COURSE "ANALYSIS FOR PHD STUDENTS", KOZHAN

UPPSALA UNIVERSITY, SPRING 2018

HW1

DUE ON APR 2 (YOU MAY REQUEST EXTENSIONS IF NEEDED)

1. [Simon, Ex. 4.2.9]

Let K be the generalized Cantor set corresponding to sequence $\{\alpha_j\}_{j=1}^{\infty}$ (see [Folland, p.39]): $K_0 = [0, 1]$; K_j is obtained from K_{j-1} by removing the (open) middle α_j -th from each of the intervals comprising K_{j-1} ; finally $K = \bigcap_{j=1}^{\infty} K_j$.

- (i) (5pts) Show that for any choice of $\{\alpha_j\}_{j=1}^{\infty}$ (with $\alpha_j \in (0, 1)$ for each j), K is nowhere dense (i.e., its closure has empty interior).
- (ii) (5pts) Show that for any choice of $\{\alpha_j\}_{j=1}^{\infty}$ (with $\alpha_j \in (0,1)$ for each j), K has no isolated points.
- (iii) (5pts) Show that $\sum_{j=1}^{\infty} \alpha_j < \infty$ iff m(K) > 0, where m stands for the Lebesgue measure.
- 2. [Folland, Ex. 7.1.4]

Let X be a locally compact Hausdorff space.

- (i) (5pts) Let $f \in C_c(X)$ (compactly supported continuous function $X \to \mathbb{C}$) and $f(x) \ge 0$ for all x. Show that $f^{-1}([a, \infty))$ is a compact G_{δ} set for any a > 0.
- (ii) (5pts) Let $K \subseteq X$ be a compact G_{δ} set. Show that there exists $f \in C_c(X)$ such that $K = f^{-1}(\{1\})$ (Suggestion: apply Urysohn's lemma to suitably chosen sets).
- (iii) (5pts) Show that the σ -algebra Ba_1 generated by all compact G_{δ} sets coincides with the smallest σ -algebra Ba_2 satisfying the property that every $f \in C_c(X)$ is (Ba_2, \mathcal{B}) -measurable (Remark: this σ -algebra is called the Baire σ -algebra, and its sets are called Baire sets).
- 3. [Rudin, Ex. 1.9]

(15pts) Let (X, \mathcal{M}, μ) be a (positive) measure space and let $f : X \to [0, \infty]$ be measurable, $\int_X f d\mu = c \in (0, \infty)$. Let $\alpha > 0$. Prove that

$$\lim_{n \to \infty} \int_X n \log \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) d\mu = \begin{cases} \infty & \text{if } 0 < \alpha < 1, \\ c & \text{if } \alpha = 1, \\ 0 & \text{if } 1 < \alpha < \infty. \end{cases}$$

(Hint: if $\alpha \geq 1$, the integrands are dominated by αf . If $\alpha < 1$, Fatou's lemma can be applied.)

- 4. [Folland, Ex 2.3.20-21]
 - (i) (5pts) Let $f_n, g_n, f, g \in L^1(\mu)$ for some (positive) measure μ . Suppose $f_n \to f$ and $g_n \to g$ pointwise μ -a.e.; $|f_n| \leq g_n$ for all x; $\int g_n d\mu \to \int g d\mu$. Prove that $\int f_n d\mu \to \int f d\mu$. (Hint: rework the proof of the Dominated Convergence Theorem).
 - (ii) (5pts) Suppose $f_n, f \in L^1(\mu)$ and $f_n \to f$ for μ -a.e. x. Show that $||f_n f||_1 \to 0$ iff $||f_n||_1 \to ||f||_1$.

- 5. [Rudin, Ex. 8.12]
 - (i) (7.5pts) Show that for any $0 < A < +\infty$, $e^{-xt} \sin x \in L^1([0, A] \times [0, +\infty), dx \otimes dt)$ (Note: this fails for $A = +\infty$)
 - (ii) (7.5pts) Use Fubini's/Tonelli's theorem to compute $\lim_{A\to\infty} \int_0^A \frac{\sin x}{x} dx$ (use part (i)).
- 6. [Folland, Ex. 3.2.11]

Let μ be a (positive) measure. Let us call a collection of functions $\{f_{\alpha}\}_{\alpha \in A} \subset L^{1}(\mu)$ uniformly integrable if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\left|\int_{E} f_{\alpha} d\mu\right| < \varepsilon$ for all $\alpha \in A$ whenever $\mu(E) < \delta$.

- (i) (5pts) Show that any finite subset of $L^{1}(\mu)$ is uniformly integrable.
- (ii) (10pts) Let $f_n, f \in L^1(\mu)$ and $||f_n f||_1 \to 0$. Show that $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable.
- 7. [Folland, Ex. 3.4.25]

If E is a Borel set in \mathbb{R}^n , the density $D_E(x)$ of E at the point x is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}$$

whenever the limit exists (recall that m is the Lebesgue measure, and $B(r, x) := \{y \in \mathbb{R}^n : |x - y| < r\}$).

- (i) (5pts) Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.
- (ii) (10pts) For any $\alpha \in (0, 1)$, find an example of a Borel set $E \subset \mathbb{R}$ and a point x such that $D_E(x) = \alpha$.