Course "Analysis for PhD students", Kozhan
Uppsala University, Spring 2018
HW2
Due on May 14 (you may request extensions if needed)

1. [Folland, ex. 6.1.7] (15 points) Suppose $f \in L^{p}(X) \cap L^{\infty}(X)$ for some $1 \leq p<\infty$. Show that

$$
\|f\|_{\infty}=\lim _{q \rightarrow \infty}\|f\|_{q} .
$$

2. [Folland, Ex. 6.1.14] Let $g \in L^{\infty}(X), 1 \leq p \leq \infty$, and let T be the linear operator on $L^{p}(X)$ given by $T(f)=f g$.
(i) (3 point) Show that T is bounded with $\|T\| \leq\|g\|_{\infty}$, where $\|T\|$ is the operator norm of T.
(ii) (12 points) Suppose μ is σ-finite on X. Show that $\|T\|=\|g\|_{\infty}$.
3. [Rudin, Ex. 3.11] (15 points) Let $\mu(X)=1$ and let $f, g: X \rightarrow(0, \infty)$ be two measurable functions satisfying $f(x) g(x) \geq 1$. Prove that $\|f\|_{1}\|g\|_{1} \geq 1$.
4. [Folland, Ex. 6.3.33]
(i) (10 points) Let $1<p<\infty$ and define $(T f)(x)=x^{-1 / p} \int_{0}^{x} f(t) d t$. Let q satisfy $\frac{1}{p}+\frac{1}{q}=1$. Show that if $f \in L^{q}((0, \infty))$ (with respect to the Lebesgue measure), then $T f$ belongs to $C_{0}((0, \infty))$.
(ii) (5 points) What can go wrong if $p=\infty$ in the above statement? What can go wrong if $p=1$ in the above statement?
5. Recall that a trigonometric polynomial on \mathbb{T}^{1} was defined to be any function $\mathbb{T}^{1} \rightarrow \mathbb{C}$ of the form $p(t)=\sum_{m=-n}^{n} c_{m} e^{2 \pi i m t}$ with $n \in \mathbb{N}$ and $c_{j} \in \mathbb{C}$. In this case we say that $\operatorname{deg} p \leq n$.
(i) (2 points) How many zeros does $\frac{1}{2}\left(e^{2 \pi i n t}+e^{-2 \pi i n t}\right)$ have on \mathbb{T} ? How many zeros does $\frac{1}{2 i}\left(e^{2 \pi i n t}-\right.$ $\left.e^{-2 \pi i n t}\right)$ have on \mathbb{T} ?
(ii) (8 points) If $\operatorname{deg} p=n$, show that p can have no more than $2 n$ zeros of \mathbb{T} (Hint: make a change of variables to reduce trigonometric polynomials to the usual polynomials of a complex variable).
6. (15 points) Let $f \in L^{1}(\mathbb{T})$ and $g \in L^{\infty}(\mathbb{T})$. Show that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{T}} f(t) g(n t) d t=\widehat{f}(0) \widehat{g}(0)
$$

(Hint: approximate f in L^{1} by trigonometric polynomials).
7. [Simon, Ex. 3.5.12]

In class we discussed only the convergence of (square) partial sums and their Cesàro means. Another commonly used approach is to use Abel sums. Given $f \in C(\mathbb{T})$ and any $0 \leq r<1$, let

$$
\left(A_{r} f\right)(x):=\sum_{m=-\infty}^{\infty} r^{|m|} \widehat{f}(m) e^{2 \pi i m x}
$$

where $\widehat{f}(m)$ are the Fourier coefficients of f.
(i) (6 points) Prove that

$$
\left(A_{r} f\right)(t)=\left(P_{r} * f\right)(t)
$$

where

$$
P_{r}(t)=\frac{1-r^{2}}{1+r^{2}-2 r \cos 2 \pi t}
$$

known as the Poisson kernel.
(ii) (6 points) Prove that $\left\{P_{a}(t)\right\}_{r \rightarrow 1}$ forms an approximate identity on \mathbb{T}.
(iii) (3 points) Prove that $A_{r} f \rightarrow f$ uniformly as $r \uparrow 1$ for any $f \in C(\mathbb{T})$ and $A_{r} f \rightarrow f$ in $\|\cdot\|_{p}$-norm as $r \uparrow 1$ for any $f \in L^{p}(\mathbb{T})(1 \leq p<\infty)$.

