Course "Analysis for PhD students", Kozhan Uppsala University, Spring 2018 HW2 Due on May 14 (you may request extensions if needed)

1. [Folland, ex. 6.1.7] (15 points) Suppose $f \in L^p(X) \cap L^\infty(X)$ for some $1 \le p < \infty$. Show that

$$||f||_{\infty} = \lim_{q \to \infty} ||f||_q.$$

- 2. [Folland, Ex. 6.1.14] Let $g \in L^{\infty}(X)$, $1 \le p \le \infty$, and let T be the linear operator on $L^{p}(X)$ given by T(f) = fg.
 - (i) (3 point) Show that T is bounded with $||T|| \leq ||g||_{\infty}$, where ||T|| is the operator norm of T.
 - (ii) (12 points) Suppose μ is σ -finite on X. Show that $||T|| = ||g||_{\infty}$.
- 3. [Rudin, Ex. 3.11] (15 points) Let $\mu(X) = 1$ and let $f, g : X \to (0, \infty)$ be two measurable functions satisfying $f(x)g(x) \ge 1$. Prove that $||f||_1 ||g||_1 \ge 1$.
- 4. [Folland, Ex. 6.3.33]
 - (i) (10 points) Let $1 and define <math>(Tf)(x) = x^{-1/p} \int_0^x f(t) dt$. Let q satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $f \in L^q((0,\infty))$ (with respect to the Lebesgue measure), then Tf belongs to $C_0((0,\infty))$.
 - (ii) (5 points) What can go wrong if $p = \infty$ in the above statement? What can go wrong if p = 1 in the above statement?
- 5. Recall that a trigonometric polynomial on \mathbb{T}^1 was defined to be any function $\mathbb{T}^1 \to \mathbb{C}$ of the form $p(t) = \sum_{m=-n}^{n} c_m e^{2\pi i m t}$ with $n \in \mathbb{N}$ and $c_j \in \mathbb{C}$. In this case we say that deg $p \leq n$.
 - (i) (2 points) How many zeros does $\frac{1}{2}(e^{2\pi int} + e^{-2\pi int})$ have on \mathbb{T} ? How many zeros does $\frac{1}{2i}(e^{2\pi int} e^{-2\pi int})$ have on \mathbb{T} ?
 - (ii) (8 points) If deg p = n, show that p can have no more than 2n zeros of \mathbb{T} (Hint: make a change of variables to reduce trigonometric polynomials to the usual polynomials of a complex variable).
- 6. (15 points) Let $f \in L^1(\mathbb{T})$ and $g \in L^\infty(\mathbb{T})$. Show that

$$\lim_{n \to \infty} \int_{\mathbb{T}} f(t)g(nt) \, dt = \widehat{f}(0)\widehat{g}(0).$$

(Hint: approximate f in L^1 by trigonometric polynomials).

7. [Simon, Ex. 3.5.12]

In class we discussed only the convergence of (square) partial sums and their Cesàro means. Another commonly used approach is to use Abel sums. Given $f \in C(\mathbb{T})$ and any $0 \le r < 1$, let

$$(A_r f)(x) := \sum_{m = -\infty}^{\infty} r^{|m|} \widehat{f}(m) e^{2\pi i m x},$$

where $\widehat{f}(m)$ are the Fourier coefficients of f.

(i) (6 points) Prove that

$$(A_r f)(t) = (P_r * f)(t),$$

where

$$P_r(t) = \frac{1 - r^2}{1 + r^2 - 2r\cos 2\pi t}$$

known as the Poisson kernel.

- (ii) (6 points) Prove that $\{P_a(t)\}_{r \to 1}$ forms an approximate identity on \mathbb{T} .
- (iii) (3 points) Prove that $A_r f \to f$ uniformly as $r \uparrow 1$ for any $f \in C(\mathbb{T})$ and $A_r f \to f$ in $|| \cdot ||_p$ -norm as $r \uparrow 1$ for any $f \in L^p(\mathbb{T})$ $(1 \le p < \infty)$.