows
xh T2 1

that the elements actually form an orbit of Hp, i.e., they can be written as Hpy
for some y. We now show that all 1, have the same L?—norm for y such that
A (y) = —C (mod p). Write ¢, as a linear combination of (y 5, where x = y
(mod p), and apply Uy (h). Lemma 4.1 tells us that this is a linear combination
of {7 (n)o,ne @and by Lemma 3.2 we know that {1y, (r(n)0,hz) = 0 unless y' = hx
(mod p). From this we see that (¢, Un(h)1,) = 0 unless ¢’ = hz (mod p). On
the other hand 1) is a Hecke eigenfunction, and from this we may now deduce
that the image of Un(h)vy, is 1p, times some phase and moreover, since the
elements form an orbit, that |1,z is independent of y. One argument for this
is the following: We see that

613 = Ko, Un ()] = (X, D UN )y )| = |35 Wy Un (1))
< 2 Kbny, Un ()] < Y [nyl2|UN (R)y |2 = 3 [hmy | 240y |2

<A/ 1m0/ 1 3 = [l

applying the triangle inequality once and the Cauchy-Schwarz inequality twice.
Obviously all inequalities are actually equalities and equality in the last in-
equality is obtained if and only if |¢py ]2 = |[¢by|2 for all y. We now know that
|4y |2 = A, where A~2 is the number of solutions to ¥ — Dy3 = —C (mod p). In

the proof of Lemma 5.3 in [16] this number was calculated to be p — (%) , thus

—1/2
[1yll2 = (p - (%)) . Let us now turn our attention to ¢, = > a;(o and

assume that p / y2, the sum is over elements in Z3 representing the different
elements in Zyk+1 x Z,r such that =y (mod p) and .4 (x) = —C. Once again
referring to the proof of Lemma 5.3 in [16] it is easy to understand that the
number of terms in this sum is independent of y. Moreover, summing over all ¥,

we must have p* (p — (%)) terms in total. Thus the sum ¥, =} a;(p,, must

have p” terms, since the number of y was p— (% . If we can prove that all coef-

ficients a, have the same absolute value, it is an easy calculation to show claim
1. To do this we show that given x,2’ such that 4 (x) = A4 (2') = —C and
x=a' =y (mod p) there is an element h € Hp such that Uy (h)(p 5 is equal to
Co.2+ up to a phase. We know that 2? — Dx3 = 22 — Dz (mod p*), but in gen-
eral these expressions are not equal modulo p**!. However the o, —function
is equal up to multiplication by a phase when we change x5 by adding tp*.
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Since x5 # 0 (mod p) we see that we can change 2/, in this manner so that
2?2 — D22 = 22 — Do (mod p**1). We can now define h € Hp so that

z) xhD z1 22D -1
[ (mod p*+1).
xh ) To T

We see that hz = 2’ (mod pF*1), but moreover h = Id (mod p), which gives
T'(h)0 = 0. Using Lemma 4.1 we can conclude that in fact Uy (h)(p 5 is equal to
Co,o» up to a phase. Claim 2 is proven is the same manner but 1), is written in
a (4 o —basis and 2] is changed instead of x. O

The following three theorems will give us exact expressions for the value of
the Hecke eigenfunctions at all different points b € Zy such that the equation
2?2 = —C + Db? (mod p*) has solutions. The expressions are sums over these
solutions and the value of a Hecke eigenfunction at a point b € Zy such that
—C + Db? is a quadratic non-residue is zero (because the sum is empty). Note
that all Hecke eigenfunctions seem to behave very similar to each other in the
sense that they take more or less the same values, but at different points. If
two Hecke eigenfunctions lie in the same space Vi, they are even more similar,
the expressions in the theorems applies to all these newforms simultaneously.
Let us also note that the expressions are rather surprising, if we compare them
to most of the previous results, in the sense that they do not distinguish the
cases p split and p inert, except for the normalization constant. On the other
hand they are perhaps not so surprising in the sense that they are very similar
to the corresponding theorems for even prime powers proven in [16]. The first
theorem handles most of the points b € Zy where —C + Db? is a square, i.e.
where 1(b) # 0. In fact, if CD ™! is a quadratic non-residue, then it handles all
b in the support of 1.

