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Waypoint Detection

Richard P. Mann

Centre for Interdisciplinary Mathematics, Uppsala
University, Uppsala, Sweden

Synonyms

Landmark detection; Key point detection

Definition

Animals are frequently required to navigate accu-

rately from one location to another. The means an
animal uses to perform a navigational task depends

on the available environmental cues, their specific

sensory systems, and particularly whether they are
in a familiar or unfamiliar area. A familiar area
can be defined as one of which the animal has

extensive experience, leading to detailed knowl-
edge of the environment and available navigational

cues.

Waypoints are geostationary locations used by an
animal to navigate in a familiar area. Specifically they

are small-scale regions of space that the animal returns

to as part of the navigational task. A waypoint may be

associated with a memorized landmark which allows

the animal to identify the waypoint from a distance and
direct itself toward it. Navigation toward an eventual

goal may involve visiting an ordered succession of

waypoints finishing at the final location – this mecha-
nism is generally referred to as pilotage. Alternatively
waypoints may be a by-product of navigational con-

straints imposed by the environment; if, for example,
the goal can be reached only by passing through

a narrow passage, that passage will act as a waypoint.

While waypoints may be associated with
landmarks – recognizable sensory features such as

prominent visual cues or memorable odors – the task

of waypoint detection is not in general synonymous
with landmark detection. Landmarks may be identified

and used by the animal at a distance, without neces-

sarily visiting the landmark’s true location. Con-
versely, as noted above, a waypoint may exist

independently of any memorable feature. Instead,
waypoints are more accurately defined as importance

regions of space and segments of movement paths,

whose salience may be the result of a variety of cues
and constraints, which cause discernable effects upon

the animal’s movement.

Waypoint detection is the task of identifying
waypoints from observations of the animal’s move-

ments. Since the definition of a waypoint requires the

animal to return to the specific area, this therefore
constitutes a classification task, identifying the

segments of the animal’s movement trajectory, or

path, that correspond to waypoint locations. This
entry gives an overview introduction to the purpose

and methods of waypoint detection, examining three

methods for isolating particularly salient elements of
movement paths.
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Purpose

The principle purpose of detecting waypoints is to

understand what drives and facilitates navigation. It
is a way of identifying important areas which may

contain salient information the animal uses to recall

a memorized path or important resources the animal
must utilize. Examples of this might include visually

striking features, high food concentrations, or unseen

constraints on the animal’s movement (strong wind
patterns acting on flying creatures, for instance). Way-

point detection can be useful for biomimicry, allowing

both an understanding of how animals use key features
to navigate and replication of this process in artificial

navigating agents such as robots.

In the literature, waypoint detection has been used
as the basis for understanding which features animals

attend to in the landscape [6, 7, 10], determining the

extent of an animal’s knowledge of the area [5] and
determining where animals forage [1, 4]. The tech-

nique of isolating important regions of the path for

further analysis is a basis for linking animal movement
behaviors and the surrounding environment, such as

the landscape, sensory cues, and other animals, by

determining what the environmental conditions are in
the spatial and temporal vicinity of the detected

waypoints.

Three Methods for Detecting Waypoints

Specific identification of waypoints from recorded ani-

mal movements is a novel task, and there are conse-

quently few formalized examples in the scientific
literature that deal explicitly with this problem. How-

ever, the likely existence of waypoints in specified

regions of space is implicit in several analyses of
movement paths. The three principle methods for

identifying these spatial regions can be broadly

classified as:
• Localized variability between multiple movement

paths – Path similarity
• Changes in speed and direction within a single

path – Path complexity
• Information content of a path segment – Path

predictability
This entry describes these methods largely in the

context of experiments on homing pigeons, where the
use of global positioning satellite (GPS) devices has

created a huge amount of data calling for novel analy-
sis. This has led to the development of methods for

path analysis, which are generalizable and applicable
to movement paths from other species.

Path Similarity

Path similarity presents an intuitive method for way-
point detection. The principle property of a waypoint is

that it is a restricted region of space which the animal

will pass through on its way to the objective.
A waypoint therefore is likely to present itself as

a relatively small region of space to which the animal

repeatedly returns. In this case it is likely, though not
guaranteed, that the movement paths of the animal will

be significantly more similar in the vicinity of the

waypoint, since their freedom to vary is constrained,
than outside these regions where the animal’s move-

ments may vary more widely. Increasing path similar-

ity over time has been linked to the emergence of
detailed visual memories of the landscape and the use

of pilotage as a navigational strategy [2, 3, 12].

