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Abstract Recording the activity of animals as they
migrate or forage has proven hugely advantageous to

understanding how animals use their environment. Where

animals cannot be directly observed, the problem remains
of how to identify distinct behaviours that represent an

animal’s decision-making process. An excellent example

of this problem is that of foraging penguins, which travel to
sea to find prey to provision their young. Without direct

sampling of the prey field, we cannot calibrate patterns of

movement with prey capture, and therefore we cannot
determine how different activities link to decision-making.

To overcome this, we use a hidden markov model (HMM),

which is a machine-learning technique that seeks to iden-
tify the underlying states of a system from observable

outputs. We apply HMM to determine classes of behaviour

from repetitive dives. We take dive data from 103 breeding
macaroni penguins at Bird Island, South Georgia, for which

we have measures of weight gain over a trip. We identify

two classes of behaviour; those of short-shallow and long-
deep dives. Using these two behaviours, we calculate the

transition probabilities between these states and analyse

these data to determine what predicts variation in the
transition probabilities. We found that the stage of repro-

duction during a season, the sex and year of an individual

influenced the probability of transition between long-deep
and short-shallow sequential dives. We also found differ-

ences in the hourly transition rates between the four

reproductive stages (incubation, broodguard, crèche and
premoult) over a daily cycle. We conclude that this

application of HMMs for behavioural switching is poten-

tially useful for other species and other types of recorded
behaviour.

Introduction

Understanding the patterns of habitat use is important to
understand a species’ niche (Jonsen et al. 2003), but it is

the rules or trade-offs that govern how habitats and

resources are used that are key to predicting behaviour.
Within the broader context of current global environmental

change, such an understanding is particularly relevant for

making predictions about how resource use may vary with
habitat alterations or climate change (Jenouvrier et al.

2009). Habitat and resource use are governed by animal

decisions (Manly et al. 2002), which are influenced by the
behavioural state of the animal at the time when the

decision is taken as well as its previous experience (Burns

2005; Parejo et al. 2007; Stamps and Swaisgood 2007;
Wolf et al. 2009). For example, whether or not a cheetah

Communicated by M. E. Hauber.

T. Hart (&) ! N. Pettorelli
Institute of Zoology, Zoological Society of London,
Regent’s Park, London NW1 4RY, UK
e-mail: tom.hart@ioz.ac.uk

T. Hart ! T. Coulson
Imperial College London, Silwood Park, Buckhurst Road,
Ascot, Berkshire SL5 7PY, UK

T. Hart ! P. Trathan
British Antarctic Survey, High Cross, Madingley Road,
Cambridge CB3 0ET, UK

R. Mann
Pattern Analysis and Machine Learning Research Group,
Department of Engineering Science, Parks Road,
Oxford OX1 3PJ, UK

R. Mann
Animal Behaviour Research Group, Department of Zoology,
Oxford University, South Parks Road, Oxford OX1 3PS, UK

123

Mar Biol

DOI 10.1007/s00227-010-1428-2



Acinonyx jubatus decides to chase a prey animal may be

based on the local environmental conditions such as terrain
(Bisset and Bernard 2007) and prey density (Cooper et al.

2007), its reproductive state (Cooper et al. 2007), or the

time since its last meal (Caro 1994).
Unveiling the process-shaping patterns of habitat use

can be challenging when direct observational data are

difficult to collect. Data from activity loggers (or bio-
logging tags) have improved our understanding of animal

migration (Croxall et al. 2005; Guilford et al. 2009), nav-
igation (Biro et al. 2007), foraging (Takahashi et al. 2004;

Bost et al. 2007; Trathan et al. 2008), and physiology

(Green et al. 2002, 2003) in an increasing number of taxa
(Ropert-Coudert and Wilson 2005; Wikelski et al. 2007;