Theorem 4.4. Let v € Vo be a normalized Hecke eigenfunction and assume
that p does not divide C or D. Let b fulfill that —C' + Db* = 22 (mod p*) for
some p } xg. Then

B(B) = —— (g (b) + By (b)),

= (3))

where vy, and By are functions satisfying |c, (b)| = |8y (D) = 1, ay(b+pFtit) =
e (%) ay(b) and By (b +pFtit) = e (Qﬁot) By (D).

Proof. This follows directly from the fact that ¢ can be written as

P = Z am<m,m
N (x)=—C
with |a,| = (p — (%))71/2 for those x such that p } z1. O

The next theorem is a generalization of the previous in the sense that Theo-
rem 4.4 corresponds to s = 0. To see that the two expressions agree you have to
observe that Theorem 4.5 reduces to a sum of two Gauss sums if s = 0 (because

13



the coefficient is zero in front of 2%) and evaluate these. To get this exact form
we must assume p > 3 when s > (k—1)/3. A similar theorem may easily be ob-
tained also for p = 3, the only difference between the proofs are the expressions
for B(s)*.

Theorem 4.5. Let v € Vo be a normalized Hecke eigenfunction and assume
that p does not divide C' or D. Let b € Zy, and assume that the equation y? =
—C + Db? (mod pk) has the solutions y = +xop® + p*~*Zys (mod p’“) for
some xo and s such that p | o and 0 < s < k/2. Then

R ' (a4 2) 'S ()
Mb)_m %(b);e@sH>+5¢,(b);e<‘;m) . (8)

where g+ (2) = r (Oy(b)z £ 1o Dbz? + p* 22371 D?b223) and |y (b)| = | By (b)| =
1. The function ©(b) is given by

Oy (b)p" = —ap® — C + Db* — p?*=9)3- 1, D2p? (mod p**+etty . (9)

Remark. Since C is some integer (dependent on 1)) congruent to C' modulo p*
it is easy to see that ©,(b) is well defined, but that it can not be lifted to
an integer polynomial. Further more, the proof will show that different Hecke
eigenfunctions in V¢ correspond to different choices of C=C (mod pk) .

Proof. We know that ¢ is a linear combination of (o, such that A (z) = —C
and that the coefficients where p } o all have absolute value

PN, o] = ———

D
v (%)
Since (o, (b) = 0 unless 22 = b (mod p*) the value of ¥)(b) is only a sum over x €

Zpr+1 X Ly such that 2?2 = —C+ Db? (mod pk) and zo = b (mod pk) . By the
assumptions of the theorem we have that x1 = t+x¢p° +pk’SZps+1 (mod p’”l) .

1 + rDp?(F—9) pF=sD
Let B(s) =
( pkfs 14+ T.Dp2(kfs)
2 we want to sum over are generated as two different orbits of B(s) in the sense
that the  can be represented by the elements

{B(s)z (xobp ) c2=0,1,...,p°! 1}U{B(S)z <_xb0p );z =0,1,..,p°" — 1}

in Z%. By induction it is easy to show that

(5 1 + rDz2p2(k—s) (pF5z + 37 DpPk—9) (23 — z)) D
B(s)* = .
pF oz + 37 rDpP o) (23 - 2) 1 + rDz2p2(k—s)

) . The main observation is that the

Denote (+ , = CO,B(S)z(imgpS) and call the constants in front of these functions

a+ » (p — (%))71/2 . We have that

s+171 s+171

1 p p

b)) = ———=| X @G )+ Y, a (D)
p_(%) z=0 z=0

14



If we use Lemma 4.1 we see that Un(B(s))(+ -1 = € (%) Ci.z

for z =1,...,p*"t — 1, where

f+(z) = (i (1 + rDz2p2(k*S)) pixo + (pkfsz + 37 DpPk=9) (23 z)) Db)
x (i (pkfsz + 3711"Dp3(kfs)(z3 — z)) piro + (1 + rDzQpQ(k*S)) b)
= 4pagb + p* (DB + paf — p I3 1 D%?) 2
+ p** 0200 Dbz + p* 13712027 (mod N).
. 1 pk+1D
Since B(s)P = (p’”l . > Corollary 4.2 gives us that Uy (B(s))y =

e (p,];—éﬂ) 1) for some C=C (mod pk) and this leads to

- (p—c) . ( (f2(2) = ]\fi(z - 1)))

