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Abstract

We study the eigenfunctions of the quantized cat map, desymmetrized
by Hecke operators. In the papers [15, 16] it was observed that when
the inverse of Planck’s constant is a prime exponent N � pn, with n ¡ 2,
half of these eigenfunctions become large at some points, and half remains
small for all points. In this paper we study the large eigenfunctions more
carefully. In particular, we answer the question of for which q the Lq

norms remain bounded as N goes to infinity. The answer is q ¤ 4.

1 Introduction
The subject of quantum chaos studies the quantum analogs of classical dynam-
ical systems. In particular, much interest concerns chaotic systems and what
properties the corresponding quantum system must have or can be expected
to have. One of the general heuristic ideas is, that since particles in a chaotic
system often move in a space filling manner, the wave function measuring the
probability of finding the particle at a specific place must be evenly spread in
position space. The wave function is a linear combination of eigenstates cor-
responding to different energies and the expected behavior is that most eigen-
states are nicely spread. We will throughout the paper assume all eigenstates
and eigenfunctions to be L2 normalized, and given this normalization, all eigen-
states should be quite similar to each other and to a constant function. To make
rigorous statements in the line of this general idea one needs to find some prop-
erty that measure this. There are several such properties at hand, but maybe
the most natural objects to study are the possible limits as the energy goes
to infinity (this is often called the semiclassical limit) of subsequences of the
induced measures of the eigenstates. For large families of quantum mechanical
systems it is known that a sequence of full density, i.e., such that the proportion
of elements left out from the sequence tend to zero, of these induced measures
converge to the uniform measure [1, 2, 20]. This is known as Schnirelman’s
theorem and a model having this property is called quantum ergodic. If the se-
quence of all induced measures tend to the uniform measure the model is called
quantum uniquely ergodic. There are also other, more qualitative properties of
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the sequences, which are studied intensively, such including the Lq norms and
the Shannon entropy of the eigenstates.

We will study one of the most common "toy models" in quantum chaos,
namely the cat map. Given a hyperbolic matrix A P SLp2,Zq we get a chaotic,
time discrete, dynamical system by the mapping taking the point x P T2 �
R2{Z2 to Ax P T2 and this is what is known as the cat map. There are several
different quantizations of this system [7, 11, 3, 4, 10, 20, 6, 14], but we will follow
[12]. In particular this means that our quantized cat map is desymmetrized by
Hecke operators, and also that we make the further assumption A � I pmod 2q
on the matrix A. This assumption is related to the physical relevance of the
model, not to the mathematical truth of our theorems. The quantized cat map
is well studied and much is known about the semiclassical limit, which in this
model corresponds to letting the integer N, the dimension of the Hilbert space
of states, go to infinity. The integer N is often called the inverse of Planck’s
constant. The most important result about the semiclassical limit is due to
Kurlberg and Rudnick and states that the model is uniquely quantum ergodic
[12]. It should be noted that the desymmetrization is necessary in the sense
that other induced limits exists, if this extra condition is dropped [5].

Also the supremum norms of the eigenstates and the Shannon entropies are
asymptotically known as N goes to infinity for our model. The upper bound for
the supremum norm of all eigenstates is OpN1{4q for "almost all" N (see [15]
Theorem 1.1 for the exact formulation) and the lower bound for the Shannon
entropy is 1{2 logN [16]. Both these inequalities are sharp, but equality only
occurs for special N and very special eigenstates. In short one might say that
the number theoretic properties of N starts to come into play. We will restrict
to odd N throughout this introduction because it simplifies the expressions
below, but the idea is the same also for even N. If M ¡ 1 is such that M2|N
then the state space L2 pZN q � L2 pZ{NZq � CN can be decomposed in two
parts, where eigenstates in the first part are called oldforms and eigenstates in
the second part are called newforms. The space spanned by the oldforms have
dimension N{M2 and is nothing but blown up images of states corresponding to
the Planck’s constant N{M2 living as N{M�periodic functions supported on
the ideal MZN{M � ZN . If N �M2, the unique oldform for M is the function
that gives equality in the estimates above.

The newforms are more interesting eigenstates. Here the number theoretic
properties of N comes into play again. It is well known that one can use the
Chinese remainder theorem to write any eigenstate ψN P L2pZN q as a tensor
product of eigenstates ψpi

ni P L2pZpi
ni q with N � ±d

i�1 pi
ni . We therefore

formulate the results for N � pn and the behavior for general N is given directly
from the tensor decomposition.

Before we state the known results for the newforms it seems in order to
point out that there is a close connection between the newforms and complete
character sums over ZN . Given a specific cat map, the value of a newform
can in fact be written as a character sum for "half of all primes" p. These
primes are often called split and corresponds to

�
D
p

	
� 1, where D is defined in

Definition 2.1. Changing point of evaluation corresponds to changing character
sum. This was observed by Kurlberg and Rudnick [13] for the case when N � p
is a prime, but the construction can be made for N � pn without any extra
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effort. More precisely, we have that

ψpbq � C?
N

Ņ

y�1

χpyqe
�
qbpyq
pn



,

where |C| � p1� 1{pq�1{2
, χpyq is a multiplicative character on the units of ZN

and zero for other y and qbpyq is a second degree polynomial where the linear
and constant term is dependent on b. All results stated below applies to this
special family of character sums. A general treatment of character sums may
be found in Chapter 12 of [9].

