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Abstract
We prove limit theorems for Markov chains under (local) contraction conditions.
As a corollary we obtain a central limit theorem for Markov chains associated
with iterated function systems with contractive maps and place-dependent
Dini-continuous probabilities.
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1. Introduction

Let (X, d) be a compact metric space, typically a closed and bounded subset of R or R
2

with the Euclidean metric and let {wi}Ni=1 be a family of (strict) contraction maps on X,
i.e. there exists a constant c < 1 such that d(wi(x), wi(y)) � cd(x, y), for any x, y ∈ X

and integer 1 � i � N . Such a system is called an iterated function system (IFS) (see [1]).
Hutchinson [12] and Barnsley and Demko [1] introduced these objects in order to describe
fractals. It is easy to see that there exists a unique compact set K that is invariant for the IFS
in the sense that K = ⋃N

i=1 wi(K). The set K is called the fractal set, or attractor, associated
with the IFS. If the maps wi are non-degenerate and affine and the sets wi(K), 1 � i � N , are
‘essentially’ disjoint, then K will have the characteristic ‘self-similar’ property of a fractal.
The huge class of examples of fractals that can be described in this way includes the Sierpinski
gasket, Barnsley’s fern, the Cantor set and many, many others. Despite fractals being totally
deterministic objects, the simplest way of drawing pictures of fractals is often via Barnsley’s
‘random iteration algorithm’: attach probabilities, pi , to each map wi (

∑
i pi = 1). Choose

a starting point Z0(x) := x ∈ X. Choose a function, wI1 , at random from the IFS, with
P(wI1 = wk) = pk . Let Z1(x) = wI1(x). Next, independently, choose a function, wI2 , in
the same manner and let Z2(x) = wI2(Z1(x)) = wI2 ◦ wI1(x). Repeat this ‘random iteration’
procedure inductively and define Zn(x) = wIn

◦ wIn−1 ◦ · · · ◦ wI1(x). The random sequence
{Zn(x)} forms a Markov chain with a unique stationary probability distribution, µ, supported
on K . Since ∑n−1

k=0 f (Zk(x))

n
→

∫
f dµ a.s.,
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as n → ∞, for any real-valued continuous function f on X, by Birkhoff’s ergodic theorem
(note that x can be chosen to be any fixed point by the contraction assumption), we will ‘draw
a picture of the attractor K’ by ‘plotting’ the orbit {Zn(x)}, possibly ignoring some of the
first points in order to reach the stationary regime. This algorithm will be an efficient way
of ‘drawing a picture of K’ provided the probabilities are chosen in such a way as to make
the stationary distribution as uniform as possible on K and the stationary state is reached
sufficiently fast. The choice of pi can sometimes be made by inspection, by searching for a
stationary distribution with the same dimension as K itself. The convergence rates towards
the stationary state are ‘heuristically justified’ by central limit theorems (CLTs), where

1√
n

n−1∑
k=0

(
f (Zk(x)) −

∫
f dµ

)

converges in distribution to the normal distribution for f belonging to some suitably rich class
of real-valued functions on X, or by stronger forms of CLTs, the so-called invariance principles
or functional CLTs, where the stochastic process

1√
n

[nt]−1∑
k=0

(
f (Zk(x)) −

∫
f dµ

)
, 0 � t � 1 (1)

converges in distribution to a Brownian motion. (Here [x] denotes the integer part of x.) Note
that expression (1) above is a function-valued random element. See [5] for details about the
concept of convergence in distribution for function-valued random elements.

The purpose of this paper is to study Markov chains generated by IFSs with place-
dependent probabilities. (Such Markov chains have also been studied under the name ‘random
systems with complete connections’, see [13].) We are given a set of contraction maps {wi},
with associated continuous functions pi = pi(x), where pi : X → (0, 1), with

∑
i pi(x) = 1,

for any x ∈ X. The Markov chains are characterized by the transfer operator T defined for
real-valued measurable functions f on X by Tf (x) = ∑

i pi(x)f (wi(x)). Intuitively, the
Markov chains considered are generated by fixing a starting point x and letting Z0(x) := x,
and inductively letting Zn+1(x) := wi(Zn(x)) with probability pi(Zn(x)) for n � 0.

One motivation for studying such chains is that it gives more freedom when trying to
generate a ‘uniform’ stationary probability distribution on K . Such Markov chains also arise
naturally in the thermodynamic formalism of statistical mechanics. It is well known that they
do not necessarily possess a unique stationary distribution (see [4,6,20,26,27]), but with some
additional regularity conditions, uniqueness holds (see [11, 14, 27, 28]).