. (p;c) . ( (el - f+(0))> .

pktsg2 o 2k—sg o o2 3(k—s) . )22 3
But (4 .(b) =e ( Lo tasty oo =% ) hence

_nk—s 5 _ 0) — k+s .2
tor(D) = ( P orCe 4 rfe(z) ~rfs(0) —p :v02>
N
Fp2h53ragDbz? — p3(k—s) D223 _ q+(z)
X e N a+.0 = a+,0€ p5+1 y
where ¢+ (2) =7 (04(b)z + xgDbz? + p*~2371D?h?23) and

Oy (b)pk = *IgPQS —C + Db? — p2(k75)3*17~D2b2 (mod pk+s+1) .
(|

The last of the evaluation theorems concerns the case when the number of
solutions to 22 = —C + Db? (mod p¥) is maximal, i.e. when —C + Db? = 0
(mod p*). For this to happen we must have that CD~! is a non-zero square
modulo p. Maximal number of solutions leads to the maximal number of terms
in the sum and as we shall see in Chapter 5, this is also the case that gives the
supremum norm.

Theorem 4.6. Let N = p***! where p > 3 and k > 0. Let ¥ € Vo be a
normalized Hecke eigenfunction for some C € Z;k. If b e Zy fulfills that —C +

D2 =0 (mod pk) then

(b z
vy = 05 o (). (10)
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where g(2) = O (b)2 — p 2072137120023, |y (b)] = 1 and
0y4(b)p* = —C + Dv? — p**/1371CcD (mod p[3k/21+1) .

Proof. To prove this result we have to adjust the proof of Theorem 4.5 slightly,
but the ideas are the same. Denote o = p/*/2l. We know that a® =0 (mod N).
We put

5 < 1+2Da? (2o + Da3)D>

20 + Da? 14 2Da?
and notice that 1 can be written as a linear combination of (y, where z =

B* (2) and z = 0,1,2, ..., pl*/21*1 — 1. If we calculate this explicitly we get

. 1+2Dz%a2 +3712D2%22(22 — 1)a* (2za+ 37 1Dz(42%2 — 1)a®)D
- 2za+ 37 1Dz(42% — 1)a? 1+2Dz%a? +3712D%22(2% — 1)a?

and

B 0\ 2Dbza+ 371 D%bz(42% — 1)
b )~ \b+2Dbz%a? +3712D%h2%(2% — 1)a* ) -

Denote £, = ¢, B+(9)- We can write ¥(b) as

) plF/2141 g
(b)) = ———= ) a:l:(b)
D z=0
»=(3)
. [k/2]+1 1 2p"'D
and since B? = okt ) , Corollary 4.2 tells us that Uy (B)y =
P

e (pmk/%) ¢ for some C'= C (mod p*). This leads to the the relation

((—C + Db — 371 D2b203) 2 + 37110D2b%a323
4z =€ P2+

in the same manner as before. Evaluating &, (b) gives:

—4D?*p%a328
§:(b) =e (W)

By the definition of ©, we have
@w(b)pk =-C+Dy — 3*1(}Dp2[k/21 (mod p[3k/2]+1)

and C = Db? (mod p*) and this gives the desired formula. O
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5 Results and the proof of Theorem 1.1

In this chapter we will prove the same theorems as we did in [16], but this time
when N = p" and n is odd instead of even. Note that V¢ is defined in slightly
different manners when n is even or odd, but that it is philosophically the same
object.

Let us first recall some definitions and properties of exponential sums of
cubic polynomials from Chapter 6 in [16] which we will need in the proof of
Theorem 5.3:

Definition 5.1. Let n be a nonnegative integer. For ¢ € Zyn[z] we define

St = e (12).

n
z=1 p

Definition 5.2. For a € Z;n and n =1 or n = 2 we define

A _ suptean ‘S(qa,)h n)|
a,n T pn/2 ’
where ¢o.(2) = az® + tz.

Remark. A, is bounded by 2 and for fixed n and p, A, , assumes at most
three different values. If p = 2 (mod 3) then A, is independent of a.