For N � pn with n � 1 all eigenstates are uniformly bounded at all points
and the same is true for all newforms for n � 2. If however n ¡ 2, then the set
of newforms (defined up to multiplication by scalars) is divided into two parts
which are of the same size. In the first part all newforms are uniformly bounded
at all points, but in the second part there is a small number of points where the
functions are large. At the points where the function is as large as possible, it is
of size prn{3s{2, but there are also points where it assumes intermediate values.
Since the proportion of points where the function is large goes to zero as p goes
to infinity it was proven in [15] that the value distribution is the same for all
newforms, when p goes to infinity through the primes. That is, for both large
and small newforms, and for any cat map and with any fixed n ¥ 2.

In this paper we study the large newforms and try to get more detailed
information about the points where these functions are large. One simple way
to characterize this is to study their impact on the Lq norm, i.e., study the size
of

}ψ}q �
�

1
N

¸
xPZN

|ψpxq|q
�1{q

.

More precisely, we ask the following question: For which q ¡ 0 does the Lq
norm of the newforms stay bounded as N goes to infinity? We will call the
supremum of all such q the critical exponent of the sequence. Since the measure
of the whole space is one, it is obvious that the norm is bounded for all q ¤ 2,
but a priori there is no reason why it is bounded away from zero. However,
the theorem about the value distribution (Theorem 1.2) in [15] rules out this
possibility since it shows that |ψpxq| ¡ 1 for a positive proportion of x P ZN .
Another simple calculation shows that the Lq norms of oldforms always go to
zero or infinity, depending on if q is less than 2, or larger than 2, respectively (as
long as p goes to infinity). With these observations in mind it seems that the
only non-trivial question that can be raised concerning the boundedness of Lq
norms is for the large newforms. Before we state the theorem we have to make
a technical restriction on N. The reason is simply that for a finite set of primes
p we have no real definition of what a large newform in L2 pZpnq is. Thus we
need to bound the impact of these primes trivially. We call primes that divides
trpAq2 � 4 or that divides the element in the lower left corner of A "bad". We
also say that 3 is bad. Fix a positive integer m. We say that N is "good" with
respect to m if there is no "bad" prime p such that pm|N. In this language it
is fair to say that if N is "good", all newforms are small at the "bad" primes.
This is the same assumption that was made in Theorem 1.1 in [15], expect that
we now include 3 in the "bad" primes.
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Theorem 1.1. The critical exponent for a sequence of large newforms is 4.
The L4 norm is bounded if and only if we restrict to the sequence of N where
if pn ‖ N and the newform corresponding to pn is large, then n is bounded. For
q ¡ 4 the Lq norm is bounded by Om

�
N p1�4{qq{6

�
.

Remark. For a general N, a newform is said to be large, if it is large for some
newform in its tensor decomposition.

The question of Lq bounds for eigenfunctions of general operators has been
studied intensively. For a typical compact manifold the critical exponent for
the eigenfunctions of the Laplace-Beltrami operator is 2, there are no q ¡ 2
for which the Lq norm is bounded. More interesting is the question of finding
a general upper bound for }ψλ}q as a function of the eigenvalue λ. This was
settled by Sogge [19], who proved that

}ψλ}q � O
�
λδpqq

	
,

where δpqq � 1{8 � 1{p4qq, for 2 ¤ q ¤ 6 and δpqq � 1{4 � 1{q, for 6 ¤ q ¤
8 for compact manifolds without boundary. This estimate is sharp for some
manifolds, the most well-known such example is S2 with the usual metric. In
fact, the result of Sogge is more general than it is stated here and may also be
generalized even more, see for instance [18].

Although it is not the general behavior, there are manifolds where a non-
trivial critical exponent exists. One such example was provided by Zygmund
[21], who proved that the eigenfunctions of the Laplacian for the 2�torus has
bounded L4 norm.

In an arithmetic setting the Lq norms has been discussed by Iwaniec and Sar-
nak [8]. They studied the eigenfunctions of the Laplace-Beltrami operator for so-
called arithmetic surfaces, compact and non-compact, where the eigenfunctions
also where assumed to be eigenfunctions of the Hecke operators. They proved
that the power 1{4 in the general upper bound for the L8 norm stated above
can be replaced by 5{24� ε for these eigenfunctions and also that }ψλ}8 Ñ 8
as λÑ8. The proved rate at which the norm blew up was very slow, but they
conjectured, that this was in fact not so far from the truth. More precisely,
they conjectured that }ψλ}8, and consequently all }ψλ}q with 2   q ¤ 8, is
bounded by O pλεq for all ε ¡ 0. For the most famous arithmetic surface, i.e., the
modular surface, there has been some progress on this conjecture. Sarnak and
Watson has proven, in a still unpublished paper and assuming the Ramanujan
conjectures, that the L4 norm of the Hecke eigenfunctions is in fact bounded
by O pλεq . The interested reader will find more details about the arithmetic
surfaces in [17].