Sims et al. 2008). Marine diving animals provide an

excellent example of where direct observations are diffi-
cult. Indirect data such as those from tags require calibra-

tion to understand how patterns of movement or activity

relate to the behaviour and the biology of the animal
(Jonsen et al. 2006; Patterson et al. 2008). When classes of

behaviour cannot be directly calibrated by observation,

data are used to define behaviours (Guilford et al. 2004;
Jonsen et al. 2005; Patterson et al. 2008). Methods include

objective mathematical description of the shape and motifs

present in individual dives (Wilson 1995; Halsey et al.
2007), cluster analysis (Safi et al. 2006), and machine

learning (Roberts et al. 2004; Guilford et al. 2009). The

nature and persistence of these behaviours are then
described over time or between groups of interest (Guilford

et al. 2004; Biro et al. 2007).

Dives form natural, discrete units of behaviour, as air-
breathing marine animals on breath-holding dives must

balance their access to oxygen at the surface with food at

depth (Kramer 1988; Houston and Carbone 1992; Soto
et al. 2008). Multiple dives may be needed to assess or

deplete a patch (Takahashi et al. 2004; Naito 2007), so

aggregations of dives have been regarded as a single
behaviour (Boyd et al. 1994; sensu Dawkins 2007). Tem-

poral clustering such as bouts have been used to test

hypotheses of patch and resource use (Boyd et al. 1994;
Luque and Guinet 2007). Defining bouts of movements in

other animals such as caribou (Rangifer tarandus) has

recently proven controversial, with arguments about whe-
ther the scale of measurement may influence the patterns

generated (Nams 2006; Johnson et al. 2006). Similarly,

Hart et al. (2010) suggested limitations to this approach in
penguins. In diving animals, a bout is defined by the rate of

dives (Boyd et al. 1994), or by separate start and end cri-

teria (Naito et al. 1990).
We argue that the successful identification and charac-

terisation of behaviours in diving endotherms requires (1)

an objective way to identify the number of distinct
behavioural states defined by the data, (2) a method of

clustering similar dives that are considered part of the

same behaviour at any point in time, and (3) analyses of
behaviour based on transition points between these

behaviours. A variety of models exist that have been used

to identify change points in time series data, which include
Kalman Filters (Kalman and Bucy 1961), Fourier processes

(Safi et al. 2006), wavelet analysis (Cazelles et al. 2008),

kmeans clustering (Rendell and Whitehead 2005; Arnold
and Zuberbühler 2006; de Craen et al. 2006), and Hidden

Markov Models (HMM) (Fanke et al. 2004; Roberts et al.
2004; Guilford et al. 2004; Macdonald and Raubenheimer

2007). Hidden Markov Models are well understood for

temporal processes and have recently been applied to
behavioural data (Fanke et al. 2004; Roberts et al. 2004;

Guilford et al. 2004; Macdonald and Raubenheimer 2007)

(Fig. 1).
In this study, we use data collected on adult macaroni

penguins Eudyptes chrysolophus and HMM to determine

change points, as our data may be regarded as time series
with non-independence between sequential dives (Tremblay

and Cherel 2003, Hart et al. 2009) with k number of hidden

states. We propose that dive depth and duration are related
to a hidden behavioural state which may be feeding or not

feeding. We wish to identify these states and describe

transitions between them. When applied in this context,
Hidden Markov Models can be thought of as a more

Fig. 1 Schematic of a hidden Markov model as used for diving
analysis. This representation shows a period of four dives (numbered
1–4). At each instance, the bird occupies one or other behavioural
state (of searching or foraging) which is hidden (above dotted line).
Each behavioural state is associated with a different ‘emission’
probability. As emissions from dive 1 to dive 4 are observable (below
dotted line) and contain information about the hidden state, we can
use the observed data to determine the likelihood of being in each
hidden state. We assume that search dives will also include travelling
dives as these will be short and shallow
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sensitive version of Boyd’s (1994) iterative t-test approach.
The strength of Boyd’s (1994) method is that it attempts to
introduce ‘state persistence’, which is the core of the HMM