We will use the following theorem:

Theorem 5.1. Let p > 3. If go1(2) = @z +tz and a € Zyn then

p*? if n=0 (mod 3)
sup [S(qa,t;n)| =4 Aa1p®™3 Y% if n=1 (mod 3) .
tEZypn Aa)2p2n/371/3 ’Lf n=2 (mod 3)

Let us also recapitulate the meaning of the two parameters C and D. D is
directly determined by A, but C parameterizes the Hecke eigenfunctions and
different C' corresponds to different characters on the dual of the Hecke group.
The “generic” values of C' and D (the values such that p } C, D) corresponds
to the cases when the eigenspaces of the characters are one dimensional and to
the case when A has zero or two linearly independent eigenvectors modulo p.
Our main concern is these “generic” values and the two theorems given below
calculates the supremum norm of the “generic” newforms of a “generic” Hecke
group. If p is inert all newforms are “generic”, but if p is split there are new-
forms such that p|C. In both pictures of Figure 2 in the introduction we see
two lines, one corresponding to the newforms covered by Theorem 5.2 and one
corresponding to the newforms covered by Theorem 5.3. The main difference
between the two pictures in Figure 2 is the “noise” in the left picture coming
from the “non-generic” newforms. Since there are no “non-generic” newforms in
the inert case there is no noise in the right picture.

Theorem 5.2. Let N = p" for some odd prime p that does not divide C or D
and assume that 1) € Vo is a normalized Hecke eigenfunction. If (%) = — (2)

p
then 2
2 - )
——— (1 g <ol < ——

Ok = (5);
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Remark. We allow n = 1 in the theorem although p } C' does not make any
sense in this situation (C is defined modulo 1).

Proof. For n = 1 the estimates from above are well known [14, 12| and the
estimates from below are trivial. For even n this theorem was proven in [16]
(the case p = 3 is not included in the corresponding theorem, but the proof does
not use that p # 3 in any significant way), thus it remains to prove it for odd
n = 3. Let us therefore write n = 2k + 1, for some positive integer k. We see
that if (%) — (g) then —C + Db? # 0 (mod p) for all b, hence Theorem 4.4

immediately gives

[¥lee £ —e— (11)
- (5)5

The other inequality also follows easily from Theorem 4.4 by picking a b € Zy
such that (70%}%2) = 1 and changing b by adding #p**! to maximize the
expression in the same manner as was done in the proof of the corresponding
theorem (Theorem 7.1) in [16]. The idea used is that the absolute value of
the sum of two phases is as large as possible, when the difference between the
arguments of the phase is as small as possible. To find the maximal minimal
difference one uses the pigeon hole principle. O

Theorem 5.3. Let N = p" for some prime p > 3 and somen = 3. If Y € V¢
is a normalized Hecke eigenfunction for some C € Z;n and (%) = (%) then
(
(
(

N/ 1 if n= mod 3)
Y]l = ————= % { Aqip V/° if n=1 (mod 3) , (12)
1— (%) % Apop /3 if n=2 (mod 3)

where o = 36C'D when n is even and o = 18C'D when n is odd.

Proof. This theorem was proven for even n in [16], the proof for odd n is very
similar. Let n = 2k + 1. We want to show that the maximal value of the
expression in Theorem 4.6 is the value in (12) and that the expressions in The-
orem 4.4 and Theorem 4.5 are smaller. The absolute value of the expression

—1/2
in Theorem 4.4 is obviously less or equal than 2 (1 — (%) %) and this is
smaller than (12). Using Lemma 6.2 in [16] the expression in Theorem 4.5

(Equation (8)) can be estimated by

2p(s+1)/2 2ps/2

ORIECE

and s < (n — 3)/4. Recalling that As—1,cp o > \/2 and As-1,cpa > 1it is easy
to see that this is less than the expression in (12). The absolute value of the
expression in Theorem 4.6 is

w0l = (p- (g))/ 1S(a, /2] + 1),
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where ¢(2) = O4(b)z — p* 22137120 D23, If we change b by adding tp* the
only thing that changes in (10) is ©y(b) and this change is easily calculated to
be O (b + tp*) = ©,(b) + 2Dbt (mod pl*/21*1). Since p f 2Db we see that the
largest possible value of (b + tp*) is