We will derive Theorem 1.1 from an investigation that in fact gives us a much
more detailed description. Assume once more that N � pn and let k � rn{2s.
Given a fixed large newform ψ of a fixed quantized cat map, we will for each
point b P ZN , define the level of the point (see Definition 2.5 for the exact
definition). If the level is odd, but not maximal, the value of the newform at
the point is zero (see Lemma 5.1), but if the level l is even, |ψpbq| is of the size
pl{4 (see Theorem 1.2, Proposition 1.3 and Theorem 1.4 for exact statements).
A small newform will only have points of level 0. Let b have level l � 2s for
some l   k. If b � b1 pmod pn�k�sq it is easy to see that b1 also has level l. The
values ψpbq and ψpb1q are related through the following theorem:
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Theorem 1.2. Let b P Zpn have level 2s for some s   k{2, where k � rn{2s
and assume that ψpbq � 0. Then there exists an integer x0 such that ppsx0q2 �
�C �Db2 pmod pkq and

ψpb� tpn�k�sq � ps{2c
1�

�
D
p

	
1
p

�
αψpbqe

�
x0t

pk�2s



� βψpbqe

��x0t

pk�2s





where |αψpbq| � |βψpbq| � 1 and C and D are given by Definition 2.3 and
Definition 2.1, respectively.

Using the theorem it is straight forward to prove value distribution results for
the newform at each level individually. We will not formulate this in a theorem,
but only observe that all levels behave exactly the same, but on different scales.
In other words, they all behave as level 0 and the value distribution of this level
is given by Theorem 1.2 in [15].

In order to derive Theorem 1.1 we need to bound the values for all levels l, not
only for the levels where l   k. In general, we prove the following proposition:

Proposition 1.3. If b has level 2s then

|ψpbq| ¤ 2c
1�

�
D
p

	
1
p

ps{2.

It is easy to calculate the number of points that have a fixed level l ¡ 0
(see Lemma 2.1) and Theorem 1.1 follows from the fact that the value of ψ at
a point of even level l is of size pl{4. In fact, one can calculate the asymptotic
relations of each level individually. Fix a normalized newform ψ and let ψs be
the restriction of ψ to the points of level 2s, for some s ¤ n{3. In other words,
we let

ψspxq �
"
ψpxq if x has level 2s

0 else .

We now have the following theorem:

Theorem 1.4. If ψs denotes the restriction of ψ to the points of level 2s, for
some s ¤ n{3, then p�sp1�4{qq{2}ψs}q is uniformly bounded away from both zero
and infinity as N goes to infinity.

That the sequence is bounded follows directly from Proposition 1.3. On the
other hand Theorem 1.4 shows that for a positive proportion of points of level
2s, Proposition 1.3 is not off by more than a constant. Note also that the value
of the newform at a point of maximal level does not have to be 0 even if this
level is odd. One can formulate an analogous statement for the restriction to
maximal level, but we will not do this.

2 Basic assumptions and definitions
The main purpose of this chapter is to introduce the necessary notation and
ideas from [12, 15, 16]. We will let A P SLp2,Zq be the hyperbolic matrix that
determines the cat map and assume that N � pn, where p ¡ 3 is a prime and
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n ¥ 2. We will also use the notation k � rn{2s. In order for our quantization to
be consistent, we assume that A is congruent to the identity modulo 2. We also
assume that the element in the lower left corner of A is invertible modulo N.
Having made these assumptions it turns out (or will turn out) that the results
are more or less independent of A. One of the reasons for this is that the Hecke
operators we will study only depends on the following parameter:

Definition 2.1. Let D � ptrpAq2 � 4q{p4c2q pmod Nq, where c is the element
in the lower left corner of A.

Remark. The parameter D says if A is possible to diagonalize modulo N. If D is
a non-zero square modulo p, we can diagonalize A. If D is not a square, we can
not diagonalize A. Observe also that a matrix is diagonalized simultaneously
with A if and only if it commutes with A modulo N.

Definition 2.2. Given D P ZN we let

HD �
#�

a bD

b a

�
; a, b P ZN , a2 �Db2 � 1

+
.

Our state space is L2 pZN q � L2 pZ{NZq with the inner product

xφ, ψy � 1
N

¸
xPZN

φpxq�ψpxq.
A quantization, like the quantized cat map, assigns to every smooth real valued
function of the classical phase space (this is usually called an observable) an
Hermitian operator acting on the state space. It also prescribes how the system
evolves in time through a unitary operator called the quantum propagator. We
will denote the quantum propagator for the quantized cat map by UN pAq. The
most important properties of UN pAq is that it is well defined for A P SLp2,ZN q,
that the function mappingA to UN pAq is a representation of SLp2,ZN q, and that
it has the so-called exact Egorov property (see [12] page 48). The representation
is known as the Weil representation and it can be defined by explicit formulas
for the generators of the group, see [12] Section 4.3, although there are more
natural ways to introduce this representation in more abstract settings. The
element r occurring in the formulas is nothing but the inverse of 2 modulo N
and we will also use this notation.

The Hecke operators corresponding to A and N are the commutative group
of operators UN pgq, such that g � xI � yA, x, y P Z and detpgq � 1 pmod Nq.
However one may, without loss of generality, assume that the Hecke operators
are given by tUN phq;h P HDu (see [16] page 1060) and we will do this. In HD

there is a neighborhood of the identity which forms a cyclic subgroup of order
pk, namely th P HD;h � I pmod pn�kqu. The joint eigenfunctions of the Weil
representation restricted to this subgroup form subspaces of L2pZN q which were
called VC with the following convention in [15, 16]:

Definition 2.3. For C P Zpk we say that ψ P VC if

UN

�
1 2pn�kD

2pn�k 1

�
ψ � e

�
C

pk



ψ. (1)
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Different Hecke eigenfunctions in VC are very similar, but we also introduced
the notation rC which was more detailed than C and eigenfunctions having the
same rC, where even more similar.

