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Abstract

In this paper a special class of local ζ-functions is studied. The main

theorem states that the functions have all zeros on the line ℜ(s) = 1/2.
This is a natural generalization of the result of Bump and Ng stating that

the zeros of the Mellin transform of Hermite functions have ℜ(s) = 1/2.

1 Introduction

In the study of Hecke L-functions, Tate [6, 7] defined local ζ-functions

ζ(s, ν, f) =

∫

F×

f(x)ν(x)|x|sd×x,

where F is a local field, f is a Schwartz function of F, ν is a character of F× and
integration is taken with respect to Haar measure on F×. Weil [8] introduced

a representation ω = ωψ of the metaplectic group S̃L(2, F ) for each nontrivial
additive character ψ of F . The Local Riemann Hypothesis (LRH), as formulated
in [1], is the assertion that if f is taken from some irreducible invariant subspace
of the restriction of this representation to a certain compact subgroup H of
S̃L(2, F ), then in fact all zeros of ζ(s, ν, f) lie on the line ℜ(s) = 1/2. The
phenomenon was first observed by Bump and Ng and they proved that the zeros
of the Mellin transform of Hermite functions lie on the line, this corresponds to
LRH for F = R [2]. LRH has also been proved for F having odd characteristics
by Kurlberg [4] and disproved for F = C by Kurlberg [4]. In all cases above
H is the unique maximal compact subgroup of SO(2, F ), for F = R and for
F with characteristic congruent to 3 modulo 4, H is nothing but SO(2, F ),
since this already is compact. In [1] Bump, Choi, Kurlberg and Vaaler offer
generalizations of LRH to higher dimensions along with two different proofs of
the case F = R and H = SO(2). In this paper we prove:

Theorem 1.1. If f belongs to an irreducible invariant subspace of the Weil rep-
resentation restricted to SU(2,C) and ζ(s, ν, f) 6≡ 0, then all zeros of ζ(s, ν, f)
lie on the line ℜ(s) = 1/2.

In other words, we prove that a slightly modified version of LRH (namely
taking H = SU(2,C) rather than a compact subgroup of SO(2,C)) holds for
F = C.
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Remark. From now on we will restrict ourselves to the case where the local field
is C.
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3 The Weil representation

The Weil (or the metaplectic) representation is an action on S(C) = {f(z); f(x+
iy) = g(x, y) ∈ S (R2)}, where S (R2) is the Schwartz space. We will often think
of the elements of S(C), not as functions of the complex variable z, but rather
as functions of the two real variables x, y satisfying z = x + iy. In agreement
with that we write dz and this is nothing but dxdy, the Lebesgue measure of R2.
Sometimes we will also use the notation 〈f, g〉 =

∫
C
f(z)g(z)dz. Let the additive

character on C be ψ(z) = eiπℜ(z) and introduce the Fourier transform

f̂(z) =

∫

C

f(z′)ψ(2zz′)dz′.

With this normalization, we find that
ˆ̂
f(z) = f(−z).

Remark. As noted in [1] there is no loss of generality in assuming that the
additive character is ψ(z) = eiπℜ(z) if the objective only is to prove LRH.
Changing character does not preserve the irreducible subspaces, but the zeros
of the “corresponding ζ-functions” are preserved.

S̃L(2,C), the metaplectic double cover of SL(2,C), splits and we have

S̃L(2,C) ∼= SL(2,C)× C2. Using this identification we write

[
a b

c d

]
=

((
a b

c d

)
, 1

)
.

The restriction of the metaplectic representation to SU(2,C) can now be written
as

(
ω

[
α −β̄
β ᾱ

]
f

)
(z) =

1

|β|

∫

C

ψ

(
1

β

(
αz2 − 2zz′ + ᾱz′

2
))

f(z′)dz′.

However, it is much more convenient to see how ω acts on the generators of
SL(2,C). This is given by

(
ω

[
1 t

0 1

]
f

)
(z) = ψ(tz2)f(z),

(
ω

[
0 1

−1 0

]
f

)
(z) = f̂(z),
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and
(
ω

[
α 0

0 α−1

]
f

)
(z) = |α|f(αz).