approach and accounts for the potential non-independence

of dives. We ask our model to find two states for three
reasons, namely (1) to be consistent with previous studies

of bouts (Boyd et al. 1994; Luque and Guinet 2007),

whereby dives are either above a certain density and within
a bout or below that density and not in a bout; (2) we used

the distribution of dive depths and durations to objectively
identify the number of clusters for which the model should

search: plotting depth and duration revealed strong bimo-

dality in each of these variables as well as correlation
between the two variables; and (3) running the model with

more than two states revealed that only two states were

significantly occupied. The following predictions were then
tested:

• (H1) There are distinct states of behaviour defined by
depth and timing of dives.

• (H2) The amount of time spent in each state is related

to observed weight gain.
• (H3) There are different strategies for penguins in

different reproductive stages, sexes, and years.

Methods

Data collection

We here use a data set based on 103 breeding adult mac-
aroni penguins for which dive and mass data have been

collected before and after each foraging trip. Monitored

birds can be found in four different breeding stages, namely
incubation (from egg-laying to egg-hatching), broodguard
(where the male parent guards the young chick and the

female forages), crèche (where both parents forage and the
chicks form clusters in the colony guarded by a few adults),

and premoult (where the parents leave the chicks for a long
trip to increase their own mass prior to moulting). A trip is
here defined as the period of time (in hours) away from the

egg or chick (one continuous absence).
Macaroni penguins were tagged with Wildlife Com-

putersTM Mark 7 Time Depth Recorders (TDRs) at the

Fairy Point study colony (5480003000S, 38"0402100W) on
Bird Island during the 1998–2005 austral summers. Fairy

Point is a small circular colony approximately 20 m in

diameter. Individuals were tagged between November and
March at various stages during the breeding cycle before

they went to sea to forage. All procedures conformed to the

Scientific Committee of Antarctic Research (SCAR) Code
of Conduct for Use of Animals for Scientific Purposes in

Antarctica (2006).

Devices were glued with 2-part epoxy resin onto the tips

of feathers along the spine between and below the scapulae,
following the methods by Wilson et al. (1997) with some

modifications. The TDRs were 95 9 15 9 15 mm in sec-

tion and weighed 50 g in air, which corresponded to\0.5%
of the bird’s cross-sectional area and 1.0–1.5% of body

mass; within guidelines for maximum device loads that

these birds can potentially carry (Wilson et al. 2005; Wilson
and McMahon 2006). However, any device placed on free-

ranging animals has the potential to affect their welfare and
alter their behaviour or reproductive success (Murray and

Fuller 2000;Wilson andMcMahon 2006), as has been found

with flipper tags (Froget et al. 1998; Gauthier-Clerc et al.
2004). Other variables recorded were the mass of each bird

on deployment and recovery, and the sex of each bird,

determined using bill measurements (Williams and Croxall
1991, but for caveats see Hart et al. 2009) and observations

of marked pairs exhibiting sexually dimorphic behaviour on

the nest (Williams and Croxall 1991). Mass was measured
using a balance, with the bird immobilised in a bag.

Birds were captured using a crook from the edge of the

colony to avoid excessive colony disturbance. Birds had
implanted TIRISTM tags (Texas Instruments Radio Identi-

fication System) to avoid the possibility of recapturing

birds over successive years. Birds were recaptured on their
return to land and the TDRs removed before the bird

entered the colony. Birds were weighed before they had fed

chicks. Replicates were obtained by recycling the TDRs
over the season, so each TDR tag was deployed up to four

times on different birds during each breeding season.

Data processing and statistical analysis

Data in this study have been treated in three steps: (1)
processing of raw time series data into individual dives, (2)

using a hidden markov model (HMM) to identify two states

of diving and (3) performing statistical analysis using
general linear models (GLM) or generalised linear mixed

models (GLMM) to investigate rates of mass gain, and

general additive mixed models (GAMM) to determine
what influences diving behaviour throughout a day.