Definition 2.4. Let α � prk{2s. Given a Hecke eigenfunction ψ we define rC P Z
to be the integer in the intervall r1, pn�rk{2ss such that

UN

�
1� 2Dα2

�
2α�Dα3

�
D

2α�Dα3 1� 2Dα2

�
ψ � e

� rC
pn�rk{2s

�
ψ. (2)

Let B denote the matrix appearing in the left hand side of (2) and B1 denote
the matrix appearing in the left hand side of (1). An easy calculation shows that
Bm � B1 pmod Nq for m � pn�k{α and this implies that C � rC pmod pkq.

One of the main observations in [15, 16] was that the value of a Hecke
eigenfunction ψ at the point b can be written as an exponential sum over the
solutions to the equation x2 � �C � Db2 pmod pkq. How many solutions this
equation has is more or less determined by how many times p divides �C�Db2.
A natural guess, which turns out to be more or less correct, is that the number
of terms in the exponential sum determines the size of the sum. However, for
the b such that �C�Db2 � 0 pmod pkq there are different sizes of cancellations
for different b, so in this case we need to be careful with the definition of the
level.

Definition 2.5. Fix a Hecke eigenfunction ψ P VC and let b P ZN . For even
n we define the level l at b to be the largest integer l ¤ p2n � 2q{3 such that
pl|� rC�Db2�pk�pk�2rk{2sq3�1rCD and for odd n we define the level l at b to be
the largest integer l ¤ p2n�2q{3 such that pl|� rC�Db2�pk�pk�2rk{2sq3�1CD.
If l � rp2n� 2q{3s we say that b has maximal level.

Remark. The levels l   k can be defined by the simpler formula pl ‖ �C�Db2.
Also note that if C{D is a quadratic non-residue modulo p, then all b have level
0. One can show that the level is independent of the representative of rC modulo
pn�rk{2s.

We will mostly discuss even levels and for those we will use the notation
l � 2s. This is the same s as appears in [15, 16]. The following notation (already
used in Theorem 1.2) was also used in these papers:

Definition 2.6. For a point b of level 2s   k we let x0 be some integer such
that ppsx0q2 � �C �Db2 pmod pkq if such an integer exists.

Remark. Note that p � x0.

Definition 2.7. If C and D are both invertible modulo N and C{D is a
quadratic residue, then a function ψ P VC which is a joint eigenfunction for
all UN phq with h P HD is called a large newform.

Remark. That C and D are invertible and C{D is a square modulo N is equiv-
alent to the same statement modulo p.

Since the aim of the paper is to study the large newforms we will from now
on assume that p � C,D and that C{D is a square modulo p.
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Lemma 2.1. Let p2n� 1q{3 ¥ l ¡ 0. The number of b P ZN of level l is

2N
pl

�
1� 1

p



.

The number of b of level 0 is Np1� 2{pq and the number of b of maximal level
lmax � rp2n� 2q{3s is 2N{plmax .

Proof. Let us first assume that p2n � 1q{3 ¥ l ¡ 0. The condition that b have
level l can be written on the form b2 � E pmod plq, but b2 � E pmod pl�1q,
where E is easily derived from Definition 2.5. We observe that E � C{D
pmod pq and therefore b2 � E pmod plq has 2 solutions modulo pl. This shows
the total number of points in ZN of level l to be 2N{pl� 2N{pl�1. The number
of b of level 0 is N � 2N{p and the number of b of level lmax is 2N{plmax by the
same arguments.

3 Exponential sums
As we have mentioned above, the value of a Hecke eigenfunction may be cal-
culated as the value of an exponential sum. The calculations focus on finding
the absolute value of the following object in the special case when q is of degree
three:

Definition 3.1. Let m be a nonnegative integer. For q P Zpmrxs we define

Spq,mq �
pm¸
z�1

e

�
qpzq
pm



.

In [16] the following three lemmata (Lemma 6.1, Lemma 6.2 and Lemma 6.3)
were developed:

Lemma 3.1. Let qpzq � a3z
3�a2z

2�a1z�a0 and assume that p|a3 but p � a2.
Then |Spq,mq| � pm{2.

Lemma 3.2. Let qpzq � a3z
3 � a1z � a0 and assume that p � a3 and that

p2 � a1. Then |Spq,mq| ¤ 2pm{2.

Lemma 3.3. Let qpzq � a3z
3 � p2a1z � a0 and assume that p � a3. For m ¥ 3

we have that |Spq,mq| � p2|Spq1,m� 3q|, where q1pzq � a3z
3 � a1z.

We will also need a special case of Lemma 6.4 from the same paper. For the
readers convenience we only formulate the part of the statement we need:

Lemma 3.4. Let qpzq � a3z
3�a1z�a0 and assume that p � a3 and that m ¤ 2.

Then |Spq,mq| ¤ 2pm{2.