Remark. When we write |α| we mean the ordinary absolute value of α, not the
“absolute value” of an element in a local field used by Tate.

In order to find the invariant subspaces of the action of SU(2,C) we could
of course just as well study the restriction to su(2,C) of the corresponding Lie
algebra representation dω : sl(2,C) → End(S(C)) defined by

((dω X)f)(z) =
d

dt
(ω (ẽxp(tX)) f) (z)|t=0,

where ẽxp is the exponential map sl(2,C) → SL(2,C) lifted to a map ẽxp :

sl(2,C) → S̃L(2,C). Since a natural basis for su(2,C) is

{(
0 1

−1 0

)
,

(
0 i

i 0

)
,

(
i 0

0 −i

)}
,

our first objective is to calculate how dω acts on S(C) for these vectors. From
the definitions we immediately get

(
dω

(
0 1

0 0

)
f

)
=

d

dt

(
ω

[
1 t

0 1

]
f

)∣∣∣∣∣
t=0

=
d

dt
ψ
(
t(x+ iy)2

)
f
∣∣∣
t=0

=
d

dt
eiπt(x

2−y2)f
∣∣∣
t=0

= iπ
(
x2 − y2

)
f

and
(
dω

(
0 i

0 0

)
f

)
=

d

dt

(
ω

[
1 it

0 1

]
f

)∣∣∣∣∣
t=0

=
d

dt
ψ
(
it(x+ iy)2

)
f
∣∣∣
t=0

=
d

dt
e−i2πtxyf

∣∣∣
t=0

= −i2πxyf.

Introducing the notation F for the operator taking f to its Fourier transform f̂
we see that

dω

(
0 0

−1 0

)
=

(
ω

[
0 1

−1 0

])−1(
dω

(
0 1

0 0

))(
ω

[
0 1

−1 0

])

= F−1iπ
(
x2 − y2

)
F = − i

4π

(
∂2

∂x2
− ∂2

∂y2

)

and

dω

(
0 0

−i 0

)
=

(
ω

[
0 1

−1 0

])−1(
dω

(
0 i

0 0

))(
ω

[
0 1

−1 0

])

= F−1 (−i2πxy)F = − i

2π

∂2

∂x∂y
.
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Hence we have that

dω

(
0 1

−1 0

)
= dω

(
0 1

0 0

)
+ dω

(
0 0

−1 0

)
= iπ

(
x2 − y2

)
− i

4π

(
∂2

∂x2
− ∂2

∂y2

)

and

dω

(
0 i

i 0

)
= dω

(
0 i

0 0

)
− dω

(
0 0

−i 0

)
= −i2πxy +

i

2π

∂2

∂x∂y
.

Finally we get that
(
dω

(
i 0

0 −i

)
f

)
=

d

dt

(
ω

[
eit 0

0 e−it

]
f

)
(x+ iy)

∣∣∣∣∣
t=0

=
d

dt
f(eit(x + iy))

∣∣∣
t=0

=
d

dt
f(x cos t− y sin t+ i(y cos t+ x sin t))

∣∣∣
t=0

= −y ∂f
∂x

+ x
∂f

∂y
.

Definition 3.1. Let fm,n(x + iy) = Hm(
√

2πx)Hn(
√

2πy)e−π(x
2+y2), where

Hn(x) = (−1)nex
2 dn

dxn e
−x2

are the Hermite polynomials.

Proposition 3.1. Wm =
⊕m

j=0 Cfj,m−j are invariant subspaces of the Weil
representation restricted to su(2,C).

Proof. We can write (see for instance [5]) fm,n(x+ iy) = hm(x)hn(y), where hm
satisfy

(
x2 − 1

4π2

d2

dx2

)
hm =

2m+ 1

2π
hm.

Hence we have

dω

(
0 1

−1 0

)
fm,n =

(
iπ
(
x2 − y2

)
− i

4π

(
∂2

∂x2
− ∂2

∂y2

))
fm,n

= iπ

(
2m+ 1

2π
− 2n+ 1

2π

)
fm,n = i(m− n)fm,n.