1
T, S 15(qa e, [k/2] + 1),
_ (D €L k/21+1
= (3)

where ¢, ¢(2) = az® +tz and a = —pF2¥/213-120D. If k is even we may apply
Theorem 5.1 to get that
) p2/3(k/2+1) if k/2+1=0 (mod 3)
|9h] = ———=1 Aqp?P*2FD-16 if k/2+1=1 (mod 3)

D 2/3(k/2+1)—1/3 . _
p— (?) Aqop if k/2+1=2 (mod 3)

1 /6 if n=0 (mod 3)
= A p" 6 if n=1 (mod 3)
1 (%) ! Agop™~ 3 if n=2 (mod 3)
and A_3-190p, = Aiscpn. If kis odd we see that pla and if p f ¢ then
4o +(2) =t #0 (mod p). Linearizing in the same manner as was done repeatedly
in chapter 6 of [16], it is easy to see that S(qa,[k/2] + 1) = 0. Thus writing
t = pt and o = pix we get

p
9] = ——=——=—= sup [S(qa, [k/2])]
p— (2 €2k /2]
P
1 ptt=1/3 if (k—1)/2=0 (mod 3)

= ———{ Agptt- A6 i (B —1)/2=1 (mod 3)
b— (%) Agopt(=D/3-1/3  if (k. —1)/2=2 (mod 3)

1 /0 if n=0 (mod 3)
= Af p"/ V6 if n=1 (mod3) ,
(DY 1| Al op51B i g =
1 (p) ; Aa 2p if n=2 (mod 3)

once again using Theorem 5.1. ([l

Let us also show that the “non-generic” newforms of a “generic” Hecke group
have the same behavior for N = p”, where n = 2k + 1 is odd, as we found for
even n in [16]. In other words we study the case when p|C and D is a square

residue modulo p. Let \/D be an element in Zx such that \/52 = D and define
Vi = @ Cdo,-
mEZpk_H XZpk
z1=+vDz2#0 (mod p)

Proposition 5.4. Let N = p™ for some odd prime p and n > 1. Assume that
p|C and that D is a quadratic residue modulo p. If v € Vo n' V4 is a normalized
Hecke eigenfunction then

11 if ptbd
¢<b>|={ﬂ P

0 if plb
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Proof. We can use the proof from [16], but we need to be careful. First of all we
use the trick from Lemma 4.3 to write ¢ as a sum of ¥; and where all 1); have the
same L?—norm. Write 1, in the (j ,—basis and note that if the coefficients in
front of (o, and (o, are nonzero, then z =y (mod p) by construction. Let n =
2m+ 1. The main step is to show that if (-, o,y € Ve NV, and z = y (mod p),
then there exists an h € Hp such that (hx); = y; (mod p™*1), (hx)s = y»
(mod p™) and T'(h)0 = 0. This is done by choosing h; = (y1 — Dxaha)z;*

(mod p™*1) where hs is chosen so that —Chy = 21y — 2271 (mod p™) and
h1 hoD
=1 (mod N).
ho hy

For details of why such h; and hy exist and for the finishing observations, see
the proof of Proposition 7.4 in [16]. The fact that x = y (mod p) implies that
h =1d (mod p) which gives T'(h)0 = 0. O

The study done in [16] for the case when p is ramified can also be carried
over to the case where N is an odd power of p. This is done in the same manner
as we did in Theorem 5.2. We omit this and focus directly at the proof of
Theorem 1.1 instead.

