
Chapter 2

Integration

2.1 Measurable functions

Intuition. Continuous functions are the functions that behave well with respect to the open sets (topology).
It is natural to define measurable functions as those that behave well with respect to measurable sets.

Definition 2.1. (i) Let (X,M) and (Y,N ) be two measurable spaces. A function f : X → Y is called
(M,N )-measurable) (or just measurable if σ-algebras are clear from the context) if f−1(E) ∈ M for
every E ∈ N .

(ii) We say that f : X → Y is Borel measurable if it is (B(X),B(Y ))-measurable.

Remarks 2.2. (a) To check (M,N )-measurability, it is sufficient to check if f−1(E) ∈ M for every E in a
family that generate N (e.g., Y -open sets if N = B(Y )). Indeed, f−1 behaves well under (countable) unions,
intersections, and complements.

Proposition 2.3. (i) Any continuous function between two topological spaces is Borel measurable.

(ii) If f, g are (M,N )-measurable, then so are f + g, fg, f/g (if well-defined).

(iii) If f is (M,N )-measurable and g is (N ,S)-measurable, then g ◦ f is (M,S)-measurable.

(iv) If {fj}∞j=1 is a family of (M,B(R))-measurable functions, then

sup
j
fj(x), inf

j
fj(x), lim sup

j→∞
fj(x), lim inf

j→∞
fj(x)

are all (M,B(R ∪ {±∞}))-measurable.

(v) If {fj}∞j=1 is a family of (M,B(R))-measurable functions that is pointwise convergent, then its limit is
measurable.

Remarks 2.4. (a) In particular, f+(x) := max(f(x), 0) and f−(x) := −min(f(x), 0) are both measurable.
(b) If fj → f(x) pointwise µ-almost everywhere, then on a µ-null set f(x) can behave arbitrarily, so

doesn’t have to be measurable in general. If µ is complete however, then f is measurable in that case too.

Proof. (iv) Note that lim infj→∞ yj = supn≥1 infj≥n yj , and similarly lim supj→∞ yj = infn≥1 supj≥n yj , so

just need inf and sup. Let g = supj fj , then g−1((a,∞]) =
⋃∞
j=1 f

−1
j ((a,∞]), and these intervals generate

B(R ∪ {±∞}), so we’re done.

(v) follows from lim = lim sup = lim inf whenever the limit exists.
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2.2 Integration of simple functions: definition of the Lebesgue in-
tegral

Intuition. Now we want to define the notion of the integral of a measurable function with respect to a given
measure. We will do this in steps: first for simple (i.e., “piece-wise constant”) functions, then for positive
functions, then for real-valued functions, and finally for complex functions.

In what follows, let χE be the characteristic function of a set E: equal to 1 if x ∈ E and 0 otherwise.

Definition 2.5. Let (X,M) be a measurable space. A simple function φ(x) is a finite linear combination
of characteristic functions of disjoint measurable sets:

φ(x) =

n∑
j=1

ajχEj ,

where Ej ∈M, Ej ∩ Ek = ∅ if j 6= k.

Definition 2.6. Let (X,M, µ) be a measure space.
If φ(x) =

∑n
j=1 ajχEj is a simple function X → [0,+∞), then for any E ∈M, we define the (Lebesgue)

integral of φ with respect to µ over E by∫
E

φdµ =

n∑
j=1

ajµ(Ej ∩ E)

(with the convention 0 · ∞ = 0).

Remark 2.7. Note that
∫
X
χE dµ = µ(E).

2.3 Integration of positive functions: definition of the Lebesgue
integral

Let us denote L+ to be the space of all measurable functions X → [0,∞].

Proposition 2.8. Let f ∈ L+. Then there exists a sequence of simple functions {φn} such that 0 ≤ φ1(x) ≤
φ2(x) ≤ . . . ≤ f(x) such that φn(x)→ f(x) pointwise.

Remark 2.9. An analogue with 0 ≤ |φ1(x)| ≤ |φ2(x)| ≤ . . . ≤ |f(x)| holds for complex-valued measurable
functions.

Proof. Divide the range into subintervals Ik,n := ( k
2n ,

k+1
2n ] and I0,n := (2n,∞] and define φn :=

∑
k
2nχf−1(Ik,n)+

2nχf−1(I0,n) (draw a pic!)

Definition 2.10. Let (X,M, µ) be a measure space.
If f(x) ∈ L+, we define the (Lebesgue) integral of f with respect to µ over E by∫

E

f dµ = sup

{∫
E

φdµ : 0 ≤ φ ≤ f, φ simple

}
Remarks 2.11. (a) The two definitions agree when f is a simple function.

(b) As we saw in Proposition 2.8, for any f ∈ L+ there exists a sequence of simple functions such that
0 ≤ fn(x) ↑ f(x) (“converges monotonically from below”) for every x, in which case

∫
E
fn dµ ↑

∫
E
f dµ. This

will follow from the Monotone Convergence Theorem.
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2.4 Integration of positive functions: basic properties

Proposition 2.12. Assume all the sets and functions below are measurable, and all the functions are in L+.

(i)
∫
E

(f + g) dµ =
∫
E
f dµ+

∫
E
g dµ.

(ii) If 0 ≤ c <∞ is a constant then
∫
E
cf dµ = c

∫
E
f dµ.

(iii) If 0 ≤ f ≤ g on E, then 0 ≤
∫
E
f dµ ≤

∫
E
g dµ.

(iv) If A ⊆ B and f ∈ L+ then
∫
A
f dµ ≤

∫
B
f dµ.

(v) If µ(E) = 0 then
∫
E
f dµ = 0, even if f(x) =∞ for every x ∈ E.

(vi)
∫
E
f dµ =

∫
X
χEf dµ.

(vii) If f ∈ L+ then
∫
E
f dµ = 0 iff f = 0 a.e. on E.

Remark 2.13. As we are about to see, property (i) for functions in L+ can be extended to infinite sums!

Proof. For simple functions, all these properties follow directly from the definition.
For arbitrary positive functions: (ii), (iii), (iv), (v), (vi) are also immediate from the definition. For (i) and

(vii), one can first prove Lebesgue’s Monotone Convergence Theorem (see Theorem 2.14), which establishes
Remark 2.11(b), and then the rest becomes easy.