As a final recollection of the work in [16], we observe that in the proof of
Lemma 3.2, the special case d � 1 was shown for the following lemma:

Lemma 3.5. Let qpzq � a3z
3 � a1z, assume that p � a3 and that pd ‖ a1. If d

is odd and p3d� 1q{2 ¤ m we have that Spq,mq � 0.
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Proof. By the remark above we may assume that d ¥ 3. We use Lemma 3.3
pd � 1q{2 times (observe that d is small enough for this) and get |Spq,mq| �
pd�1|Spq1,m� 3pd� 1q{2q|, where q1 is a polynomial of the same form as q and
with d1 � 1. The lemma now follows from the fact that Spq1,m � 3pd � 1q{2q
fulfills the lemma. Observe in particular that m � 3pd � 1q{2 ¥ 2 � p3d1 �
1q{2.
Lemma 3.6. Let qpzq � a3z

3 � a1z, assume that p � a3 and that pd ‖ a1. If d
is even |Spq,mq| ¤ 2pp2m�dq{4.

Proof. We use Lemma 3.3 c � minpd{2, rm{3sq times and get |Spq,mq| �
p2c|Spq1,m � 3cq|, where q1 is a polynomial of the same form as q and ei-
ther d � 0 or m � 3c ¤ 2. According to Lemma 3.2 and Lemma 3.4 we get
|Spq,mq| ¤ p2c2ppm�3cq{2 � 2ppm�cq{2 ¤ 2pp2m�dq{4.

Remark. Note that it is obvious from the proof that we always have the estimate
|Spq,mq| ¤ 2ppm�rm{3sq{2.

Lemma 3.7. Let Smptq � Spa3z
3� tz,mq where p � a3. There exists a constant

C ¡ 0 such that if 0 ¤ d ¤ 2m{3 is even, then a positive proportion of all
t P Zpm�d fulfill |Smppdtq| ¡ Cpp2m�dq{4.

Proof. Define the inner product in L2pZpmq to be

xφ, ψy � 1
pm

¸
zPZpm

φpzq�ψpzq.
Observe that

!
e
�
�tz
pm

	)
is an orthonormal basis for L2pZpmq. This leads to

1 �
����e�a3z

3

pm


����2
2

�
¸

tPZpm

����Be�a3z
3

pm



, e

��tz
pm


F����2 � ¸
tPZpm

���� 1
pm

Smptq
����2

� }Sm}22
pm

.

In other words, the sum of |Smptq|2 is p2m. According to Lemma 3.3 we have
that |Smpp2tq| � p2|Sm�3ptq| form ¥ 3 and according to Lemma 3.5 Smpptq � 0
for p � t and m ¥ 2. This shows that the sum over all |Smptq|2 with p � t
is p2m � p2m�1 ¥ 4

5p
2m. On the other hand |Smptq|2 ¤ 4pm for these t by

Lemma 3.2. Thus, for more than pm{7 of all t P Zpm we must have the estimate
|Smptq|2 ¥ pm{4. For m ¤ 2 Lemma 3.4 shows the estimate |Smptq|2 ¤ 4pm for
all t and we get our estimate by comparing this with the sum of all |Smptq|2.
This finishes the argument for d � 0.

Since d ¤ 2m{3 we may use Lemma 3.3 d{2 times and get |Smppdtq| �
pd|Sm�3d{2ptq| ¡ pdCppm�3d{2q{2 � Cpp2m�dq{4 for a positive proportion of t P
Zpm�d .

4 Evaluating newforms
In [15, 16] methods for evaluating newforms were developed. The main ingredi-
ent in the proofs of the main theorems in this paper, is the use of those methods.
This chapter serves to recapitulate the main ideas of this evaluation procedure.
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We let δx denote the function defined on ZN which is 1 at x and 0 else. The
following functions play an important role in the evaluation of the newforms:

Definition 4.1. Given x �
�
x1

x2



P Z2

N we let ζx : ZN Ñ C be defined by

ζx �
¸
tPZ

pk

e

�
x1t

pn�k



δx2�pkt.

Remark. In [15] these functions were called ζ0,x, but the extra index is not
necessary in our presentation and we will therefore be omitted.

The reason that we study these functions is that they transform in a simple
manner when we apply UN pBq to them. For our purposes the following state-
ment, which combines Lemma 5.1 in [16] and parts of Lemma 3.1 in [15], will
suffice:

Lemma 4.1. Let B P SLp2,ZN q and if n is odd we also assume that B � I
pmod pq. If x1 � Bx then

UN pBqζx � e

�
rpx11x12 � x1x2q

N



ζx1 .

From this lemma one may observe that ζx is an eigenfunction of UN phq as
long as h � I pmod pn�kq, or in other words, each function ζx belongs to some
space VC . In fact, ζx P VC if and only if x2

1 �Dx2
2 � �C pmod pkq. Moreover,

we can calculate the coefficients for a given Hecke eigenfunction ψ in some basis
of ζx functions.

Lemma 4.2. Let ψ P VC be a normalized Hecke eigenfunction and assume that
p does not divide C or D. If n is odd we also assume that p � x2. Then

|xψ, ζxy| �
#

1b
Np1�pD

p q 1
p q

if x2
1 �Dx2

2 � �C pmod pkq
0 if x2

1 �Dx2
2 � �C pmod pkq

.

Remark. For odd n this is a part of the statement of Lemma 3.3 in [15] and for
even n it follows from Lemma 4.1 since all elements x such that x2

1�Dx2
2 � �C

pmod pkq forms an orbit of the group HD.