To use path similarity objectively requires an algo-
rithmic measure of the variability between different

paths. To identify specific regions of space demands

a localized measure – one that varies through space –
rather than a global measure which relates the overall

similarity of the paths. Here several options present

themselves. None can be considered the sole correct
way to measure variability, nor are these options

exhaustive. Different measures of variability are nec-

essarily highly correlated but the specific choice
depends on the exact nature of the analysis. The basic

principle is to measure the spatial separation between

paths within some localized region. For this purpose it
is helpful to define the concept of the nearest-neighbor
distance (NND). This is the distance from a point on

one path to the closest point on another. Using this
distance allows the path separation to be determined in

a purely spatial manner. The alternative approach of

measuring the distance between paths at the same point
in timemeasures a spatiotemporal separation. Ordinar-

ily it is purely spatial separation that best describes the

expected effect of waypoints.
A simple means of calculating path separation is to

measure the NND from every point on a path to every

other path. The value of the separation can then be
taken as the mean, median, minimum or maximum of
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these values as desired, giving a value for separation at

every position along the path. This provides a measure
of separation along each path, but not a single descrip-

tion of the overall separation of all the paths as a single

variable, which may make it difficult to identify
single points where variation is low. This may be

ameliorated by the fact that areas where the separation

is low will also be areas where the paths are very close,
so regions of low variability will be spatially restricted.

It is also possible to measure a single value of

separation, using variation around a constructed mean
path. A mean path is a single path that is representative

of the full set of paths. As with path separation there is

no absolute way to construct such a path. In analogy
with the mean of a set of scalar variables, a mean path

can be constructed to minimize a particular measure of

separation relative to the original paths, much as the
scalar mean minimizes the square distance between

itself and the original variables. This approach is

used, for example, by Freeman et al. [5], where
a mean path is generated which minimizes the total

nearest-neighbor separation from itself to the true
paths. Constructing such a path may require an iterated

approximation method rather than a direct calculation.

See Fig. 1 for examples of constructed mean paths and
mean path similarity in relation to the original paths.

Similarly to the case where path similarity is calculated

along each route, the mean path will be most represen-
tative of the true paths in regions of peak similarity,

which correspond to waypoint locations. Therefore,

having calculated similarity along the mean path, one
can be sure that the waypoints identified from this

similarity will be in approximately the correct spatial

location.
A related approach is that used by Lipp et al. [8], for

investigating the propensity of pigeons to follow

roads and other linear features. Here the spatial area
containing the paths is segmented into a two-

dimensional grid. The number of paths passing through

each grid element is recorded and compared with a null
hypothesis for the distribution of paths (see [8] for an

example of generating an appropriate null hypothe-

sis). In the original paper, the analysis demonstrates
that grid elements containing roads also contain sig-

nificantly more paths than expected. The converse
argument can also be applied – grid elements
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Waypoint Detection, Fig. 1 Five flights each from three
pigeons (light blue) showing the calculated mean path (bold
red), variance around the mean path (grey band), and location
of areas of peak route similarity (black circles). The peak sim-
ilarity regions correspond to variance below a threshold value.

Each peak similarity region can contain multiple successive
points, but for clarity only one circle is shown per region
(Reprinted from [5], Copyright [2010], Creative Commons
open access license)
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containing more paths than expected (judged by
some significance test) are likely to contain

waypoints. The disadvantage of this method is the
difficulty in striking a balance between the size of the

grid and the density of paths. If the grid elements

are too small there will be few paths in any single
element and it will be impossible to distinguish from

the null hypothesis. If the grid elements are too large,

the resolution will be limited to the size of the
element, making it difficult to pinpoint the location

of the waypoint accurately.

Path Complexity

Less intuitive than path variability, but applicable even

when only a single path is observed, path complexity

segments the movement path into regions of high and
low localized complexity. Increased complexity can be

an indicator of waypoint location since waypoints may

be associated with decision points, where the animal
must first adjust its heading to reach the waypoint and

subsequently readjust again to direct itself toward the

next objective. Conversely when the animal is far from
any known locations, it would be expected to follow

a smooth path since there is no external cue available to

correct the heading and any other variation would lead
to unnecessary energy loss.

The complexity of a path segment can be viewed as

a measure of how much information is required to
describe it. A straight line or a very smooth curve

can be described simply by stating the end points

and the degree of curvature. A segment whose curva-
ture is constantly changing, which may change direc-

tion discontinuously or which returns back to

a previously covered point (looping) will require far
more information to adequately describe. To under-

stand the relationship between complexity and infor-

mation, imagine having to describe a path segment to
someone who is unable to see it, well enough that they

could draw it themselves. The more details that

are required to convey that path segment, the more
complex it is.