2.5 Integration of positive functions: main theorems

Intuition. L+ functions are very easy to deal with since there is no issue of convergence: their Lebesgue
integral always exist in [0,∞].

Theorem 2.14 (Lebesgue’s Monotone Convergence Theorem). Suppose:

(i) fj ∈ L+ for every j;

(ii) fn(x) ↑ f(x) (“monotonically converges from below”) as n→∞ for every x ∈ X.

Then ∫
X

fn dµ→
∫
X

f dµ

Remarks 2.15. (a) As we discuss in the next section, in all of these results we can replace “for every x” with
“for µ-almost every x”.

Proof. Let limn→∞
∫
fn = I ∈ [0,+∞] (non-decreasing numbers must have a limit). Need to show I is equal

to
∫
f .

Since fn ≤ f , we get
∫
fn ≤

∫
f , so that I ≤

∫
f .

To show I ≥
∫
f , need to use the definition of

∫
f . So choose any simple function φ with 0 ≤ φ ≤ f .

Ideally we would like to have fn ≥ φ since then
∫
fn ≥

∫
φ, implying I ≥

∫
f . But fn ≥ φ can of course fail,

so we choose an arbitrary 0 < c < 1, and let En = {x : fn ≥ cφ(x)}, Then En is increasing sequence of sets
whose union is X. So

∫
fn ≥

∫
En
fn ≥ c

∫
En
φ. Now take n → ∞ to get I ≥ c

∫
φ (this is believable, but

technically we are using Proposition 2.22(iv) here). Then take c→ 1 and sup over all φ to get I ≥
∫
f .
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Theorem 2.16 (Interchanging integral and sum for L+).

∫
X

 ∞∑
j=1

fj(x)

 dµ =

∞∑
j=1

∫
X

fj(x) dµ

for any fj ∈ L+.

Proof. For finite sums: approximate by simple functions from below monotonically, and use monotone con-
vergence theorem:

∫ ∑N
j=1 fj =

∑N
j=1

∫
fj .

For infinite sums: take N →∞ using monotone convergence theorem.

Theorem 2.17 (Fatou’s Lemma). For any fn ∈ L+,∫
X

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
X

fn dµ.

Remarks 2.18. (a) In particular, if all the limits exist, then
∫

lim fn ≤ lim
∫
fn for fn ∈ L+.

(b) The strict inequality may occur: e.g., fn = χ[n,n+1] or fn = nχ(0,1/n): in both cases “mass is escaping
to infinity”. So to get lim

∫
fn =

∫
lim fn one needs to forbid these kind of behaviours. See the Dominated

Convergence Theorem later on.

Proof. lim infk→∞ = limk→∞ infn≥k, so first we notice that infn≥k fn ≤ fj for any j ≥ k, so
∫

infn≥k fn ≤
∫
fj

for every j ≥ k, so that
∫

infn≥k fn ≤ infj≥k
∫
fj . Now take k → ∞ and use the monotone convergence

theorem.

2.6 L1(µ): integration of real and complex functions

Definition 2.19. Let (X,M, µ) be a measure space. Define L1(µ) (space of Lebesgue integrable functi-
ons) to be the collection of all measurable functions f : X → C for which∫

X

|f | dµ <∞

Definition 2.20. Let (X,M, µ) be a measure space.

(i) If f(x) ∈ L1(µ) is real-valued, then we decompose f(x) = f+(x)− f−(x), where f+(x) := max(f(x), 0)
and f−(x) := −min(f(x), 0), and we define the (Lebesgue) integral of f with respect to µ over E by∫

E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ,

(which is finite since
∫
X
|f | dµ <∞).

(ii) If f(x) ∈ L1(µ) is complex-valued, then we decompose f(x) = Re f + i Im f , and we define the (Lebes-
gue) integral of f with respect to µ over E by∫

E

f dµ =

∫
E

Re f dµ+ i

∫
E

Im f dµ,

(which is finite since
∫
X
|f | dµ <∞).
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Remarks 2.21. (a) If f(x) = f+(x)−f−(x) (real-valued) but not in L1(µ), we may still write
∫
E
f dµ to mean∫

E
f+ dµ −

∫
E
f− dµ, provided that one of the integrals on the right-hand side is finite (so that

∫
E
f dµ is

either +∞ or −∞).
(b) If two functions f and g are equal to each other µ-almost everywhere (that is, µ({x : f(x) 6= g(x)}) = 0,

then it is easy to see that
∫
E
f dµ =

∫
E
g dµ for any set E. Therefore from now on, as members of L1(µ), f

and g will not be distinguished from each other. More formally, we are redefining L1(µ) as the quotient space,
where each equivalence class consists of functions equal µ-almost everywhere. We can (and will) therefore
even include functions that are undefined or infinite on a µ-null set.

(c) Another reason for the discussion in (b) is that L1(µ) will be viewed as a metric space with distance
ρ(f, g) =

∫
X
|f − g| dµ, but then ρ(f, g) = 0 iff f = g holds only if we stop distinguishing between functions

in the same equivalence class.
(d) In fact, with the convention in (b), L1(µ) becomes a normed space with the norm ||f ||1 :=

∫
X
|f | dµ,

and it can be shown it’s complete (i.e., L1(µ) is a Banach space).

2.7 L1(µ): basic properties

Proposition 2.22. Let f, g ∈ L1(µ).

(i) (Linearity) For any constants α, β ∈ C, we have αf + βg ∈ L1(µ) and∫
X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

(ii) (Monotonicity) If f ≤ g (a.e.) on E then
∫
E
f dµ ≤

∫
E
g dµ.

(iii) (Triangle inequality)
∣∣∫
X
f dµ

∣∣ ≤ ∫
X
|f | dµ.

(iv) For any f ∈ L1, E 7→
∫
E
f dµ is a complex measure, in particular, it is σ-additive:∫

E

f dµ =

∞∑
j=1

∫
Ej

f dµ

if E is the union of disjoint µ-measurable sets Ej.

Remark 2.23. The measure E 7→
∫
E
f dµ in (iv) can sometimes be denoted by f dµ.