Raw data were summarised into dives using our own

scripts in MATLAB# (The MathWorksTM, www.
themathworks.com), which followed conventions of dive

identification described in Tremblay and Cherel (2000).

This processing included zero offset correction (ZOC) at
the surface, which generally affected depth records in the

upper 3 m of each data set. ZOC identifies the surface as

the running mean of the top of a series of dives over a
minimum of 200 s long enough for the penguin to have

surfaced at least twice. If the tops of these dives were too

varied or showed large trends, the tag was rejected on the
assumption that the calibration of the pressure sensor had
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failed. The scripts then identified dives as the period from

leaving the surface until the time of returning to the sur-
face. For each dive, we recorded the time at the start and

end of the dive, the maximum depth, dive duration, and the

interval between the end of a dive and the next dive. Where
presented, the time of sunrise and sunset was calculated

using the methods of calculation described by Monten-

bruck and Pfleger (2005).
The Hidden Markov algorithm was applied in Matlab#

using code previously developed to estimate the hidden
states of navigation in homing pigeons (Roberts et al. 2004;

Guilford et al. 2004). Using HMM on the data for each

individual, HMM identified the state of each dive and a
transition of the probability of moving between states for

each penguin. HMM treats the time series as a series of

states and seeks to identify the states and the transition
points between them (Markov 1971). The code used is a

mathematical implementation of Occam’s razor, whereby

models need to balance noise in the data with explanatory
power and simplicity. Models could be simple (not many

states), but have large error around them, or complicated to

the extreme case of one state per observation and no error.
Under the method of variational learning used in this study,

models containing parameters with large variation around

them are down-weighted, and the number of parameters is
also penalised, such that the final model chosen is the one

most likely to predict the next time step. For details of this

approach, see Roberts et al. (2004).
Histograms of the log depth (Fig. 2a), duration (Fig. 2b),

and the two variables together (Fig. 2c) indicated that there

were two strategies, a ‘short, shallow’ strategy and a ‘long,

deep’ strategy. Plots of surface interval commonly showed

one distribution with a long tail, so the natural log of the
surface interval was used to correct this (Fig. 2d). The HMM

based on depth and duration was therefore programmed to

find two clusters in the dive duration and the log of dive
depth and to classify each of the dives into one of these

states, along with an associated probability. Long, deep

dives are termed d, and short, shallow dives s. The proba-
bility of a dive being d was recorded for each dive as well as
the global transition matrix between types of dive (Table 1).
The transition matrix shows the probabilities of transition

between successive dives. As we are concerned with pat-

terns of foraging, we use the p(dd) (Table 1) for comparison
between individuals and groups, where p(dd) reflects the

relative continuity of long-deep dives.

Specific a priori hypotheses listed in the introduction
were tested using generalised linear mixed models

(GLMM) in R 2.7.2 (www.r-project.com). Each model was

checked with standard diagnostic plots. To determine what
influenced diving behaviour over a 24-h period, generalised

additive mixed models (GAMM) were fitted to HMM

probability output summarised by hour, using the mgcv
(1.4–1) library.

Results

Tag recovery

Of 156 deployed tags, all were recovered, and data suc-

cessfully downloaded from 129 of these, the remainder

Fig. 2 Figures showing the
justification for selecting two
states of diving based on the
variables included in the hidden
Markov model. Each graph
shows dives from one
individual: z30. a Histogram of
the log of dive depth.
b Histogram of the duration of
dive duration. c Scatter plot of
dive depth versus duration,
showing the relationship
between the two, and the
existence of two clusters, s and
d. d Distribution of surface
intervals. The log of surface
interval is used throughout this
study because histograms of the
surface interval commonly
show a very long tail
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were rejected due to hardware or software failure, where

the tag had not been set up correctly. These were primarily

in the 1999/2000 season, for which no usable data exist. Of
these data sets remaining, 103 had records for pre- and

post-trip weights. Data from six tags were rejected after

Zero Offset Correction; the resulting number of usable data
sets retrieved after ZOC, and tag failure is given in Table 2.