Proof of Theorem 1.1. To prove the theorem we need to prove that normalized
Hecke eigenfunctions fulfill ||¢)||,, = O(NY*) for all N = p", where p is not
“bad”. However this is not quite enough because when we then want to use the
tensor decomposition to get this estimate for all N the constants will make us
lose too much. To handle this we also show that for all but a finite number of p
the sharper estimate [1/],. < N'/* holds for N = p™. Since this sharper estimate
was proven in [16] for all odd p and even n, we assume that n is odd. That p
is not “bad” means that p # 2, p is not ramified and A is not upper diagonal
modulo p. Since we can not apply Theorem 5.3 to p = 3 we must treat this case
separately. An easy calculation shows that p = 3 can not be split, hence if p = 3
is not “bad”, it is inert. By the observation that the value of a newform can
be calculated as an exponential sum over the solutions to a quadratic equation
modulo [n/2] (or p such sums) we get |4, = O(N'/*) for all newforms with
N = 3" by using the trivial estimate of the exponential sum. Since p = 3
is inert, this gives us that ||, = O(N'/*) for all Hecke eigenfunctions. For
p > 3 we can use Theorem 5.2, Theorem 5.3 and Proposition 5.4 to get the
estimate |||, < 2N/ for all newforms and all but a finite number of p. When
p is inert all Hecke eigenfunctions are newforms or the image of a newform by
the unitary operator given in Theorem 3.1 and from this the two estimates we
need follows, i.e., we get that ||, < N'/* for all but a finite number of p and
4]l = O(N'Y4) for all p. When p is split things are a bit more complicated
because a Hecke eigenfunction can be a sum of images of newforms. We let
I = [n/2] and write ¥ = aptp + a1¢1 + ... + a;b;, where ¥, € S, (n — m,m)
but t,, is orthogonal to S,(n —m — 1,m + 1) and 1), is normalized. The key
observation is now that by Proposition 5.4 the supports of 1; and 1); are disjoint
if ¢ # j. From this it follows also in the split case. O

Remark. Note that the estimate |1/, < N'/* does not hold if N = p” where
n is odd and p is small enough and split. Numerical simulations show that for
p < 13 there are Hecke eigenfunctions with supremum norm larger than p'/*.
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6 Value distribution of newforms

In the introduction we described the limiting distribution of the absolute values
of newforms as the image of the Haar measure of the normalizer of the maximal
torus of SU(2) under the map g — |tr(g)|. More explicitly the measure is given
by

uth =T+ [ M (13)

Since we have a well developed theory of evaluating newforms at different points,
developed in Chapter 4 of this paper and Chapter 5 in [16], the limiting measure
of a specific newform will follow almost immediately. From this theory it is also
obvious that the assumption that C; # C; (mod p) is essential because there is
a very strong correlation between the values of v, ; and ¢, ; otherwise. If we for
instance assume that 1, ;(xz) = 0 (true for approximately half of the points), the
“probability” that 1, j(x) = 0 converges to 1. Let us begin with the “immediate”
part of our statement:

Proof of Theorem 1.2 and Theorem 1.3 for d = 1. The value 9 (z) of ¢ € Vi at
a point x € Z,» is a sum over the solutions to y?> = —C + Dz? (mod pl™/?]),
where the absolute value of each term in the sum converges to 1 as p — oo.
The number of solutions to the equation is at most two as long as Dx? # C
(mod p) and the proportion of x where this is not true is O(1/p). Thus the
limiting measure is concentrated on [0,2]. To be a quadratic residue modulo
pl"/2! is the same as being a quadratic residue modulo p and therefore we may
restrict ourselves to calculating the proportion of z such that —C + Dz? is a
quadratic residue modulo p. Note also that since D is fixed and p grows we may
assume that p / D. The total number of pairs (z,y) such that y?> — Dx? = —

(mod p) is then (as we have seen a number of times before, for instance in the

proof of Lemma 6.3 in [16])
)
p—|—].
p

Since all but at most 2 different x correspond to 2 different y we see that the
proportion of & such that —C '+ Dz? is a quadratic residue converge to 1/2 and so
does the proportion of x such that —C + Dz? is not a square. If —C+ Dz? is not
a square modulo p then obviously the value of ¥(x) is zero and this corresponds
to the first term of y. On the other hand if —C + Dz? is equal to y? for some
y # 0 (mod p), then we know that

D + ™) = a4y (2)e (%) +a_(w)e (‘n—y/;> . (14)

This might just as well be written as

vty | (G o)) e (o (m =) )

for a(z) given by e(2ya(z)) = a_(x)/a(x). Averaging the absolute value of this
as t goes through Zp[nm we see that the limit has the same value distribution
as

|ei9 + e*w‘ = 2| cos?|
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there 6 is uniform on the interval 0 < 6 < 27. This has the same value distri-
bution as 2cosf on the interval 0 < 6 < 7/2 and taking the derivative of the
inverse of 2 cosf we get the second term in Equation (13). O

The independence will be established through some lemmas. The first lemma
shows that the events ¢, 1(x) = 0,vp2(z) = 0,...,9p a(x) = 0 become statisti-
cally independent.