Fixing a point b P ZN , we may now observe that for most of the functions
ζx, the value at b is zero. In fact, Lemma 4.2 shows that ψpbq is a sum over all
solutions to the equation x2 � �C � Db2 pmod pkq. Note that this is a very
short sum in this context. In particular, if x2 � �C � Db2 pmod pkq has no
solutions, then ψpbq � 0.

If x2 � �C �Db2 pmod pkq has some solutions (but not the maximal num-
ber) Theorem 5.4 in [16] and Theorem 3.5 in [15] tells us how to evaluate ψpbq.
These theorems can be summarized by the following theorem:

Theorem 4.3. Let ψ P VC be a normalized Hecke eigenfunction and assume
that p does not divide C or D. Let b P ZN and assume that the equation x2 �
�C � Db2

�
mod pk

�
has the solutions x � �x0p

s � pk�sZps

�
mod pk

�
for

some x0 and s such that p � x0 and 0 ¤ s   k{2.
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If n is even then

ψpbq � 1c
1�

�
D
p

	
1
p

�
αψpbq

ps¸
z�1

e

�
q�pzq
ps



� βψpbq

ps¸
z�1

e

�
q�pzq
ps


�
, (3)

and if n is odd and p � b then

ψpbq � 1c
p�

�
D
p

	
��αψpbq ps�1¸

z�1

e

�
q�pzq
ps�1



� βψpbq

ps�1¸
z�1

e

�
q�pzq
ps�1


�. (4)

Here q�pzq � r
�
Θψpbqz � x0Dbz

2 � pk�2s3�1D2b2z3
�
, |αψpbq| � |βψpbq| � 1

and the function Θψpbq is given by

Θψpbqpk � �x2
0p

2s � rC �Db2 � p2pk�sq3�1rD2b2 pmod pn�k�sq.
The careful reader may have observed that the case when n is odd and p|b

was left out from the theorem. However, that case will always be covered by
Theorem 3.4 in [15], which states that:

Theorem 4.4. Assume that n is odd and let ψ P VC be a normalized Hecke
eigenfunction. If p does not divide C or D and b fulfills that �C � Db2 � x2

0

pmod pkq for some p � x0, then

ψpbq � 1c
1�

�
D
p

	
1
p

pαψpbq � βψpbqq.

αψ and βψ are functions satisfying |αψpbq| � |βψpbq| � 1, αψpb � pk�1tq �
e
�
x0t
pk

	
αψpbq and βψpb� pk�1tq � e

�
�x0t
pk

	
βψpbq.

Finally, we turn to the case when the equation x2 � �C � Db2 pmod pkq
has the maximal number of solutions, i.e., when �C � Db2 � 0 pmod pkq. In
this case Theorem 5.5 in [16] and Theorem 3.6 in [15] can be summarized in the
following way:

Theorem 4.5. Let ψ P VC be a normalized Hecke eigenfunction and assume
that p does not divide C or D. Let b P ZN and assume that �C � Db2 � 0
pmod pkq. If n is even then

ψpbq � αψpbqc
1�

�
D
p

	
1
p

prk{2s¸
z�1

e

�
qpzq
prk{2s



, (5)

where qpzq � r
�
Θψpbqz � pk�2rk{2s3�1CDz3

�
, |αψpbq| � 1 and

Θψpbqpk � � rC �Db2 � pk�pk�2rk{2sq3�1rCD pmod pr3k{2sq.
If n is odd then

ψpbq � αψpbqc
p�

�
D
p

	 prk{2s�1¸
z�1

e

�
qpzq

prk{2s�1



, (6)
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where qpzq � Θψpbqz � pk�2rk{2s3�12CDz3, |αψpbq| � 1 and

Θψpbqpk � � rC �Db2 � p2rk{2s3�1CD pmod pr3k{2s�1q.

5 The proofs of the main theorems
Lemma 5.1. If the level l ¤ p2n� 1q{3 of b is odd, we have that ψpbq � 0.

Proof. If the level l is less than k, the equation x2 � �C�Db2 pmod pkq has no
solutions and so we are done. If k ¤ l, ψpbq is given by Theorem 4.5. We have
to treat the cases n even and n odd separately. Assume first that n is even. In
this case ψpbq is given by (5), recall in particular that

Θψpbqpk � � rC �Db2 � pk�pk�2rk{2sq3�1rCD pmod pr3k{2sq. (7)

The right hand side of (7) is divisible by p exactly l times, thus pl�k ‖ Θψpbq.
The coefficient in front of z3 is divisible by p exactly k � 2rk{2s times and this
number is always less than or equal to l � k. Hence, the exponential sum is
actually an exponential sum over Zp3rk{2s�k , where the coefficient in front of z3

is invertible and the linear term is divisible by p exactly l � 2k � 2rk{2s times.
This number is odd and the claim now follows from Lemma 3.5 since

3pl � 2k � 2rk{2sq � 1
2

¤ 3rk{2s � k.

Let us now assume that n is odd. In this case ψpbq is given by (6), where this
time

Θψpbqpk � � rC �Db2 � pk�pk�2rk{2sq3�1CD pmod pr3k{2s�1q. (8)

The same reduction as above gives a sum over Zp3rk{2s�k�1 , where the coefficient
in front of z3 is invertible and the linear coefficient is divisible by p exactly
l � 2k � 2rk{2s times. The claim now follows from Lemma 3.5 since

3pl � 2k � 2rk{2sq � 1
2

¤ 3rk{2s � k � 1.