Identification and interpretation of HMM states

Using the HMM algorithm, we identified two clear
behaviours. An example is given in Fig. 3, showing how

these states relate to the depth and time, and the probability

of being in each state. The justification for hidden Markov
analysis is that sequential dives are non-independent and

exist in two distinct states, which represent two different

behaviours. Figure 2 shows bimodality in both the depth
and duration plots (which could easily indicate a four-state

system), and Fig. 3b shows that most dives fit very neatly

into one of two states identified by HMM with very few
dives showing intermediate probability. Repeating HMM

analysis with more than two states showed that only two

states were readily occupied. In the light of our prior
hypothesis of two behavioural states, it seems likely that

the states identified by HMM represent two behaviours.

The effect of behaviour and life history on weight gain

There was considerable variation in the rate of weight gain
(min = -1.45 9 10-3, max = 2.85 9 10-4) and p(dd)

(min = 0.558, max = 0.992). The probability of continued

deep dives [p(dd)] was correlated with the rate of weight
gain (Pearson = 0.260, P = 0.008), but a GLM of stage on

p(dd) revealed that this is because p(dd) is confounded with
stage (F1,3 = 3.01, P = 0.033). The GLMM to investigate
factors that predict the rate of weight gain showed that dd
was not significant (dd F1,88 = 0.18, P = 0.676). Year,
stage, and sex were all significant predictors of weight gain

(year F4,88 = 3.05, P = 0.021; stage F3,88 = 13.46,

P\ 0.001; sex(stage) F4,88 = 6.43, P\ 0.001, Fig. 4).
The full model explained approximately one-third of the

variance (R2 (adj) = 36.65%).

Diurnal strategies between stages

Fitting a GAMM to the hourly probability of being in d
shows that the hour of day was highly significant

(P\ 0.001) once the individual, sex, stage, and year were

taken into account. Plotting the fit lines for each stage
(Fig. 5) shows where the differences between stages lie.

Incubation and premoult (Fig. 5a, d) showed much lower

mean probability of d dives than broodguard and crèche
(Fig. 5b, c) overnight. All stages showed similar proba-

bilities of d dives during daylight hours.

Linking surface interval to state

To test whether the post-dive surface interval was linked to
the diving state of the previous dives, we took the mean of

the previous five dives to show short-term average and

plotted this against surface interval (this is shown for one
individual in Fig. 6a). The variance and range of results

may be linked to the number of data points over different

mean probabilities (Fig. 6b). To overcome any sample
bias, the data frame of mean p (the mean probability of

Table 1 The probability transition matrix from the hidden Markov
models

State (i ? 1)

d s

State (i)

d p 1 - p

s q 1 - q

The matrix records the observed probability of moving between dive
types s and d in the current and next time step. Transition rate p(dd) is
used for analysis, because this represents the probability of continued
deep diving and inferred foraging behaviour

Table 2 The sample size of tags used in this study by year and stage

Incubation Broodguard Crèche Premoult

1998/1999 0 1 2 0

2000/2001 4 7 9 5

2001/2002 13 15 14 0

2003/2004 0 7 2 0

2004/2005 0 11 13 0

Sample sizes for stage and sex comparisons are given in Fig. 4

Fig. 3 Output of the hidden Markov model for penguin z30 for a
24-h period. a The depth of dives over time, s (grey) or d (black) as
identified by the HMM. b The probability of being in type 1 in
relation to the dives in a. This shows that there are two clear clusters,
with some intermediate dives
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being in state d for the five preceding dives) was sub-

sampled for each individual. Sub-sampling stabilised the

variance over the range of mean p (Fig. 6c), and a qua-
dratic regression showed that there was a significant rela-

tionship between mean p and log surface interval

(F2,1141= 8.80, P\ 0.001), but that this explained very

little of the variance (R2(adj) = 1.3%). This shows that
dives that are strongly within either state s or d are more

likely to be followed by a longer surface interval, so runs of

dives that include dives not clearly of s or d are less likely
to be at the end of a long run of dives. Figure 6d shows

where these dives with intermediate mean p lie on the

depth/duration curve.