Proof. (i) αf + βg ∈ L1(µ) follows from |αf + βg| ≤ |α| |f | + |β| |g|. To show linearity for the real case, we
let h = f + g, which can be rewritten as h+ + f− + g− = f+ + g+ + h−, which means

∫
h+ +

∫
f− +

∫
g− =∫

f+ +
∫
g+ +

∫
h− by linearity for positive functions. Then for complex case, one just splits each function

into real and imaginary part. For constant multiplication arguments are similar.

(ii) is easy by the similar arguments.

(iii) For real functions, this is immediate from −|f | ≤ f ≤ |f | and (ii). For complex f , let α = sgn(
∫
f).

Then |
∫
f | = α

∫
f =

∫
αf . So

∫
αf is real and |

∫
f | = Re

∫
αf =

∫
Re(αf) ≤

∫
|αf | =

∫
|f |.

(iv) For simple functions in L+, this follows from the definition. For general L+ functions, it follows from
χEf =

∑∞
j=1 χEjf and then Theorem 2.16. For general complex f ∈ L1(µ), one uses Theorem 2.26 instead

(proved below).
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2.8 L1(µ): Dominated Convergence Theorem

Theorem 2.24 (Lebesgue’s Dominated Convergence Theorem). Suppose:

(i) limn→∞ fn(x) = f(x) for (almost) every x ∈ X;

(ii) |fn(x)| ≤ g(x) for some g ∈ L1(µ).

Then f ∈ L1(µ) and

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ

Moreover, limn→∞
∫
X
|fn − f | dµ = 0.

Remarks 2.25. (a) limn→∞
∫
X
|fn−f | dµ = 0 can also be written as ||fn−f ||1 → 0 and is called L1-convergence

or convergence in L1-norm.

Proof. [F55]
Intuition for the proof: Fatou’s lemma says that for positive functions some mass can escape to infinity

in the limit, but nothing extra can appear. Our fj is not positive, but fj + g ≥ 0 is, so we can get the same
conclusion. Now, we can apply the same argument to −fj (or rather, to −fj + g ≥ 0), so Fatou’s lemma will
say that no extra mass can appear for −fj , that is, no mass can escape for fj .

Rigorously: we assume fn are real-valued, as otherwise we just take real and imaginary parts. Then g+fn ≥
0 and g − fn ≥ 0, so by Fatou’s lemma, we get

∫
(g + f) ≤ lim inf

∫
(g + fn) and

∫
(g − f) ≤ lim inf

∫
(g − fn).

These two inequalities give us: lim inf
∫
fn ≥

∫
f ≥ lim sup

∫
fn, which implies lim

∫
fn =

∫
f . Finally, to

show
∫
|fn−f | → 0, just apply the previous case to the sequence |fn−f | which is dominated by 2g ∈ L1(µ).

Theorem 2.26 (Interchanging integral and sum for L1). Suppose
∑∞
j=1

∫
|fj | dµ < ∞. Then

∑∞
j=1 fj(x)

converges a.e. to a function f(x) ∈ L1(µ) and

∫
X

 ∞∑
j=1

fj(x)

 dµ =

∞∑
j=1

∫
X

fj(x) dµ.

Moreover, ||f −
∑n
j=1 fj ||1 → 0.

Proof. [F55]
First of all, g =

∑∞
j=1 |fj(x)| is in L+ and by Theorem 2.16,

∫ ∑
=
∑∫

, so g ∈ L1(µ). L1(µ) functions

are µ-almost everywhere finite, so g is a.e. convergent. Since |f | ≤ g, we also get f ∈ L1 and f a.e. finite.
Now note that |

∑n
j=1 fj | ≤ g for any n, so by the Dominated Convergence Theorem we can interchange∫

and
∑

.
||f −

∑n
j=1 fj ||1 → 0 follows by applying the Dominated Convergence Theorem to f −

∑n
j=1 fj .

2.9 Lebesgue vs Riemann integrals

Intuition. Riemann integral is constructed by dividing the domain of the input function f into subintervals.
One can think of the approximation by simple functions in the Lebesgue integral (see Section 2.3) as the
division of the range of the function f into subintervals. Somehow Lebesgue’s approach works better because
it takes into account properties of f , whereas Riemann’s division completely ignores it.

Theorem 2.27. Let f : [a, b]→ R.
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(a) If f is Riemann integrable on [a, b] then f is Lebesgue integrable and
∫ b
a
f(x) dx =

∫
[a,b]

f dm.

(b) f is Riemann integrable iff f is bounded and the set of discontinuity points has Lebesgue measure zero.

Proof. [F57], [F,Ex.2.3.23]
(i) Take a sequence of meshes that include the preceding ones. For each take the piecewise constant upper

and lower functions for the Riemann integral fn and f
n
. Since these are monotone and bounded, the limits

f(x) = lim fn(x) and f(x) = lim f
n
(x) exist for all x. The corresponding lower and upper Darboux sums for

fn and f
n

agree with their Lebesgue integrals. By Dominated Convergence Theorem, Lebesgue integral and

limit can be interchanged, so we get
∫
f dm = lim

∫
fn dm. But the latter is equal to the limit of the upper

Darboux sums, that is equal to the Riemann integral
∫ b
a
f dx. Similarly for

∫
f dm. This means f = f a.e.,

and therefore f = f = f a.e. since f ≥ f ≥ f . This shows that f is Lebesgue measurable and Lebesgue
integral of f is equal to its Riemann integral.

(ii) is delegated to exercises.

2.10 Product measures

Recall the definition of the product σ-algebra M⊗N in Section 1.3.
Now, for any set E ∈ X × Y , let

Ex = {y ∈ Y : (x, y) ∈ E}, Ey = {x ∈ X : (x, y) ∈ E}.

Theorem 2.28. Let (X,M, µ) and (Y,N , ν) be two σ-finite measure spaces. For any set E ∈ M⊗N , the
function x 7→ ν(Ex) is M-measurable and the function y 7→ µ(Ey) is N -measurable, and∫

ν(Ex) dµ(x) =

∫
µ(Ey) dν(y). (2.10.1)

Remarks 2.29. (a) Because of Remark 2.7, the equality (2.10.1) can equivalently be rewritten as∫ (∫
χE(x, y) dν(y)

)
dµ(x) =

∫ (∫
χE(x, y) dµ(x)

)
dν(y),

so can be regarded as a baby Fubini theorem.
(b) The condition of σ-finiteness is important (see [F, Ex. 2.5.45]).