Using the recurrence formulas Hn+1(x) = 2xHn(x) − 2nHn−1(x) and H ′
n(x) =

2nHn−1(x) [5] we get

dω

(
i 0

0 −i

)
fm,n = −y ∂fm,n

∂x
+ x

∂fm,n
∂y

= −y
(√

2π2mfm−1,n − 2πxfm,n

)

+ x
(√

2π2nfm,n−1 − 2πyfm,n

)

=
√

2π (−2myfm−1,n + 2nxfm,n−1)

= −2m
fm−1,n+1 + 2nfm−1,n−1

2
+ 2n

fm+1,n−1 + 2mfm−1,n−1

2
= nfm+1,n−1 −mfm−1,n+1
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and

dω

(
0 i

i 0

)
fm,n =

1

2
dω

[(
i 0

0 −i

)
,

(
0 1

−1 0

)]
fm,n

=
1

2
dω

(
i 0

0 −i

)
i(m− n)fm,n

− 1

2
dω

(
0 1

−1 0

)
(nfm+1,n−1 −mfm−1,n+1)

= −infm+1,n−1 − imfm−1,n+1.

The proposition follows since Wm obviously is closed under all three basis op-
erators.

Remark. Using the three basis operators given above it is easy to see that Wm

is irreducible.

Instead of choosing the basis {fm−n,n}mn=0 for Wm it is sometimes more

convenient to use the basis of eigenfunctions of dω

(
i 0

0 −i

)
. Because of the

symmetry in the commutator relations of the basis elements of su(2,C), these
eigenfunctions have the same set of eigenvalues as {fm−n,n}mn=0. Call this new
basis {bm,n}, where n = −m,−m+ 2, ...,m and bm,n(re

iθ) = einθbm,n(r). The
elements of the basis is determined by the relations above up to multiplication
by a constant, choosing these constants correctly we get:

Proposition 3.2. Let

L(α)
n (x) =

x−αex

n!

dn

dxn
(
xn+αe−x

)

be the Laguerre polynomials. (See [5]) We have that

bm,n(re
iθ) = einθr|n|L

(|n|)
(m−|n|)/2(2πr

2)e−πr
2

.

Proof. We assume n ≥ 0, the argument is same as for n < 0. Since bm,n ∈ Wm,

we see that bm,n is on the form c(z, z̄)e−π|z|
2

, where c is a polynomial of degree
m. That bm,n(re

iθ) = einθbm,n(r) means that c(z, z̄) only consists of terms on
the form zaz̄b, where a − b = n. In particular we must have that bm,n(re

iθ) =

einθrnqm,n(2πr
2)e−πr

2

, where qm,n is a polynomial of degree (m− n)/2. Since
the subspaces Wm are orthogonal to each other, for m 6= m′ we have

0 = 〈bm,n, bm′,n〉 = 2π

∫ ∞

0

rnqm,n(2πr2)e
−πr2rnqm′,n(2πr

2)e−πr
2

rdr

=
1

2(2π)n

∫ ∞

0

qm,n(x)qm′,n(x)x
ne−xdx.

This proves that qm,n(x) = L
(n)
(m−n)/2(x) if we normalize correctly.
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4 Properties of the local Tate ζ-function

Definition 4.1. We define the local Tate ζ-function

ζ(s, ν, f) =

∫

C×

f(z)ν(z)|z|2s−2dz

for all characters ν of C× and f ∈ S(C).

Remark. This is the local ζ-functions defined in the introduction specialized to
the case where the local field is C.

All characters of C× can be written using polar coordinates in the form
ν(r, θ) = riαeikθ with k ∈ Z. Since ζ(s, riαeikθ , f) = ζ(s+ iα/2, eikθ, f), the real
part of the zeros of ζ does not depend on α. Hence our attention will be drawn
to the following object:

Definition 4.2. Let k,m ∈ N, νk = eikθ and gk = r2s−2νk. We set

ζ(k)
m (s) = 〈fm,0, gk〉 = ζ(s, νk, fm,0).