Discussion

The use of hidden Markov models in foraging ecology

The use of hidden Markov models to partition observed

diving into behavioural states, then analysing the transition
rates between behaviours, is novel. Other studies have

placed an emphasis on spatial analysis in the lateral plane

(Roberts et al. 2004; Jonsen et al. 2006), but HMMs can
equally be applied to time series of any behavioural data

such as diving. The behaviours identified are easy to

visualise as use of the environment against time (Fig. 6d),
which aids interpretation. Recent advances in bio-logging

have enabled more direct measures of energy consumption

(Shepard et al. 2009) and prey capture (Takahashi et al.
2004) in single dives. Our approach can be used alongside

these advances to better describe where behavioural

changes occur and how these influence animals’ energy
budgets. Most current definitions of bouts are unlikely to be

applicable to penguins, because runs of dives are non-

independent. In contrast, HMMs produce an estimate of
likelihood, and they can be used to determine where there

are notable changes in behaviour, or transition rates

between behaviours.
One of the interesting features of this analysis is that

there are a small number of dives that do not fall into clear

states. When a dive falls between the clusters of normal
behaviours, this could be because it was exploratory,

accidental, or abortive. There may also be interactions with

predators or other occasional external influences that alter
local behaviour, after which disturbance the animal returns

to the previous behavioural state. There is therefore a trade-

off between sensitivity and robustness. Clustering dives
into bouts is quite sensitive, but loses robustness. Alter-

natively, using the probability of dives being within a

certain state or the transition probability loses some sen-
sitivity, but does preserve a measure of decision-making

while reducing the influence of outlier dives.

The hidden Markov models used in this study revealed
that there are two different behaviours, which would be

masked by analysis of the unprocessed dive depths for the

same data set. While we have focussed on depth and
duration (to include both a spatial and temporal element),

Fig. 4 a The mean state probability by hour for each of the four
reproductive stages. Points in black show the mean probability and
standard error for females. Grey points and error bars show the mean
and standard error for males. b Represents the rate of mass gain for
the same stages by sex. Sample sizes for females are as follows:
incubation = 13, broodguard = 39, crèche = 21 and premoult = 4.
Sample sizes for males are as follows: incubation = 4, brood-
guard = 0, crèche = 20 and premoult = 1. c The probability of
transition between state d for subsequent dives p(dd), showing the
mean and standard error of the means. Sample sizes are: 1998/
1999 = 3, 2000/2001 = 25, 2001/2002 = 42, 2003/2004 = 9 and
2004/2005 = 24. d Represents the rate of mass gain for the same
penguins
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there are numerous attributes of individual dive that could

be included in an HMM, short-term changes in depth
within a dive (Halsey et al. 2007). We now address the

remaining hypotheses of whether the behaviour links to

weight gain, whether there are differences in strategies
between stages, and whether there is inter-annual variation

in foraging behaviour.

Do deep dives correlate with the amount of observed
weight gain?