Proof. [F64–67]
For simplicity, we will suppose both µ and ν are finite and assume everything is measurable (which is not

obvious, but hopefully quite believable).
Denote C to be the set of all E ∈M⊗N for which (2.10.1) holds. For A×B with measurable A, B, this

is clear. If we show that C is a σ-algebra, then C contains the minimal σ-algebra containing all of A×B, and
therefore C ⊇ M⊗N , so we are done.

To show that C is a σ-algebra:
Step 1: C is a “monotone class” (collection of sets closed under countable increasing unions and countable

decreasing intersections): indeed, let {En} in C increases and E is their union. Then ν((En)x) increase
pointwise to ν(Ex). So Monotone Convergence Theorem can be applied. For decreasing {En}, one applies
Dominated Convergence Theorem.

Step 2: Then show that the minimally generated monotone class is the minimally generated σ-algebra.
Details are omitted [F66].
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Definition 2.30. Let (X,M, µ) and (Y,N , ν) be two σ-finite measure spaces. On the measurable space
(X × Y,M⊗N ) we define the product measure µ× ν to be the measure given by

(µ× ν)(E) :=

∫
ν(Ex) dµ(x) =

∫
µ(Ey) dν(y) (2.10.2)

for E ∈M⊗N .

Remark 2.31. That the two quantities in (2.10.2) are equal is established in Theorem 2.28. That µ × ν is
really a measure (that is, that it’s countably additive) can be proved by using Theorem 2.16.

2.11 Tonelli and Fubini theorems

Theorem 2.32. Let (X,M, µ) and (Y,N , ν) be two σ-finite measure spaces. Then

(i) (Tonelli Theorem = Fubini Theorem for positive functions) If f ∈ L+(X × Y ), then∫
f d(µ× ν) =

∫ (∫
f(x, y) dν(y)

)
dµ(x) =

∫ (∫
f(x, y) dµ(x)

)
dν(y) (2.11.1)

(ii) (Fubini Theorem) If f ∈ L1(X × Y ), then (2.11.1) holds.

Remarks 2.33. (a) The theorems are also implicitly stating that all the integrand functions in (2.11.1) are a.e.
integrable.

(b) Conditions are important: σ-finiteness, as well as of course f ∈ L1(X × Y ).
(c) Typically, one first uses Tonelli theorem to check the condition f ∈ L1(X × Y ), at which point one is

allowed to use Fubini.

Proof. [F67–68]
(i) If f is a characteristic function, then we proved this in Theorem 2.28. For general f ∈ L+, we

approximate f with simple φn ↗ f , and then use Monotone Convergence Theorem.
(ii) If f is real, then split f = f+ − f− and then apply Tonelli to each f+ and f−. Similarly if f is

complex, then split into real and imaginary parts.

2.12 Absolutely continuous and singular measures

Definition 2.34. Let µ be a positive measure on (X,M). A (positive or signed) measure ν on (X,M) is
called absolutely continuous with respect to µ if µ(A) = 0 implies ν(A) = 0. We write ν � µ.

Remark 2.35. Often one says that a measure is “absolutely continuous” if it is a measure on R (or Rn) that
is absolutely continuous with respect to the Lebesgue measure m (or mn, respectively).

Example 2.36. If f ∈ L1(µ), then as we saw in Proposition 2.22(iv), E 7→
∫
E
f dµ (or f dµ for short) is a

complex measure. It is clear (see Proposition 2.12(v)) that this measure is absolutely continuous with respect
to µ. As we show in Section 2.14 the converse is also true!

Proposition 2.37. Let µ be a positive measure on (X,M). Let ν : M → (−∞,+∞) be a signed measure.
Then ν � µ iff for any ε > 0 there exists δ > 0 such that µ(E) < δ implies |ν(E)| < ε.
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Proof. For signed measure, the proof will follow once we have the Jordan Decomposition Theorem below. So
let us just prove the case for positive measures ν.
⇐ is clear, so let us prove ⇒. If the ε-δ condition fails then there exists an ε > 0 such that for some sets

En: ν(En) ≥ ε and µ(En) < 2−n. Let Fk = ∪∞n=kEn and F = ∩∞j=1Fj . Then µ(Fk) <
∑∞
k 2−n = 21−k, so

µ(F ) = 0. However ν(Fk) ≥ ε, so by continuity from above (Theorem 1.19(iv)), we get ν(F ) ≥ ε since ν is
finite.

Corollary 2.38. If f ∈ L1(µ) then for any ε > 0 there exists δ > 0 such that µ(E) < δ implies |
∫
E
f dµ| < ε.

Definition 2.39. Let µ be a (positive or signed) measure on (X,M). A (positive or signed) measure ν on
(X,M) is called singular with respect to µ if there exists a measurable set A ∈M such that µ(A) = 0 and
ν(Ac) = 0. We write µ ⊥ ν.

Remark 2.40. Since being singular is a symmetric relation, we also say that µ and ν are mutually singular.

Proposition 2.41. Let all the measures below be defined on the same measurable space.

(i) If ν � µ and µ� λ then ν � λ.

(ii) If ν1 � µ and ν2 � µ then ν1 + ν2 � µ.

(iii) If ν1 ⊥ µ and ν2 ⊥ µ then ν1 + ν2 ⊥ µ.

(iv) If ν � µ and ν ⊥ µ then ν = 0.

2.13 Decompositions for signed measures

Intuition. Basically every signed measure can be decomposed into difference of two positive measures.

We will say that a set E is positive for a signed measure ν if ν(F ) ≥ 0 for all measurable F ⊆ E. Similarly
for negative.

Theorem 2.42 (Hahn Decomposition Theorem). If ν is a signed measure that there exist two disjoint sets
P and N whose union is the whole space X such that P is positive for ν and N is negative for ν.

Remark 2.43. The decomposition is unique up to the ν-null sets.