In order for Theorem 1.1 to be true it is essential that all elements in the
invariant subspaces define the same ζ-function ζ

(k)
m , up to multiplication by a

constant. That this really is the case is shown in the next proposition.

Proposition 4.1. If f ∈ Wm then ζ(s, νk, f) = cf,k · ζ(k)
m (s), where cf,k is a

constant not depending on s.

Proof. Let f =
∑m

j=0 c2j−mbm,2j−m. For (m− k)/2 ∈ N we see that

ζ(s, νk, f) =

m∑

j=0

c2j−mζ(s, νk, bm,2j−m)

=
m∑

j=0

c2j−m

∫ ∞

0

∫ 2π

0

ei(2j−m)θbm,2j−m(r)r2s−1eikθdθdr

= ckζ(s, νk, bm,k),

other m give ζ
(k)
m (s) ≡ 0.

Lemma 4.2. If (m− k)/2 ∈ N we have that

ζ(k)
m (s) = Γ

(
s+

k

2

)
π1−sp(k)

m (s),

where p
(k)
m (s) is a real polynomial of degree (m− k)/2. Otherwise ζ

(k)
m (s) ≡ 0.

Proof. Since Hm is odd if m is odd and even if m is even, the trigonometric
identities [3]

cos2n θ =
1

22n

(
2n

n

)
+

1

22n−1

n∑

j=1

(
2n

n− j

)
cos(2jθ)
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and

cos2n−1 θ =
1

22n−2

n∑

j=1

(
2n− 1

n− j

)
cos((2j − 1)θ),

can be used to write

Hm(
√

2πr cos θ) =

[m/2]∑

j=0

rm−2jaj(r
2) cos((m− 2j)θ)

for some real polynomials aj(r) with deg aj = j. This implies that if (m−k)/2 6∈
N then ζ

(k)
m (s) ≡ 0 and if (m− k)/2 ∈ N we have

ζ(k)
m (s) =

∫ ∞

0

∫ 2π

0

Hm(
√

2πr cos θ)e−πr
2

r2s−1eikθdθdr

= 2π

∫ ∞

0

rkam−k

2

(r2)r2s−1e−πr
2

dr = π

m−k

2∑

j=0

bj

∫ ∞

0

r2s−1+k+2je−πr
2

dr

= π

(m−k)/2∑

j=0

bj
1

2πs+j+k/2
Γ

(
s+ j +

k

2

)

=

(m−k)/2∑

j=0

bj
1

2πs+j+k/2−1

(
s+ j +

k

2
− 1

)
...

(
s+

k

2

)
Γ

(
s+

k

2

)

= Γ

(
s+

k

2

)
π1−sp(k)

m (s),

where p
(k)
m (s) is a real polynomial of degree (m− k)/2.

Remark. Theorem 1.1 implies that p
(k)
m (1 − s) = (−1)

m−k

2 p
(k)
m (s) so ζ

(k)
m fulfills

a functional equation much like the functional equation for the Riemann ζ-
function.

Lemma 4.3. ζ
(k)
m (s) admits the functional equation

(m+ 1)ζ(k)
m (s) = πζ(k)

m (s+ 1) − 1

π

(
s+

k

2
− 1

)(
s− k

2
− 1

)
ζ(k)
m (s− 1).

Proof. Since we have that

∆gk(s) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
r2s−2eiθk =

(
(2s− 2)2 − k2

)
gk(s− 1)

and
(
− 1

4π
∆ + π

(
x2 + y2

))
fm,0 = (m+ 1)fm,0,
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we immediately get

(m+ 1)ζ(k)
m (s) = 〈(m+ 1)fm,0, gk(s)〉 =

〈(
− 1

4π
∆ + π

(
x2 + y2

))
fm,0, gk(s)

〉

=

〈
fm,0,

(
− 1

4π
∆ + π

(
x2 + y2

))
gk(s)

〉

=

〈
fm,0,−

1

4π

(
(2s− 2)2 − k2

)
gk(s− 1) + πgk(s+ 1)

〉

= − 1

π

(
s+

k

2
− 1

)(
s− k

2
− 1

)
ζ(k)
m (s− 1) + πζ(k)

m (s+ 1).