We tested the hypothesis that the amount of time spent in
one state would relate to the observed weight gain in a

foraging trip. We find no evidence for this, primarily

because dive state use is strongly influenced by

Fig. 5 The state probability by
hour for each of the four
reproductive stages
(a incubation, b broodguard,
c crèche and d premoult). The
solid line represents the mean
transition probability (deep-
deep dives) for each hour, and
dotted lines represent the 95%
confidence interval around the
line. All stages have similar
mean transition probabilities for
deep diving p(dd) during the
day, but differing probabilities
during the night

Fig. 6 The effect of mean P on
the surface interval of dives.
a The log surface interval
plotted on the mean probability
of the previous 5 dives being d
for a single penguin, z30. This
shows that there is much greater
variation in the surface interval
for those dives that are strongly
assigned to one state or the
other. b The histogram of dives
binned by the mean probability
of the previous 5 dives. c The
sub-sampled data of surface
interval and mean P, while
d shows where dives of
different probability lie on the
depth/duration curve. Light grey
represents dives with p(dd)
0–0.05, black = p(dd) 0.05–
0.95, and dark grey = p(dd)
0.95–1
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reproductive stage. Within each stage, there was no link

between the amount of time spent in one state and the
amount of weight gain, but this could be because there was

relatively little variation in weight gain within stage com-

pared to variation between stages.
Given that Antarctic krill (Euphausia superba; the

principle prey of macaroni penguins at South Georgia)

show diel vertical migration (Everson 2000) and are found
relatively deep during the day, the working hypothesis was

that the deeper dives reflected foraging. A number of the-
oretical (Cresswell et al. 2008) and empirical (Croxall et al.

1999; Barlow et al. 2002; Hennicke and Culik 2005)

studies have linked the foraging activity to trip length and
weight gain in foraging penguins. However, few have

commented on attributes within a trip that link to weight

gain. The analysis in this paper shows that continuity of
long-deep dives (dd) is not directly linked to the weight

gain over a trip, but that this is due to being confounded

with stage. Therefore, many of the differences in weight
gain and behaviour in foraging macaroni penguins appear

to be due to the difference between stages, whereby incu-

bation and premoult individuals may be more flexible to
remain at sea overnight and forage further from the nest,

because they do not need to return to feed their chick.

While it seems likely that this method has successfully
discriminated between foraging and searching or travelling

dives, it cannot discriminate between successful and

unsuccessful dives, as within each stage, the p(d) does not
link to observed weight gain. It is possible that prey are

caught in relatively few dives, although other work based

on bill opening and undulations in the dive profiles sug-
gested that prey were caught in most dives (Takahashi et al.

2004). If macaroni penguins forage until they are full, we

would not expect relationship between the rate of weight
gain and p(d). Variation in the rate of weight gain predicted

by stage suggests that they cannot be returning to the

colony full.

Differences in behaviour between stages and year

Broodguard and crèche individuals showed lower rates of

dd than incubation and premoult birds (Fig. 4a) and weight

gain (Fig. 4b), along with strong variation between years
(Fig. 4c). We offer two explanations as to why broodguard

females and crèche parents dive more at night than other

individuals (Fig. 5). First, the timing of reproductive stages
is confounded. Broodguard and crèche represent the

brightest period of summer, and as such the period of dusk

is much longer, and the ability to search for prey at night
may be greatly enhanced. Second, this should be the period

of greatest foraging demand on the parents. Broodguard

represents the greatest rate of chick growth with only one
parent foraging, so females in this stage should be under

the greatest stress. Foraging females typically lose 12% of

their body weight during broodguard (Cresswell et al.
2007). This period also represents the greatest abundance

of krill (Saunders et al. 2007), so the lower, more consistent

rate of diving may indicate a greater proportional success
per dive. In an evolutionary ecology context, the observed

pattern is interesting, as it suggests that chicks hatch and

grow at their fastest rate when krill are most abundant. It is
also interesting that the chicks fledge, while krill are still

sufficiently plentiful to allow the fledglings to forage at first
independence and put on weight for winter, during which

their metabolic needs will increase (Green et al. 2002,

2005).
The loss of body mass during this time is likely to reflect

a shift from optimal diving to maximise the rate of net

energy gain, to a strategy that optimises the gross energy
gain that can be passed onto chicks. Parents may well return

to feed the chick during the day, the rate of which could be

confirmed by direct observation or sensing (Berrow and
Croxall 2001). It seems very likely that the female should

return to land to feed the chick during the day. Our data

cannot answer this question, and it would be worth using
GPS tracks to determine the frequency of feeding events.