Proof. [F86–87]
Assume ν :M→ [−∞,+∞). Let m ∈ R be sup ν(E) over all positive sets E. Then ν(Pj)→ m for some

positive {Pj}. Let P = ∪Pj . By countable additivity, it is easy to see that P is positive for ν, and therefore
by continuity from below for measures (or MCT), ν(P ) = m. We only need to prove that P c is negative for
ν.

Suppose not, that is, ν(A) ∈ (0,∞) for some A ⊆ P c. Then A cannot be positive as otherwise P ∪ A
would be positive set of larger measure than m. Then we can find A1 ⊆ A with ν(A1) > ν(A) (because
A is not positive, so ν(C) < 0 for some C ⊆ A, so we can take A1 = A \ C). In fact, let us choose A1

and n1 with ν(A1) > ν(A) + 1
n1

with minimal n1 ∈ N. Repeat the construction to find Aj ⊆ Aj−1 with

ν(Aj) > ν(Aj−1) + 1
nj

and nj ∈ N minimal. Let A∞ = ∩jAj . Since ∞ > ν(A∞) = lim ν(Aj) >
∑
n−1
j , we

get nj → ∞. But we can apply the construction above again to find B ⊆ A∞ such that ν(B) > ν(A∞) + 1
n

for some integer n ∈ N. Since nj → ∞, we get nj > n for some j, which contradicts the construction of nj
and Aj .
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Theorem 2.44 (Jordan Decomposition Theorem). If ν is a signed measure, then there exists positive measures
ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

Remarks 2.45. (a) From the “almost” uniqueness of the Hahn Decomposition follows that Jordan Decompo-
sition if in fact unique.

(b) At least one of ν+ and ν− is a finite measure.

Proof. [F87]
Define ν+(E) = ν(E ∩ P ) and ν−(E) = |ν(E ∩ N)|, where P and N are as in the proof of the last

theorem.

2.14 Radon–Nikodym theorem

Intuition. This theorem is the inverse of the observation we made in Example 2.36.

Theorem 2.46 (Radon–Nikodym Theorem). Let µ and ν be two σ-finite positive measures on (X,M). ν � µ
iff there exists f ∈ L+, such that

dν = f dµ

(in the sense
∫
E
dν =

∫
E
f dµ for any measurable E). Moreover, ν is finite iff f ∈ L1(µ).

Remarks 2.47. (a) Same arguments lead to similar results for complex measures.
(b) It can be shown that f is unique (µ-a.e.).
(c) The function f is referred to as the Radon–Nikodym derivative and is denoted by dν

dµ .

Proof. [F90]
Suppose that both ν and µ are finite, as for the σ-finite case we just divide X into countable union of

disjoint sets.
Let

F =

{
f ∈ L+ :

∫
E

f dµ ≤
∫
E

dν for all E ∈M
}
.

Note that f, g ∈ F implies h = max(f, g) ∈ F . Indeed, if A = {x : f(x) > g(x)}, then
∫
E
hdµ =

∫
E∩A f dµ+∫

E\A g dµ ≤ ν(E ∩A) + ν(E \A) = ν(E).

We want to choose “maximal” f . To this end, let a = sup{
∫
X
f dµ : f ∈ F} (a ≤ ν(X) <∞), and choose

{fn} ⊂ F such that
∫
X
fn dµ→ a. By redefining fn := max{f1, . . . , fn}, we can assume fn is non-decreasing.

By Monotone Convergence Theorem, lim fn(x) =: f(x) belongs to F and has
∫
f dµ = a.

Define a measure dλ := dν−f dµ which is a positive measure. It must in fact be zero as otherwise we could
add a bit more to f . Rigorously: let Pn ∪Nn be the Hahn decompositon for dν − f dµ− 1

ndµ. If µ(Pn) > 0,
then f + 1

nχE ∈ F which contradicts to the maximality of f . Therefore µ(Pn) = 0, and so µ(P ) = 0 (where
P = ∪Pn) by continuity from below. By absolute continuity of ν, we get dν−f dµ is 0 on P . For the negative
sets, let N = ∩Nj = P c. Then N ⊆ Nj for every j, so 0 ≤

∫
N

(dν − f dµ) ≤ 1
nµ(N) which implies dν − f dµ

is 0 on N .

21



2.15 Lebesgue Decomposition theorem

Theorem 2.48 (Lebesgue Decomposition Theorem). Let µ and ν be two σ-finite positive measures on (X,M).
Then there exist unique measures νac and νs such that

ν = νac + νs,

such that νac � µ and νs ⊥ µ.

Remarks 2.49. (a) Same arguments lead to similar results for complex measures.
(b) Combining with the Radon–Nikodym theorem, we obtain that for any two σ-finite measures, one has

dν = f dµ+ dνs.

Proof. [F90]
Again, arguing as in the previous theorem, we can suppose that both ν and µ are finite.
Now observe that ν � ν+µ. By the Radon–Nikodym theorem there exists a measurable function f ∈ L+

such that ν(E) =
∫
E
f dν +

∫
E
f dµ. Rearranging, we get

∫
E

(1 − f) dν =
∫
E
f dµ ≥ 0, so 1 − f ≥ 0 ν-a.e.

Let A := {x : f(x) = 1} and B := {x : 0 ≤ f(x) < 1}. Then ν(A) =
∫
A

1 dµ +
∫
A

1 dν = µ(A) + ν(A), so
µ(A) = 0.

Now define νs(E) := ν(E ∩ A) and νac := ν(E ∩ Ac). Then νs ⊥ µ because µ(A) = 0. We just need to
show that νac � µ. If µ(E) = 0, then νac(E) =

∫
E∩B dν = ν(E ∩ B) =

∫
E∩B f dν + 0. This means that∫

E∩B(1− f)dν = 0. Since 1− f > 0 ν-a.e., we get ν(E ∩B) = 0, that is νac(E) = 0.
To prove uniqueness: if νs + νac = ν̃s + ν̃ac, then νs− ν̃s = ν̃ac− νac is both singular and a.c. with respect

to µ. This implies it is 0 by Proposition 2.41(iv).

2.16 Lebesgue–Stieltjes measures on R: decomposition with re-
spect to the Lebesgue measure

Let µ be a Borel measure on R that is finite on compacts. As we know from Section 1.11, µ is a Lebesgue–
Stieltjes measure µF for some non-decreasing right-continuous function F : R → R. The Lebesgue integral∫
E
fdµF (for f ∈ L1(µF )) is called the Lebesgue–Stieltjes integral, often denoted by

∫
E
f(x) dF (x).