The idea behind the proof of Theorem 1.2 is that, in some sense, Theorem 1.2
is a special case of Theorem 4.3. Unfortunately, it is not so easy to read off our
theorem from Theorem 4.3 and in reality a better description of the proof of
Theorem 1.2 is that it is a close analysis of the proofs of Theorem 5.4 in [16]
and Theorem 3.5 in [15]. The notation is these proofs are not well equipped for
our situation and for that reason we will rewrite the proofs completely.

Proof of Theorem 1.2. We fix b P ZN and study the values of ψpb1q for b1 �
b � tpn�k�s. Theorem 4.4 proves the theorem for n odd and s � 0 and we
may therefore assume p � b for odd n. By Lemma 4.2 we know that we can
write ψ � R

°
axζx, where the sum is taken over all x P Zpn�k � Zpk such

that x2
1�Dx2

2 � �C pmod pkq. Actually, the functions ζx are dependent on the

12



exact representative of x2 we choose, but we will postpone the exact choice of
representative for now. If we let

R � 1c
pn�2k

�
1�

�
D
p

	
1
p

	
the coefficients ax (where p � x2 if n is odd) will have absolute value 1. Note
that

ψpb1q � R
¸
axζxpb1q, (9)

where the sum is over all x such that x2 � b pmod pkq and x1 solves the equation
x2

1 � �C�Db2 pmod pkq. Since b has level 2s and ψpbq � 0 we know that there
must exist an integer x0, not divisible by p, such that px0p

sq2 � �C � Db2

pmod pkq. The solutions to x2
1 � �C � Db2 � px0p

sq2 pmod pkq are given by
x1 � �x0p

s pmod pk�sq. Let us now define

Bpsq �
�

1� rDp2pk�sq pk�sD

pk�s 1� rDp2pk�sq

�
.

By induction it is easy to show that

Bpsqz �
�

1� rDz2p2pk�sq
�
pk�sz � 3�1rDp3pk�sqpz3 � zq�D

pk�sz � 3�1rDp3pk�sqpz3 � zq 1� rDz2p2pk�sq

�
.

Let m � n� 2k � s. We observe that the two orbits"
Bpsqz

�
x0p

s

b



; z � 0, 1, ..., pm � 1

*
and "

Bpsqz
��x0p

s

b



; z � 0, 1, ..., pm � 1

*
corresponds exactly to the x in (9). We may therefore choose these represen-
tatives for x in (9). In other words, we introduce ζ�,z � ζ

Bpsqz
�
�x0p

s

b

	 and

write

ψpb1q � R

�
pm�1¸
z�0

a�,zζ�,zpb1q �
pm�1¸
z�0

a�,zζ�,zpb1q
�
.

Since ζxpb1q � e
�
x1t
pk�s

	
ζxpbq this can be reduced to

ψpb1q � R

�
e

�
x0t

pk�2s


 pm�1¸
z�0

a�,zζ�,zpbq � e

��x0t

pk�2s


 pm�1¸
z�0

a�,zζ�,zpbq
�
. (10)

The task is now to show that

a�,zζ�,zpbq � a�,0e

�
q�pzq
pm



, (11)

where q�pzq � r
�
Θψpbqz � x0Dbz

2 � pk�2s3�1D2b2z3
�
is the polynomial occur-

ring in Theorem 4.3. This follows from Lemma 4.1 together with the definition
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of ζx, remembering that ψ is a Hecke eigenfunction. (11) was shown in the
proofs of Theorem 5.4 in [16] and Theorem 3.5 in [15], and we therefore omit
the (quite tedious) exact calculations proving this statement.

At this point we have reproved Theorem 4.3 (combine (10) and (11)), also
showing that the functions αψ and βψ appearing in the equations (3) and (4)
fulfill

αψpb� tpn�k�sq � αψpbqe
�

x0t

pk�2s



and βψpb� tpn�k�sq � βψpbqe

��x0t

pk�2s



.

To conclude our proof we must show that the exponential sums in (3) and (4)
have absolute value ps{2 and pps�1q{2 respectively. If s � 0 this is trivial for
even n and otherwise we must have p � b also in the even case. The claim now
follows immediately from Lemma 3.1.

Proof of Proposition 1.3. This follows immediately from Theorem 1.2 for s  
k{2. For s ¥ k{2 we have to analyze Theorem 4.5. If we let qpzq denote the poly-
nomial in this theorem we have to show that |Spq, rk{2sq| ¤ 2ps{2 for even n and
that |Spq, rk{2s�1q| ¤ 2pps�1q{2 for odd n. The level is defined in such a way that
p2s�k divides the coefficient in the linear term of the polynomial. Assume that
k is even. For such k the polynomial fulfills the assumptions of Lemma 3.6, thus
for even n we get |Spq, rk{2sq| � |Spq, k{2q| ¤ 2pp2k{2�2s�kq{4 � 2ps{2 and simi-
larly for odd n we get |Spq, rk{2s � 1q| � |Spq, k{2� 1q| ¤ 2pp2pk{2�1q�2s�kq{4 �
2pps�1q{2. If on the other hand we assume k to be odd, we know that both the lin-
ear coefficient (since this was divisible by p2s�k) and the third degree coefficient
is divisible by p. Thus we may cancel one p in the numerators and denominators
to arrive at p shorter exponential sums of length prk{2s�1 and prk{2s respectively.
We now see that the new polynomial q1 fulfills the assumption of Lemma 3.6
and the linear coefficient is divisible by p at least 2s�k�1 times. If n is even we
get |Spq, rk{2sq| � p|Spq1, pk� 3q{2q| ¤ 2p1�p2pk�3q{2�2s�k�1q{4 � 2ps{2 and if n
is odd we get |Spq, rk{2s � 1q| � p|Spq1, pk � 1q{2q| ¤ 2p1�p2pk�1q{2�2s�k�1q{4 �
2pps�1q{2.