The operator T (without the normalizing condition
∑

i pi(x) = 1) is known as the
Ruelle–Perron–Frobenius operator. Fan and Lau [10] proved a limit theorem for iterates
of the Ruelle–Perron–Frobenius operator under the Dini-continuity assumptions on the pi ,
by lifting a similar result from Walters [29] on symbolic spaces. (Recall that pi is Dini-
continuous if

∫ 1
0 (�pi

(t)/t) dt < ∞, or equivalently
∑∞

n=0 �pi
(cn) < ∞, for some (and thus

all) 0 < c < 1, where �pi
(t) := supd(x,y)�t |pi(x) − pi(y)| is the modulus of uniform

continuity of pi). Uniqueness in stationary distributions still holds (in the normalized cases)
if the contraction assumptions of the wi are relaxed to ‘average contraction’ under the Dini-
continuity assumption (see [2,17]) but information about rates of convergence in these ‘average
contractive’ cases seems to be unknown.

The Dini-condition is somewhat stronger than the weakest known conditions for
uniqueness in stationary probability distributions (in the normalized cases with strict
contraction maps), but weaker than, e.g., Hölder-continuity.



CLTs for contractive Markov chains 1957

In the Dini-continuous cases it follows that the unique equilibrium measure will have the
Gibbs (approximation) property (see [10]). This property is of importance when analysing the
multidimensional spectra of measures.

In this paper we will prove the perhaps initially surprising fact (corollary 2) that
Markov chains generated by IFSs with Dini-continuous probabilities obey a CLT, despite
the well-known fact that such Markov chains do not typically converge with an exponential
rate. Our main result, theorem 1, expresses this in a natural generality.

CLTs/functional CLTs for iterated random functions under conditions that imply
exponential (or other rapid) rates of convergence have previously been proved in,
e.g., [3, 15, 16, 22, 30, 31]. We discuss the connection between some of these results and our
results in remarks 4 and 6.

2. Preliminaries

Let B denote the Borel σ -field generated by the metric d, and let P : X × B → [0, 1]
be a transition probability. That is, for each x ∈ X, P(x, ·) is a probability measure on (X, B)

and for each A ∈ B, P(·, A) is B-measurable. The transition probability generates a Markov
chain with transfer operator defined by Tf (x) = ∫

X
f (y)P(x, dy) for real-valued measurable

functions f on X. A probability measure µ is stationary for P if µ(·) = ∫
X

P(x, ·) dµ(x).
There are several ways of representing a Markov chain with a given transfer operator.

One common way is to find a measurable function w : X × [0, 1] → X, let {Ij }∞j=1 be a
sequence of independent random variables uniformly distributed in [0, 1], and consider the
random dynamical system defined by

Zn(x) := wIn
◦ wIn−1 ◦ · · · ◦ wI1(x), n � 1, Z0(x) := x,

for any x ∈ X, where

ws(x) = w(x, s).

It is always possible to find such a representation, w, such that the transition probability
generated by {Zn} is P, i.e. Ef (Zn(x)) = T nf (x), for any x, n and f (see [19]).

For two fixed points x, y ∈ X and x = (x, y) we can consider the Markov chain {Zn(x)},
on X2, where Zn(x) := (Zn(x), Zn(y)). When proving theorems based on contraction
conditions we are typically interested in representations that minimize d(Zn(x), Zn(y))

(in some average sense).
More generally, if W : X2 × [0, 1] → X2, is a measurable map and {Ij }∞j=1 is a sequence

of independent random variables uniformly distributed in [0, 1], we will consider the random
dynamical system defined by

Zn(x) := WIn
◦ WIn−1 ◦ · · · ◦ WI1(x), n � 1, Z0(x) := x, (2)

where Ws(x) = W(x, s), such that, for any x = (x, y) ∈ X2, the Markov chain
Zn(x) =: (Z

(x,y)
n (x), Z

(x,y)
n (y)) on X2 has marginals Pn(x, ·) = P(Z

(x,y)
n (x) ∈ ·), and

Pn(y, ·) = P(Z
(x,y)
n (y) ∈ ·), for any n.

Thus {Z(x,y)
n (x)} and {Z(x,y)

n (y)} denote two Markov chains on X, defined on the same
probability space, with the former starting at x ∈ X and the latter starting at y ∈ X, both with
transition probability P.

Let dw be the Monge–Kantorovich metric defined by dw(π, ν) = sup(
∫

f d(π − ν);
f : X → R, |f (x) − f (y)| � d(x, y) ∀x, y), for probability measures π and ν on X. The
Monge–Kantorovich metric metrizes the topology of weak convergence on the set of probability
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measures on X (see [9]). It follows from the definitions that for any stationary probability
measure µ, we have

dw(Pn(x, ·), µ(·)) � sup
x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y)). (3)

Therefore if supx,y Ed(Z
(x,y)
n (x), Z

(x,y)
n (y)) → 0 as n → ∞, then there is a unique stationary

distribution for P.
We will sometimes drop the upper index, i.e. write Zn(x) instead of Z

(x,y)
n (x) etc, when

we are not interested in the joint distribution of the pair (Z
(x,y)
n (x), Z

(x,y)
n (y)).