Remarks 2.50. (a) For a non-decreasing right-continuous function F : R → R, one can use the construction
analogous to the Riemann integration but instead of ∆xj one uses F (xj+1)− F (xj). This construction leads
to the so-called Riemann–Stieltjes integral. The relation between the Riemann–Stieltjes integral and the
Lebesgue–Stieltjes integral is similar to the relation between the Riemann and the Lebesgue integral.

(b) One can relax the requirement that F is non-decreasing (or even real-valued) but instead require that
F has bounded total variation. The corresponding measure µF is then signed (or complex, respectively).

Definition 2.51. (i) We say that x ∈ R is a pure point (or mass point, or point mass) of µ if µ({x}) > 0.

(ii) We call µ a continuous measure if µ({x}) = 0 for all x ∈ R (that is, if µ has no pure points).

(iii) We call µ is a pure point measure if µ(A) 6= 0 implies that there exists x ∈ A such that µ({x}) > 0.

Remark 2.52. Since µ is finite on compacts, one can easily show that µ is a pure point measure iff µ(A) =∑
x∈A µ({x}) for every A. Put it another way, iff µ is a countable (or finite) linear combination of Dirac

measures.
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Theorem 2.53. Let µ be a Borel measure on R that is finite on compacts. Then there exist unique measures
µac, µsc, µpp such that

µ = µac + µsc + µpp,

where µac � m, µsc is ⊥ m and continuous, and µpp is ⊥ m and pure point.

Remark 2.54. We call µac, µsc, µpp the “absolutely continuous”, “singular continuous”, and “pure point”
parts of µ, respectively.

Proof. Let P be the set of pure points of µ. Then define µpp(A) :=
∑
x∈A∩P µ({x}) and µcont := µ −

µpp. Clearly µpp and µcont are pure point and continuous measures, respectively. Then apply the Lebesgue
decomposition to µcont with respect to m.

Examples 2.55. (a) Let F be continuously-differentiable. Then one can show that
∫
E
f(x)dF (x) =

∫
E
f(x)F ′(x)dm.

In other words, dµF = F ′(x)dm is absolutely-continuous with singular-continuous and pure point parts being
zero. This can be generalized to the situations where F ′ exists only m-a.e. with F ′ ∈ L1(m), plus an ex-
tra condition on F (that is, fittingly, called “absolute continuity”). As example (c) below shows, this extra
condition is in fact required.

(b) Let F (x) be 0 for x < 0 and 1 for x ≥ 0. Then it is clear that µF ((a, b]) = 1 if 0 ∈ (a, b] and 0
otherwise. In other words µF is δ0, the Dirac measure at x = 0. From the definition of the integral, one can
easily check that

∫
R f(x)dF = f(0) (functions in the space L1(µF ) in this case are completely determined by

f(0), i.e., L1(µF ) is just a one-dimensional vector space).
More generally, if F (right-continuous and non-decreasing) is piecewise constant, then each jump discon-

tinuity F (xj + 0)− F (xj − 0) = αj of F will contribute αjδxj to µF .
(c) Let F (x) be the Cantor function (recall that it’s continuous on [0, 1]) continued by F (x) = 0 for x ≤ 0,

F (x) = 1 for x ≥ 1. We call the corresponding measure µF the Cantor measure. By continuity of F , we get
µF ({x}) = 0 for every x ∈ R, so µF is continuous. Notice that on [0, 1] \C, F is constant, which implies that
µF ([0, 1] \ C) = 0. Since m(C) = 0, we obtain that the Cantor measure µF is singular with respect to the
Lebesgue measure: µF ⊥ m. In other words, µF is singular-continuous: µF = (µF )sc.

2.17 Lebesgue integrals in Rn: Hardy–Littlewood maximal function

Intuition. In the next few sections we will restrict ourselves to Rn and head towards the analogue of the
Fundamental Theorem of Calculus for the Lebesgue integrals. Note that d

dx

∫ x
a
f(x)dx can be rewritten as

limr→0
1

m(Ir)

∫
Ir
f(x)dm, where Ir is the interval with endpoints x and x+r. Instead of Ir we can also use the

interval with endpoints x− r and x+ r, of course. This motivates the objects we work with in this section.

In Sections 2.17–2.23, we will start writing dx for the (n-dimensional) Lebesgue measure instead of dm(x)
or dnm(x). Also, “measurable”, “integrable”, and “a.e.” will be meant with respect to the Lebesgue measure.

Definition 2.56. A function f : Rn → C is called locally integrable (denoted by f ∈ L1
loc) if f is Lebesgue

measurable and
∫
K
|f(x)| dx <∞ for every bounded measurable set K ⊂ Rn.

Definition 2.57. For f ∈ L1
loc:

(i) Define Arf(x) be the average value of f over B(x, r) := {y ∈ Rn : |x− y| < r}:

Arf(x) =
1

m(B(r, x))

∫
B(r,x)

f(y) dy
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(ii) Define the Hardy–Littlewood maximal function Hf(x) by

Hf(x) = sup
r>0

Ar|f |(x) = sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f(y)| dy

Remarks 2.58. (a) It can be shown that Arf (for any r > 0) and Hf are measurable [F96].
(b) Note that Ar is linear but Hr is not!

The next theorem says that for f ∈ L1, Hf cannot be too large on a large set.

Theorem 2.59 (Maximal inequality). For any f ∈ L1 and any α > 0,

m({x : Hf(x) > α}) ≤ 3n

α

∫
Rn
|f(x)|dx

Proof. [F96]
First we prove the following lemma.

Lemma 2.60 (Covering lemma). Let U be the union of a collection of open balls. For any c < m(U), we can

find a disjoint finite subcollection B1, . . . , Bk of balls such that c < 3n
∑k
j=1m(Bj).