Dry points in the TDR data were insufficient to determine

whether feeding had occurred, and therefore positional data
is necessary to accurately quantify this.

Daily patterns in foraging

The patterns between night and day shown in Fig. 5 are

clear and make sense in light of penguins being visual
predators (Wilson et al. 1993; Williams 1995). However,

caution should be taken when interpreting the patterns

linking diving behaviour to day/night cycles. Sunrise and
sunset times reported are based on those observed for Bird

Island. Incubation and Premoult individuals are likely to

forage further from the colony, as they are not constrained
by the need to return at night to feed a chick (Barlow and

Croxall 2002). Foraging further from Bird Island will make

these sunrise and sunset calculations less accurate. The
relationship between daylight and the type and duration of

bouts should be investigated with GPS tags as well as

TDRs, so that positional information can be used to
accurately reflect day length (Bost et al. 2009).

How do states of previous dives link to post-dive
surface interval?

As discussed in the introduction, we are reluctant to con-
vert state probability into runs of dives because the burden

of proof for the cut-off is unresolved. We therefore used a

running mean to determine how p links to surface interval.
A running mean of five dives was chosen as this
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represented a short-term average, which is shorter than the

bout structure reported previously (Green et al. 2003) and
therefore more sensitive to small changes. Regression

analysis showed that the post-dive surface interval was

linked to the mean p of the previous five dives, and that
being strongly associated with either state s or d slightly

increased the post-final dive surface interval. We hesitate

from over-interpreting this for three reasons: first, the use
of five dives for the running mean was a subjective choice;

second, long and short dive intervals may have a different
mechanism; and third, long dive intervals are likely to be

rare and therefore under-represented in this study.

It is interesting that observed surface intervals increase
with the certainty of being in one state or the other (Fig. 6c).

It is still possible that the long tail in Fig. 2d indicates two

strategies, with longer surface intervals showing higher
variation. Such variation is reduced in depth and duration

because of the need to resurface. There have been many

commentaries on dual or scale-dependent strategies of for-
aging seabirds (Weimerskirch 2007) both with (Sims et al.

2008) and without Lévy flight (Elliot et al. 2009), which has

been shown to be an artefact under certain conditions
(Edwards et al. 2007). There are still many scale-dependent

mechanisms that could be important to foraging penguins,

and using HMM has highlighted these. It is interesting that
there are two distinct strategies in depth, duration and sur-

face interval. It is possible that birds need distinct behaviours

for accessing prey at different depths, but to determine this,
we need more direct indicators of prey capture.

Conclusions

How units of activity cluster into behaviours is a ubiquitous
problem in studies of animal behaviour, but as behavioural

studies become more important in conservation (Sepulveda

et al. 2007; Stamps and Swaisgood 2007), this type of
problem only becomes more pressing. In this paper, we

have determined a new way of disentangling the observed

activity into a process that represents the underlying
behaviour, or internal state of diving animals. We have also

highlighted the problems of finding a method that is robust

to occasional activities that do not fit into the normal suite
of behaviours.

Of the questions we highlighted in the introduction, this

study has made progress towards answering what influ-
ences the timing and nature of decision-making. We have

characterised the behavioural plasticity of foraging pen-

guins in more detail than previous studies. This study could
be enhanced with a more direct estimation of prey abun-

dance, and the technique may be useful in future to link

reproductive success to foraging activity. Increasing the
number of simultaneous sensors and data descriptors has

increased the discriminatory power of behaviours in other

studies, such as the ‘‘daily diary’’ approach (Wilson et al.
2008), and it is likely that our approach would benefit from

recording additional variables such as the geographical

location of each dive, in particular to determine what goes
on in a sequence of dives that are not clearly foraging.
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