Lemma 6.1. Let C; be r different elements in F), and let M,(p) denote the
number of x € F,, such that —C; + Dz? is a square for all i = 1,2, ...,r. Then

M. (p) = 2 + On(P):

Proof. For all elements = € ) we have that the expression
1+ (2)
2

is equal to 1 if z is a square and 0 if x is not a square. From this it follows that

UAREEDY H(1+( C;Dx )) +0,(1)

zeF, i=1

F 2 ()
+§Z D ( Oi+Dx2)(Cj+Dx2)>

—_

%

%|’_‘

i#j x€lF, p
1 " (=C, + Da?
ot ) (Hl‘l( R )> +0,(1).
2 z€lF, p

The first term gives the expression we want and and the other terms are bounded

by O,(\/p) according to Theorem 2B in [18]. O
We will need the following lemma in the proof of Lemma 6.3:

Lemma 6.2. Let a € Fg be a non-zero vector and let C; be different elements
in F, fori=1,...,d. Then the number of solutions in t and x to the system of
equations

1
a-x =0

{xZ = t—C; foral i=1,2,..,d

is uniformly bounded in p.

Proof. We fix an algebraically closed field extension IETP of IF, and count the
number of solutions there. Obviously this does not reduce the number of solu-
tions. It is enough to show that the dimension of the solution set is zero, i.e. to
prove that there are no two different closed (in the Zariski topology) irreducible
subsets of the solution set such that Zy < Z;. To prove such a statement it
would be enough to show that the Jacobian of the system has full rank for all
points in the solution set. However this is in general not true for our system
of equations, but we will show that the number of points in the solution set
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such that the Jacobian does not have full rank is bounded. This means that the
number of possible non-isolated points is bounded and from this it follows that
the solution set itself is bounded.

If we put everything in the equations to the left and calculate the determinant
of the Jacobian we get

d
J(x,t) =241 Z ag H xj.

k=1 j#k

We want to prove that this is non-zero for all but a bounded number of points
in the solution set. Let us now define g(z,t) by

glaty =[] J(,),

be{—1,1}¢

where bx = (byx1,baxa,...,bgrq). If we can prove that g(x,t) has a bounded
number of zeros in the solution set, then so does J(z, t). Looking at our definition
it is easy to see that g(z, t) is an even polynomial in x, thus the restriction to
the solution set (where 22 = ¢ — ;) is a polynomial h(t) € F,[t] in only the
variable t. Polynomials in one variable have finite number of zeros as long as
they are not the zero-polynomial, hence we only need to find one value of ¢ such
that h(t) # 0. Since a # 0 we know that a; # 0 for some | = 1,2,...,d. If we
put t = C; we see that ; = 0 and that z; # 0 for j # [, the latter because
C; # C). This shows that the factors J(bz,C;) = 297 1q, [, 7; # 0 and since
every factor is different from zero we must have h(Cj) # 0. ’A bounded number
of solutions in ¢ immediately gives a bounded number of solutions also in . [

Remark. Our proof works for any field with characteristic different from two.
From the boundedness it follows from Bezout’s theorem that the number of
solutions is at most 2¢, but we will only use that it is bounded.

The proof for d = 1 shows that the only values of x that can contribute to
the left hand side of the expression in Theorem 1.2 are the ones where 32 =
—C; + Dz? (mod p) has two or zero solutions for all i = 1,...,d. Since this
shows that the measure is concentrated on [0,2]? and any bounded continuous
function can be uniformly approximated by polynomials on a compact set, we
may assume that the test function f is a monomial. Let

—C. 2
Qk(Cl) = {LL‘ € Zpk; <M> = 1}
p

Hence Theorem 1.2 follows from:

Lemma 6.3. Let v, ; and C; be as in Theorem 1.2. Then for all sets of integers
m; = 0 we have

d
1 . .1 "
pll_)II} — Z H Vp,i (@)™ = H pll_)II} — Z |Vp,5(x)[™
o zeNL cy)J= j=1 P 2€Q, (C))
Proof. Let k = [n/2] and 23 = Dz*>—C; (mod p*). In the proof for n = 1 we did

not specify how we chose our a, and a_, but now we have to be more careful.
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Since we want to evaluate (14) for all ¢ € Z,x we may choose z (by adding pl/?l
the appropriate number of times) to be such that ¢ = 0 (mod p*/?) makes
the absolute value as large as possible. In other words we choose x so that
|arg(ay /a_)| < m/p*. This implies that