Proof. Since m is regular, in particular inner regular, we can find a compact K ⊆ U such that c < m(K). By
compactness we can find a finite subcover with the balls B(xj , rj), j = 1, . . . , N . Without loss of generality,
assume B(xj , rj) are ordered so that r1 ≥ r2 ≥ . . . ≥ rN . Choose B1 to be B(x1, r1) and discard all the
rest B(xj , rj) that intersect B1. Choose B2 the next remaining B(xj , rj) and so on until we run out of the
balls. The resulting collection B1, . . . , Bk is then disjoint. If B∗j is Bj but with tripled radius, then from the

construction, it is easy to see that
⋃k
j=1B

∗
j contains all of the {B(xj , rj)}Nj=1, and so K. Therefore

c < m(K) ≤
k∑
j=1

m(B∗j ) = 3n
k∑
j=1

m(Bj).

Let Eα = {x : Hf(x) > α}. For each x ∈ Eα there is some radius rx > 0 such that Arx |f |(x) > α, that
is, m(B(rx, x)) < 1

α

∫
B(rx,x)

|f |dx. The balls B(rx, x) cover Eα. By the covering lemma, for any c < m(Eα),

we get a finite disjoint subcover such that c < 3n
∑k
j=1m(Bj) ≤ 3n

α

∑k
j=1

∫
Bj
|f(y)|dy ≤ 3n

α

∫
Rn |f(y)|dy.

2.18 Lebesgue integrals in Rn: Lebesgue differentiation theorem,
weak version

Theorem 2.61 (Lebesgue Differentiation Theorem, weak version). If f ∈ L1
loc, then limr→0Arf(x) = f(x)

for a.e. x ∈ Rn, that is

lim
r→0

1

m(B(r, x))

∫
B(r,x)

f(y) dy = f(x) a.e. (2.18.1)

Remark 2.62. Equivalently,

lim
r→0

1

m(B(r, x))

∫
B(r,x)

(f(y)− f(x)) dy = 0 a.e. (2.18.2)
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Proof. [F97]
Let us prove the statement of the theorem for a continuous function g first. By continuity for any ε > 0

there exists δ > 0 such that |y − x| < δ implies |g(x)− g(y)| < ε. Therefore for r < δ:

|Arg(x)− g(x)| = 1

m(B(r, x))

∣∣∣∣∣
∫
B(r,x)

(g(y)− g(x))dy

∣∣∣∣∣ < ε.

This shows limr→0Arg(x) = g(x) for any x.
Now for the general f , first note that the statement of the theorem depends on the local properties only,

so we may assume f ∈ L1 instead of L1
loc.

Now, we claim that for any ε > 0 we can find g ∈ Cc(Rn) (continuous function with compact support)
such that ||f − g||1 < ε. This will be proved later in larger generality (for regular measures and for any of the
Lp spaces) in Section 3.24.

Thus lim supr→0 |Arf(x)− f(x)| = lim supr→0 |Ar(f − g) + (Arg− g) + (g− f)| ≤ H(f − g) + 0 + |f − g|.
Thus, Fα := {x : lim sup |Arf − f | > α} ⊆ {x : |f − g| > α/2} ∪ {x : H(f − g) > α/2}. But m({x :

H(f − g) > α/2}) ≤ 2·3n
α ||f − g||1 and m({x : |f − g| > α/2}) ≤ 2

α ||f − g||1 (Chebyshev’s inequality), so that
m(Fα) ≤ Cε for some constant C > 0. Since ε > 0 is arbitrary, we get m(Fα) = 0 for any α > 0. Therefore

m({x : lim sup
r→0

|Arf − f | > 0}) = m(∪∞n=1F1/n) = 0.

2.19 Lebesgue integrals in Rn: Lebesgue points and the Lebesgue
set

Definition 2.63. (i) For f ∈ L1
loc, if

lim
r→0

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)| dy = 0 (2.19.1)

holds at a point x ∈ Rn, then we call x a Lebesgue point of f .

(ii) The Lebesgue set Lf of f ∈ L1
loc is defined to be the set of all Lebesgue points of f .

Remark 2.64. The condition (2.19.1) is strictly stronger then the condition (2.18.2), so at this point we don’t
know if any Lebesgue point exists.

2.20 Lebesgue integrals in Rn: Lebesgue differentiation theorem,
strong version

Theorem 2.65 (Lebesgue Differentiation Theorem, strong version). If f ∈ L1
loc, then

lim
r→0

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)| dy = 0 (2.20.1)

holds for a.e. x, that is, m((Lf )c) = 0.
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Proof. [F98]
Let Q2 be the collection of all points in C with rational real and imaginary parts. For each c ∈ Q2, apply

Theorem 2.61 to the function |f(x)− c|: except for x in a m-null set Ec, we have

lim
r→0

1

m(B(r, x))

∫
B(r,x)

|f(y)− c| dy = |f(x)− c|. (2.20.2)

Let E =
⋃
c∈Q2 Ec. Then m(E) = 0, and we claim that Ec contains only Lebesgue points of f . Indeed, let

x /∈ E, so that (2.20.2) holds for every c ∈ Q2. We find c ∈ Q2 within ε > 0 distance from f(x). Then
|f(x) − c| ≤ ε and |f(y) − f(x)| ≤ |f(y) − c| + ε, so that lim supr→0

1
m(B(r,x))

∫
m(B(r,x))

|f(y) − f(x)|dy ≤
|f(x)− c|+ 1

m(B(r,x))εm(B(r, x)) ≤ 2ε. Since ε > 0 was arbitrary, we get that x /∈ E is a Lebesgue point.

2.21 Lebesgue integrals in Rn: Lebesgue differentiation theorem,
generalized strong version

Intuition. Recall that in the Fundamental Theorem of Calculus (see Intuition in Section 2.17), we could have
chosen an interval centered at x, or an interval that touches x. So it seems that there should be nothing
special about the centered ball in (2.18.2) or (2.20.1). This in indeed the case, but there’ll be some minor
requirement on the domain of integration.

Definition 2.66. We say that a family {Er}r>0 of Borel sets in Rn shrinks to x nicely if Er ⊆ B(r, x)
for each r > 0 and there is a constant α > 0 such that m(Er) > αm(B(r, x)).

Remarks 2.67. (a) Er doesn’t need to contain x.
(b) E.g., we can take Er = {x+ry : y ∈ U}, where U is some chosen Borel subset of B(1, 0) with m(U) > 0.