As with path similarity, path complexity can be

measured in a variety of ways, which are similarly
highly correlated with each other. These range in

abstractness from tortuosity, the local degree of ineffi-
ciency in the path, to the highly abstract concept
of spatiotemporal positional entropy introduced by

Roberts et al. [13]. Figure 2 shows a plot of a number
of recorded movement paths, color-coded by the local

degree of complexity, to demonstrate how high com-
plexity and low complexity path segments present

themselves visually. Each path is segmented into low-,

medium-, and high-complexity regions, using positional
entropy as a measure of complexity. In the figure, it can

be clearly seen that low complexity (green) regions are

smooth, with low curvature and few if any sharp
changes of direction. High-complexity (red) regions

often include loops, sharp turns, and many changes of

direction. The medium-complexity (blue) regions lie
between these extremes. The figure also shows that

high-complexity regions are often short, indicating

some local effect on the path, and occur particularly
around the release point, when the pigeons are deciding

on a heading to take.

Another similar measure that has been used to
detect foraging within movement paths is passage
time. This is amount of time taken by an animal from

the moment when it enters a (typically circular) region
of space to the moment when it leaves. This can be

measured as the first passage time [4, 11] – the time

from first entering to first leaving the region or total
passage time [1] – the time from first entering to the

final time leaving. This is strongly related to path

complexity, since highly complex, inefficient path seg-
ments with lots of changes of direction will have high

passage times. The use of passage time to detect for-

aging within directed movement is broadly analogous
to waypoint detection, since foraging stops within

a directed path will form waypoints by virtue of the

concentration of the food source.
Complexity measures have associated spatiotem-

poral scales which must be appropriate for the

detection task. Tortuosity is measured as the ineffi-
ciency of a path segment, the length must be

selected. Likewise positional entropy measures the

complexity of a moving segment of the path. Pas-
sage time is measured with respect to a spatial

region whose size must be chosen. These scales

must bear in mind the classic trade-off between
resolution and signal-to-noise ratio; the smaller the

scale, the more fine structure will be detected and

the more tightly determined will be the position of
identified waypoints. Longer scales improve the

signal-to-noise ratio by filtering out high-frequency

noise from the behavior but also reduce the resolu-
tion of the measurement.
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Variation in complexity measures has been

suggested to correlate with changes in the animal’s
behavioral state [1, 2, 4, 6, 11] and to segment the

path into distinct behavioral phases [1, 6, 13]

supporting the use of complexity to identify
key path segments that may correspond to waypoint

locations. Path complexity has also been linked to
the surrounding visual environment [7], indicating

that the waypoints identified may correspond to

visual landmarks, as expected under the pilotage
hypothesis.

Path Predictability

Path predictability differs distinctly from the previous

two approaches since it uses complete movement paths

Waypoint Detection, Fig. 2 Identified regions of low (green), medium (blue), and high (red) complexity in a variety of homing
pigeon flight paths, as determined by positional entropy (Reprinted from [6], Copyright [2004], with permission from Elsevier)
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in a global analysis, rather than examining only localized
properties of the paths. Waypoints are selected as those

segments of the path that can be used to provide the best
prediction of the complete path and other paths (where

these exist). The logic of this approach depends on the

hypothesis of navigation by pilotage. This hypothesis
claims that the animal makes it way from its original

position to its final objective by successively visiting an

ordered sequence of fixedwaypoints, as per the definition
above. The path predictability method argues that if this

hypothesis is accurate, the path(s) of the animal must be

defined by the locations of those waypoints, the segments
between waypoints being subject to constraints such as

energyminimization and randomvariation from environ-

mental and internal factors. These waypoints are thus
analogous to the fixed positions in a curve-fitting exer-

cise, with the constraints given above acting similarly to

the constraint of curvature minimization in spline fitting.
The upshot of this is that those segments of the path(s)

close to the waypoints should provide the maximum

amount of information about the rest of path(s).
Similarly to path complexity, path predictability is

intimately linked to information. Consider trying to

convey to someone not just a path segment but instead
a set of complete paths. Now imagine that the only

information you are allowed to send is the position of

the paths at a small set of times. If your friend subse-
quently “joins the dots” to link these points, how well

will they approximate the true paths? The most infor-

mative, or predictive, locations are those that allow the
best estimate of the real paths using this technique.