The following proposition gives sufficient conditions for the existence of a CLT.

Proposition 1. Suppose there exists a unique stationary distribution µ for P, and let f be
a real-valued measurable function on X with ‖f ‖2

L2 = ∫
f 2 dµ < ∞. Suppose that for

some δ > 0,

lim
n→∞ n−1/2(log n)1+δ sup

x,y∈X

E

n−1∑
k=0

| f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y)) | = 0. (4)

Let

Sx
n =

n−1∑
k=0

(f (Zk(x)) − Ef (Zk(x))),

Sx,µ
n =

n−1∑
k=0

(
f (Zk(x)) −

∫
f dµ

)

and

Bx
n (t) = Sx

[nt]√
n

, 0 � t � 1,

Bx,µ
n (t) = S

x,µ
[nt]√
n

, 0 � t � 1.

Then the limit

σ 2 = σ 2(f ) := lim
n→∞

1

n
E[(SZ

n )2] (5)

exists and is finite, where Z is a µ-distributed random variable, independent of {Ij }∞j=1.
Furthermore, if B = {B(t) : 0 � t � 1} denotes the standard Brownian motion, then

Bx
n

d→ σB (6)

and

Bx,µ
n

d→ σB, (7)

as n → ∞, for any x ∈ X, where
d→ denotes convergence in distribution for random elements

taking values in the space of right-continuous functions on [0, 1] with left-hand limits equipped
with the Skorokhod topology.

Remark 1. Proposition 1 above is valid when (X, B) is a general measurable space.

Remark 2. General CLTs for Markov chains started at a point have been proved by Derriennic
and Lin [7]. Proposition 1 complements their result in cases of ‘uniform’ ergodicity. The proof
of proposition 1, given later, relies on a slightly stronger result by Peligrad and Utev [23] for
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Markov chains starting according to the unique stationary probability distribution. Theorems
about convergence, allowing Markov chains to start at a point, are important in the theory for
Markov chain–Monte Carlo methods.

Remark 3. In an earlier draft of this paper we proved a weaker (non-functional) form of the
CLT in proposition 1, where our result was based on a CLT by Maxwell and Woodroofe [21].
The recent paper by Peligrad and Utev [23], which was helpfully pointed out to us by a referee,
enabled us to state our CLT in the current functional CLT form.

Remark 4. Wu and Woodroofe considered general state spaces in [31]. The conditions in
their CLT (theorem 2) imply (4) in the case of a compact X. This can be seen as follows: their
proof of this theorem amounts to showing that

∑∞
n=0 ‖T nf ‖L2 < ∞, for centred functions f .

Restricting X to be compact allows a strengthening of their lemma 3, so that its result holds
even when starting {Zk(x)} from a point. With some minor modifications to the proof, it is
possible to show that

∑∞
n=0 supx,y E|f (Z

(x,y)
n (x)) − f (Z

(x,y)
n (y))| < ∞. Thus the conditions

of our proposition 1 hold.

Checking the L2 boundedness condition could be difficult if we have no a priori informa-
tion about the (possibly non-unique) stationary measures. The following corollary circumvents
these problems and might therefore be more directly applicable in our case when (X, d) is
compact.

Corollary 1. If

lim
n→∞ sup

x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y)) = 0, (8)

then there exists a unique stationary distribution µ for P.
Let f be a real-valued continuous function on X. Suppose �f : R

+ → R
+ is an

increasing concave function with �f (t) � supd(x,y)�t |f (x) − f (y)|, for any t � 0 and
suppose, in addition to (8), that for some δ > 0,

lim
n→∞

√
n(log n)1+δ�f

(
sup

x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y))

)
= 0 (9)

also holds, then the conclusions of proposition 1 hold for f , i.e. the limit (5) exists for f and
is finite and (6) and (7) hold.

Remark 5. The function �f may thus be chosen to be the modulus of uniform continuity of
f in cases when this function is concave.

Remark 6. If supx,y∈X Ed(Z
(x,y)
n (x), Z

(x,y)
n (y)) ∼ O(cn), for some constant c < 1,

satisfied for instance the average-contractive IFSs with place-independent probabilities, then
it follows from corollary 1 that the CLT holds with respect to any f of modulus of
uniform continuity �f , of order �f (cn) ∼ o(1/

√
n(log n)1+δ). This condition is satisfied

by, e.g., Dini-continuous functions f . Corollary 1 thus strengthens theorem 2.4. of [3]
(who considered Lipschitz-continuous f ). Wu and Shao [30] considered functions f

that are stochastically Dini-continuous with respect to the stationary distribution. (It
should be noted that [3] and [30] treated average contractive IFSs on more general metric
spaces.)