Proof of Theorem 1.4. Let ψs be the restriction of ψ to the points of level 2s,
for some s such that s ¤ n{3. The theorem is obvious for s � 0. Let us now
assume that the level is 0   l � 2s   k and take a point b1 of level l. We
study the values of �C �Db2, for b � b1 � tp2s as t runs though Zp. Since 2Db1

is invertible we see that �C � Dpb1 � tp2sq2 runs through all values modulo
p2s�1 that are congruent to zero modulo p2s. Of these numbers, pp � 1q{2 are
squares, pp� 1q{2 are non-squares and the last number is zero, saying that the
corresponding point b has higher level than b1. For the points b corresponding to
non-squares ψpbq � 0 and for b corresponding to squares we can use Theorem 1.2
(actually even if it were to happen that ψpbq � 0). In other words, for exactly
half the points of level 0   l � 2s   k we may use Theorem 1.2 and for the
other half ψpbq � 0. Since

αψpbqe
�

x0t

pk�2s



� βψpbqe

��x0t

pk�2s



is bounded and also bounded away from zero for most t, it is easy to see that
p�spq�4q{2}ψs}qq is bounded and also bounded away from zero, by combining this
observation with Lemma 2.1. This shows the theorem for levels l   k.
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Now assume l � 2s ¥ k. We can no longer use Theorem 1.2, but Propo-
sition 1.3 works just as well for the upper bound. To prove the lower bound
we once more have to study the expressions from Theorem 4.5. Let us there-
fore review the proof of Lemma 5.1: In our new case, l is even, which makes
l�2k�2rk{2s even. We want to use Lemma 3.7 and in order to do this we note
that

3{2pl � 2k � 2rk{2sq ¤ 3rk{2s � k

for even n and
3{2pl � 2k � 2rk{2sq ¤ 3rk{2s � k � 1

for odd n. Fix a point b1 and study b � b1�tpk for t P Zpn�k . The polynomial qpzq
is of the form qpzq � a3z

3 � a1z where a3 is fixed (but dependent on the parity
of k and n) and a1 changes with b. Observe that Θpb1 � tpkq � Θpb1q � 2Db1t
(see (7) and (8)) and since p � 2Db1, this shows that a1 takes all values of Zprk{2s
and Zprk{2s�1 respectively, the same number of times. The theorem now follows
from Lemma 3.7.

Proof of Theorem 1.1. We first note that since }ψ1 b ψ2}q � }ψ1}q}ψ2}q it is
enough to study the case where N � pn and p ¡ 3 is such that D and the lower
left element in A is invertible modulo p. If p|C we know that D is a square and
by Proposition 4.4 in [15] we see that the newforms are uniformly bounded at
all points. If p � C and C{D is not a square, we get the same conclusion from
Theorem 4.2 in [15]. The only thing left to study is the large newforms, i.e.,
where C{D is a non-zero square modulo p.

Let ψs be the restriction of the large newform ψ to the points of level 2s
for some s   n{3 and let ψmax be the restriction to the points of maximal
level. Obviously, }ψ}qq is the sum of all }ψs}qq. By Theorem 1.4 we know that
}ψs}qq � pspq�4q{2, where }ψs}qq � pspq�4q{2 should be understood in the sense
that the p�spq�4q{2}ψs}qq is uniformly bounded away from both zero and infinity
as N goes to infinity. According to Theorem 4.3 in [15] |ψpbq| � O

�
prn{3s{2

�
for

all points, including those with maximal level. This, together with Lemma 2.1,
gives us

}ψmax}qq � O

�
pqrn{3s{2

prp2n�3q{3s



� O

�
pnq{6�2n{3

	
� O

�
pnpq�4q{6

	
.

These estimates show that }ψ}qq is bounded for q   4.Moreover, if n is bounded,
so is the number of different levels, and therefore }ψ}44 is bounded. On the
other hand, if q � 4 and n goes to infinity, the number of different levels, and
therefore the sum over all }ψs}qq goes to infinity. Since n ¥ 3 the maximal level
is at least 2. In other words, ψ1 is non-trivial (for n � 3 this was denoted ψmax

above). Theorem 1.4 shows that }ψ1}qq explodes for q ¡ 4 and this causes }ψ}q
to explode. Finally, it is easy to see that for q ¡ 4, }ψ}qq, the sum of all }ψs}qq, is
dominated by O

�
pnpq�4q{6

�
(corresponding to the term }ψmax}qq) and this ends

the proof.
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