2t 1
e +tp["/21)‘ = ‘1 +e (%) +0 (23) :

hence it is enough to show that |¢, ;|?, where ¢, ; are given by

2xt
Gpj(@+tp"l) =1 +e ( p,‘i ) ;

become statistically independent. We do this by showing the equality in the
lemma for |¢|? instead of |+/|. Since we take p to infinity we may assume that
pF > m; for all j. We may also assume that m; > 0, since this only corresponds
to changing d to be the number of non-zero m;. The right hand side is now a
product of d factors of the form

;% D lbpgla)fPr =Z% N ( (Qx t) e (_ijt»mj

2€Q, (C5) T€Qp/21(C;) t€Z

= i Z Z Z ( m; ) 2mj*l17l26 (M)
Pt mj—l1—lg,l17l2 pk

IEQ[n/2](C )tEZ e l1,12=0;
li+la<my

pk [m]/2 ol
- X Z](nh—ﬂJJ)ZJ !

ze(l[n/g] (C )

3

where the last equality follows from p f 2x; and m; < p*. Denote the inner
sum by f(m;). Using Lemma 6.1 we see that the right hand side approaches

2-d ]_[;l:l f(m;), as p goes to infinity. The same calculation for the left hand
side shows that

in Z H Pp,j(x z)[*m

p wel, Qn(C) 3=

o 2 ENEGE) ()

2€{_ 1 Qynyj21 (i) €2,

1 - m;
= o Z Z H Z (mj — lj_]l - ;j,Q,lj,lalj,2>

iS]

p :Eeﬂl 1 Q[n/Q](C )t Z j=1 lj,l7lj,2>01
l] 1+l] 2€<m
o gmi—la—ba, (21— bi2)z;t
pk '

If we calculate the product over the sums we get a large sum of expressions of

the form B
Ae | — ),
(p’“ )
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where A is a product of multinomial coefficients and powers of 2 and B is the
sum of 2(l;1 — I 2)x;, where j = 1,2,...,d. When we sum over ¢ we get zero
unless B is zero modulo p*¥ and by Lemma 6.2 we know that the number of
modulo p such that B = 0 (mod p*) although {l;1 — ljyg}?:l # 0 is bounded
for each such pair Il1,l5. This shows that the number of = € Lyins2) such that

B =0 (mod p*) is at most O(p!/"/?1=1). But there is a finite number of [, thus
by Lemma 6.1 we have that

d

d k
TN (CYETCES TS =S Y D FCS

p" : o
zeM{_, 2 (C) 2€V_y Qpny2) (Ci) I=1

6.1 Entropy of newforms
Let us discuss the consequences of Theorem 1.2 in terms of entropy:

Definition 6.1. Let f € L? (Zy) and assume | f|2 = 1. We define the Shannon
entropy to be

Xz 2 Xz 2

:EEZN

It is known that the eigenfunctions of Uy (A) fulfill h(1)) > 1/2log N (see
Chapter 4 in [16]) and the trivial upper bound for all normalized functions is
h(¢) < log N. There are no previous results on the entropy of newforms, but
Corollary 1.4 shows that asymptotically this entropy is always maximal. Note
that oldforms given by 7T}, 4, where v is a newform for a smaller power of p,
asymptotically will have the Shannon entropy log p”~"". Recall that m can be
any integer less or equal to n/2.

Proof of Corollary 1.4. Using equation (13) it is easy to check that u(22?) =1 =
[+/|3. This is a small extension of Theorem 1.2 which shows that the estimate
|t)(x)] < 2 holds on a set X such that 1) restricted to X will have an L?-norm
which converges to 1. The contribution from points in X to the entropy is then at
least (1 —o0(1))log (N /4), thus the Shannon entropy is asymptotically maximal.
By Proposition 5.4 we see that the “non-generic” newforms also have maximal
entropy. ([l
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