Technically, the information contained in a path can

be defined how it affects the probability of another
path. If path B is informative about path A then the

probability of path A will increase as a result of know-

ing path B. Mathematically, the information contained
in path B about path A is related to the ratio of prob-

ability of path A, conditional on knowing path

B through some model M, compared to the probability
of path A when B is unknown. Information is defined

as the log of this probability ratio:

InformationðA j BÞ=bits ¼ log 2

P path A j path B; Mð Þ
$ log 2 P path A j Mð Þ

(1)

The probability P(path A | path B, M) depends on the

choice ofmodel.A simplemodelmight be that each point

on path A should be the same as on path B at the equiv-
alent point in time, give or take some amount of Gaussian

noise to account for natural variation. More realistic
models should take account of the correlations over time

that lead to the spatial structure of the path. Mann et al.
[10] provide a more sophisticated model choice
implemented via the use of Gaussian processes, allowing

for autocorrelationwithin the path over time aswell as the

correlations between paths. In this implementation, all
paths are assumed to be samples from a distribution

centeredonameanpath– similar to themeanpathdefined

as part of the path similarity measure. Constructing
a model to describe the probability distribution of move-

ment paths is a complicated task which is not readily

reducible to a simpler scheme. This task is necessary,
however, to specify the mutual information contained

between paths and between elements of the same path

and thus to be able to use path predictability as ameasure.
See Mann et al. [10] for guidance on model construction.

Having defined a model and therefore a probability

distribution from one path to another, the task of identi-
fying the waypoints can be clarified as follows. Path

B will be a recorded path, with positions recorded at

a set of time points, t. Let t0 be a subset of those timesteps
such that path B0 is the recorded positions at times t0.

The information in those positions is calculated as

Informationðt0Þ ¼ InformationðA j B0Þ
¼ log 2 Pðpath A j path B0;MÞ

(2)

Having hypothesized that waypoints correspond to
the most informative segments of the path, the task

is now rephrased as finding the subset of t, t*, that

maximizes Eq. 2,

t% ¼ argmax t0 Informationðt0Þ (3)

Finding a limited number, m, of waypoints can be

accomplished simply by searching for the t* restricted

to subsets of size m. Optimization of Eq. 2 can be
accomplished by “greedy” forward selection, gradient

ascent, Monte Carlo sampling, or other established

optimization techniques. Standard texts on learning
algorithms, for example, [9], can provide comprehen-

sive details of optimization algorithms.

Predictability between different paths tends to be
maximal under two circumstances. The first is in regions
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where the two paths are very similar. Here knowing one

path gives good information about the likely location of

the other. This then is similar to the path similarity
criterion. The other case is where the location of the

path is highly unpredictable either a priori, or condi-

tional on the other chosen waypoints. Locally this bears
a resemblance to the path complexity measure, but also

takes account of the global unpredictability – for exam-
ple finding path segments that are locally smooth but

globally far from the straight-line path between start and

finish. This corresponds to an intuitive analysis of the

path. If the bird consistently flies to a location far from
the most efficient route this is unlikely to be due to

chance; there must be a waypoint at this location.

Figure 3 shows an example of waypoints selected
by maximizing the path predictability, taken from

Mann et al. [10]. In this demonstration, the number of
selected waypoints is ten and the information in Eq. 2
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Waypoint Detection, Fig. 3 Ten waypoints identified from
five flight paths from a single homing pigeon, using path pre-
dictability as a criterion. The waypoints are identified preferen-
tially in flight segments that a similar between paths, where the

path exhibits high complexity and where the path is far from the
most efficient straight “beeline” between start and finish
(Reprinted from [10], Copyright [2010], Creative Commons
open access license)
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is maximized by forward selection. It can be seen from
this example that the selected waypoints each exhibit

at least one of the three properties that maximize infor-
mation content. Many of the waypoints are located

where the paths coalesce into narrow corridors,

exhibiting high path similarity. Others are located
where the paths turn sharply, which correspond to

high path complexity. Finally there are waypoints

located in the regions furthest from the most efficient
beeline path, at the apex of the curve, which is the most

unlikely area for the pigeons to visit a priori.

Summary

Detection of waypoints in recorded movement paths is

a novel problem that has potential future applicability in
studies of animal movement and biomimicry. The

methods described in this entry constitute a basis

for identifying important regions of the movement
path based on hypotheses about the likely effects

of waypoints upon the animal’s movement. These

methods span a range of mathematical complexity and
intuitive applicability. More recent developments such

as the path predictability tend toward higher levels of

abstraction. The methods explored in this entry are not
mutually exclusive and combinations should be

explored to achieve the best detection results. With

animal movement tracking still developing as an exper-
imental field, methods for the analysis of recorded data

are being created in parallel and the development of

further methods for identifying salient regions from
movement paths can be expected in the near future.
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