COURSE "ANALYSIS FOR PHD STUDENTS", KOZHAN

UPPSALA UNIVERSITY, SPRING 2018

HW3

DUE ON JUNE 04 (ELECTRONIC SUBMISSION ONLY; YOU MAY REQUEST EXTENSIONS IF NEEDED)

- 1. (15 points) [Grafakos, Ex. 3.4.2] Let $\{a_k\}_{k=0}^{\infty}$ be a sequence of points with $a_j \in \mathbb{T}^n$. Show that the following three statements are equivalent:
 - (i) For any square Q in \mathbb{T}^n , we have

$$\lim_{N \to \infty} \frac{\sharp \{k : 0 \le k \le N - 1, a_k \in Q\}}{N} = m(Q),$$

where m(Q) is the Lebesgue measure of Q (we call $\{a_k\}_{k=0}^{\infty}$ equidistributed on \mathbb{T}^n in this situation).

(ii) For any $f \in C^{\infty}(\mathbb{T}^n)$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} f(a_j) = \int_{\mathbb{T}^n} f(x) \, dx.$$

(iii) For every $m \in \mathbb{Z}^n \setminus \{0\}$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i m \cdot a_k} = 0.$$

(Hint: in (i) \Leftrightarrow (ii), approximate f by step functions; in (iii) \Rightarrow (ii), use the Fourier inversion).

- 2. [Grafakos, Ex. 2.2.9] We know that the Fourier transform of any $f \in L^1(\mathbb{R})$ is a uniformly continuous function decaying to 0 at infinity. This exercise will show that not every such a function is the Fourier transform of some L^1 -function.
 - (i) (5 points) Prove that for all $0 < \varepsilon < t < \infty$, we have

$$\left|\int_{\varepsilon}^{t} \frac{\sin\xi}{\xi} \, d\xi\right| \le 4.$$

(ii) (5 points) If $f \in L^1(\mathbb{R})$ is odd, conclude that for all $t > \varepsilon > 0$ we have

$$\left| \int_{\varepsilon}^{t} \frac{\widehat{f}(\xi)}{\xi} \, d\xi \right| \le 4 ||f||_{1}.$$

(iii) (5 points) Let $g(\xi)$ be a continuous odd function that is equal to $\frac{1}{\log \xi}$ for $\xi \ge 2$. Show that there does not exist $f \in L^1(\mathbb{R})$ such that $g = \widehat{f}$.

3. [Folland, Ex.8.7.43] (10 points) Use the Fourier transform to find a solution of the differential equation u - u'' = f.

(Hint: Compute the Fourier transform of $\phi(x) = e^{-|x|}$ on \mathbb{R} . Try $u = f * \phi$ as a possible solution and then fix the normalization/scaling. What hypotheses are needed on f?)

4. (i) (10 points) Let t > 0. Use the Poisson Summation Formula (no credit if you don't use it) to compute

$$\sum_{n \in \mathbb{Z}} \frac{1}{t^2 + n^2}$$

(Hint: What is the Fourier transform of $f(x) = e^{-|x|}$?).

- (ii) (5 points) Take $t \to 0$ in (i) to compute $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 5. [Grafakos, Ex. 2.3.4]
 - (i) (5 points) Compute the distributional derivative of $\chi_{[a,b]}(x)$ (the characteristic function of the interval [a, b] in \mathbb{R}).
 - (ii) (5 points) Compute the distributional derivatives $\partial_j \chi_{B(0,1)}$, j = 1, 2 (where $B(0,1) \subset \mathbb{R}^2$ is the disk of radius 1 centered at the origin).
 - (iii) (5 points) Compute the (distributional) Fourier transform of $\sin x$ and $\cos x$ (explain why these can be viewed as tempered distributions).
- 6. (i) (7.5 points) Let

$$\langle u, \phi \rangle = \lim_{\varepsilon \to 0} \int_{\varepsilon \le |x|} \frac{\phi(x)}{x} \, dx, \qquad \phi \in \mathcal{S}(\mathbb{R})$$

Prove that u is well defined for any $\phi \in \mathcal{S}(\mathbb{R})$ and is a tempered distribution (this exhibits an example of a tempered distribution that is neither a function nor a measure).

- (ii) (7.5 points) Prove that the derivative of the distribution $\log |x| \in S'(\mathbb{R})$ is the distribution $u \in S'$ from (i).
- 7. [Grafakos, Ex. 2.4.3]
 - (i) (3 points) Prove that e^x is not in $\mathcal{S}'(\mathbb{R})$.
 - (ii) (12 points) Prove that $e^x e^{ie^x}$ is in $\mathcal{S}'(\mathbb{R})$.