Theorem 2.68 (Lebesgue Differentiation Theorem, generalized strong version). If f ∈ L1
loc, then for any

Lebesgue point of f ,

lim
r→0

1

m(Er)

∫
Er

|f(y)− f(x)| dy = 0,

lim
r→0

1

m(Er)

∫
Er

f(y) dy = f(x),

for any family {Er}r>0 that nicely shrinks to x.

Proof. [F99–100]
This follows from the previous theorem and the trivial bounds m(Er) ≥ αm(B(r, x)) and

∫
Er
≤
∫
B(r,x)

.

2.22 Lebesgue integrals in Rn: differentiation of measures

Intuition. Note that the result of the (weak) Lebesgue differentiation theorem can be viewed as limr→0
µ(B(r,x))
m(B(r,x)) =

f(x) where dµ = f(x)dm (note that f(x) = dµ
dx ). It is natural to ask what happens when µ is not necessarily

absolutely continuous. As we show in the next theorem, the singular component disappears in this limit.
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Theorem 2.69. Let µ be a Borel measure on Rn that is finite on compacts. Let dµ = fdm + dµs be its
Lebesgue–Radon–Nikodym decomposition. Then

lim
r→0

µ(Er)

m(Er)
= f(x) for a.e. x ∈ Rn

and for any family {Er}r>0 that shrinks nicely to x.

Remarks 2.70. (a) In particular, if µ ⊥ m, then limr→0
µ(B(r,x))
m(B(r,x)) = 0 for m-a.e. x ∈ Rn.

(b) It is curious (but not that surprising if one thinks about it!) that if µ ⊥ m, then limr→0
µ(B(r,x))
m(B(r,x)) =∞

for µ-a.e. x ∈ Rn (see [Rudin, 7.15] for a proof).

Proof. Since dµ = fdm+ dµs, and we know this result for the a.c. measures, we just need to show that the
limit above is zero a.e. for singular measures. Moreover, we can pass from Er to B(r, x) by the same trick as
in the last proof.

Assuming µ ⊥ m, let µ(A) = 0, m(Ac) = 0. As mentioned in Remark 1.38, any µ on Rn that is finite
on compacts is regular, therefore outer regular. Therefore given ε > 0, we can approximate A from above by

an open set U such that µ(U) < ε. Let Fk = {x ∈ A : lim sup µ(B(r,x))
m(B(r,x)) >

1
k}. Then each x ∈ Fk has a ball

Bx ⊆ U such that µ(Bx) > 1
km(Bx). By the covering lemma (Lemma 2.60), for any c < m(Fk) we can choose

a finite subcover of Fk so that c ≤ 3n
∑N
j=1m(Bj) ≤ 3nk

∑N
j=1 µ(Bj) ≤ 3nkµ(U) ≤ 3nkε. Taking c→ m(Fk)

and ε→ 0, we get m(Fk) = 0 for each k.

2.23 Lebesgue–Stieltjes measures on R: Fundamental Theorem of
Calculus

Theorem 2.71 (Fundamental Theorem of Calculus for Lebesgue Integrals). If f : R→ C is in L1(m) and

F (x) =

∫
(−∞,x]

f dx,

then F ′(x) = f(x) at every Lebesgue point of f (in particular F is a.e. differentiable).

Remark 2.72. However, one should not expect
∫

[a,x]
F ′(x)dx = F (x)− F (a) under the mere assumption that

F ′ exists a.e. and F ′ ∈ L1(m) (for a counterexample, choose F to be the Cantor function). Indeed, one needs
the extra condition that F is an absolutely continuous function.

Proof. Use Theorem 2.68 with Er = (x, x + r] and then again with Er = (x − r, x] to get that both the
right-hand and left-hand derivatives, respectively, are equal to f(x) at every Lebesgue point of f .

2.24 Riesz(–Markov) Representation Theorem

Intuition. Note that if µ is a Borel measure on (X,M) that is finite on compacts, then Cc(X) (compactly
supported continuous functions) are integrable, and the Cc(X) 7→ C map f 7→

∫
f dµ is a positive linear

functional. Riesz/Riesz–Markov theorem investigates the converse of this result.

27



Throughout this section, let X be a locally compact (every point has a neighbourhood with compact
closure) Hausdorff (any two points can be separated with disjoint neighbourhoods) space. This is required in
order for Urysohn’s lemma to be valid, which in turn is required in order for Cc(X) to be rich enough.

Definition 2.73. (i) We say that a map I : Cc(X)→ C is a linear functional if I(f + g) = I(f) + I(g)
and I(αf) = αI(f) for α ∈ C.

(ii) We say that a functional is bounded if there is C > 0 such that |I(f)| ≤ C ||f ||∞.

(iii) We say that a functional is positive if f(x) ≥ 0 (for all x) implies I(f) ≥ 0.

Remark 2.74. We discuss linear functionals in a more general setting in Section 3.7 later.

Theorem 2.75 (Riesz(–Markov) representation theorem). Let I be a positive linear functional on Cc(X).
Then there exists a unique Borel measure µ that is finite on compacts, outer regular, and inner regular on
open sets, such that I(f) =

∫
X
f dµ for all f ∈ Cc(X).

Remarks 2.76. (a) Uniqueness fails if we don’t require regularity properties!
(b) In “reasonable” spaces (namely, locally compact, Hausdorff, such that every open set is σ-compact

(countable union of compacts)), any measure that is finite on compacts is in fact regular (see [Rudin, 2.18]).
(c) I is a bounded functional iff µ is finite.
(d) There is also an analogue of this result for complex linear functionals.

Proof. [F212–215]
Full proof is in the book. We will only sketch the rough idea. Let us write f ≺ U if 0 ≤ f ≤ 1 and

suppf ⊆ U .
To get µ from I, we define

µ(U) = sup{I(f) : f ∈ Cc(X), f ≺ U}

for open sets U . To extend this to a measure we use outer measure and Carathéodory theorem: let

µ∗(E) = inf{µ(U) : U ⊇ E,U open}

for any set E. One shows that µ∗ is an outer measure and that every Borel set is µ∗-measurable. This proves
that µ|B(X) is a Borel measure, and we are just left with showing that µ satisfies the regularity properties and
that I(f) =

∫
f dµ for f ∈ Cc(X).
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