From [1] we have the following lemma:

Lemma 4.4. Let q(s) be a polynomial, and assume that the zeros of q(s) lie in
the closed strip {s;ℜ(s) ∈ [−c, c]} with c > 0. Then if a, b > 0, the zeros of

r(s) = (s+ a)q(s+ b) − (s− a)q(s− b)

lie in the open strip {s;ℜ(s) ∈ (−c, c)}.

Remark. The lemma is proved for b = 2, but this does not change the proof.

Proof of Theorem 1.1. We only need to show that p
(k)
m (s) has all its zeros on

ℜ(s) = 1/2. Letting q
(k)
m (s) = p

(k)
m (s+ 1/2) and inserting this in Lemma 4.3 we

get

(m+ 1)Γ

(
s+

k + 1

2

)
π

1

2
−sq(k)m (s) = πΓ

(
s+ 1 +

k + 1

2

)
π− 1

2
−sq(k)m (s+ 1)

− 1

π

(
s+

k − 1

2

)(
s− k + 1

2

)
Γ

(
s− 1 +

k + 1

2

)
π

3

2
−sq(k)m (s− 1).

Simplifying this gives

(m+ 1)q(k)m (s) =

(
s+

k + 1

2

)
q(k)m (s+ 1) −

(
s− k + 1

2

)
q(k)m (s− 1).

The claim now follows from Lemma 4.4.

We could also prove Theorem 1.1 in a different way by using the following
well-known theorem:

Theorem 4.5. Let {pn}∞n=0 be a sequence of polynomials such that the degree of
pn is n and the polynomials are orthogonal with respect to some Borel measure
µ on R. Then pn have n distinct real roots.

Proof. The theorem is obviously true for n = 0. Assume that pk has k distinct
roots for k < n. Without loss of generality we assume that all polynomials have
one as their leading coefficient. Then pk is real for k < n and pn = fn + ign,
where gn has degree less than n. Moreover,

0 = (pn, pk) = (fn, pk) − i(gn, pk)
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for k < n, hence (gn, pk) = 0. But the degree of gn is less than n so we must
have gn ≡ 0. Thus pn is real. If pn does not have n distinct real roots then it
could be written as pn(x) = (x− α)(x− ᾱ)q(x) = |x− α|2q(x) for x ∈ R. Since
the degree of q is less than n we must have (pn, q) = 0, but on the other hand
we have that pn(x)q(x) ≥ 0 for all x. This is a contradiction, hence pn has n
distinct real roots.

Proposition 4.6. The polynomials p
(k)
m (1/2+ it) are orthogonal with respect to

the measure |Γ((k + 1)/2 + it)|2dt, where dt is the Lebesgue measure on R.

Proof. As we have noticed before the functions bm,n are orthogonal, hence for
m 6= m′ we have

0 = 〈bm,n, bm′,n〉 = 2π

∫ ∞

0

bm,n(r)bm′,n(r)rdr

= 2π

∫ ∞

−∞

bm,n(eu)eubm′,n(e
u)eudu.

Using Plancherel’s formula it follows that 2πF(bm,n(e
u)eu)(−2t) is an orthogonal

sequence (F denotes the ordinary Fourier transform) and this is just

2πF(bm,k(e
u)eu)(−2t) = 2π

∫ ∞

0

bm,−k(r)r
i2tdr

=

∫ ∞

0

∫ 2π

0

bm,−k(re
iθ)eikθri2tdθdr = cm,kζ

(k)
m (1/2 + it)

= cm,kΓ

(
k + 1

2
+ it

)
π1/2−itp(k)

m (1/2 + it).

Remark. Theorem 1.1 follows immediately if we combine Theorem 4.5 with
Proposition 4.6.
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