Proof (proposition 1). Let f ∈ L2(µ) be a real-valued measurable function on X

satisfying assumption (4).
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Since

∞∑
n=1

1

n3/2

∥∥∥∥∥
n−1∑
k=0

T k

(
f −

∫
f dµ

) ∥∥∥∥∥
L2

=
∞∑

n=1

1

n3/2

∥∥∥∥∥
n−1∑
k=0

(
T kf −

∫
f dµ

) ∥∥∥∥∥
L2

�
∞∑

n=1

1

n3/2
sup
x∈X

∣∣∣∣∣
n−1∑
k=0

(
T kf (x) −

∫
f dµ

) ∣∣∣∣∣
=

∞∑
n=1

1

n3/2
sup
x∈X

∣∣∣∣∣
n−1∑
k=0

(
T kf (x) −

∫
T kf dµ

) ∣∣∣∣∣
�

∞∑
n=1

1

n3/2
sup

x,y∈X

∣∣∣∣∣
n−1∑
k=0

(
T kf (x) − T kf (y)

) ∣∣∣∣∣
=

∞∑
n=1

1

n3/2
sup

x,y∈X

∣∣∣∣∣E
n−1∑
k=0

(f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y)))

∣∣∣∣∣
�

∞∑
n=1

1

n3/2
sup

x,y∈X

E

n−1∑
k=0

∣∣∣∣∣f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y))

∣∣∣∣∣ < ∞,

it follows from theorem 1.1 of [23] that σ 2 = limn→∞(1/n)E[(SZ
n )2] exists and is finite,

and B
Z,µ
n

d→ σB, where Z is a µ-distributed random variable, independent of {Ij }∞j=1.
By Chebyshev’s inequality,

P

(
sup

0�t�1
|Bx,µ

n (t) − BZ,µ
n (t)| � ε

)

= P

(
max

0�m�n

1√
n

∣∣∣∣∣
m−1∑
k=0

(f (Z
(x,Z)
k (x)) − f (Z

(x,Z)
k (Z)))

∣∣∣∣∣ � ε

)

� P

(
1√
n

max
0�m�n

m−1∑
k=0

∣∣∣∣∣f (Z
(x,Z)
k (x)) − f (Z

(x,Z)
k (Z))

∣∣∣∣∣ � ε

)

� P

(
1√
n

n−1∑
k=0

∣∣∣∣∣f (Z
(x,Z)
k (x)) − f (Z

(x,Z)
k (Z))

∣∣∣∣∣ � ε

)

� 1

ε
√

n
E

n−1∑
k=0

∣∣∣∣∣f (Z
(x,Z)
k (x)) − f (Z

(x,Z)
k (Z))

∣∣∣∣∣
� 1

ε
√

n
sup

x,y∈X

E

n−1∑
k=0

∣∣∣∣∣f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y))

∣∣∣∣∣ → 0,

as n → ∞. By theorem 4.1 in [5], B
x,µ
n

d→ σB.
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The difference between Sx
n and S

x,µ
n lies in how the summands are centred. The difference

is negligible in the limit:

sup
0�t�1

|Bx,µ
n (t) − Bx

n (t)| = max
0�m�n

1√
n

∣∣∣∣∣
m−1∑
k=0

(
Ef (Zk(x)) −

∫
f dµ

) ∣∣∣∣∣
� 1√

n
max

0�m�n
E

∣∣∣∣∣
m−1∑
k=0

(
f (Zk(x)) −

∫
f (Zk(y)) dµ(y)

) ∣∣∣∣∣
� 1√

n
E

n−1∑
k=0

∣∣∣∣∣f (Zk(x)) −
∫

f (Zk(y)) dµ(y)

∣∣∣∣∣
� 1√

n
sup

x,y∈X

E

n−1∑
k=0

∣∣∣∣∣f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y))

∣∣∣∣∣ → 0,

as n → ∞. Thus also Bx
n

d→ σB. �

Proof (corollary 1). The first part of the corollary follows from (3) above.
For the proof of the second part of corollary 1, first note that by assumption (9),

�f

(
sup

x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y))

)
∼ o

(
1√

n(log n)1+δ

)
,

implying that

n−1∑
k=0

�f

(
sup

x,y∈X

Ed(Z
(x,y)

k (x), Z
(x,y)

k (y))

)
∼ o

( √
n

(log n)1+δ

)
.

(To see this, note that the derivative F ′(t) of F(t) = √
t/(log t)1+δ satisfies F ′(t) �

1/(3
√

t(log t)1+δ), for large t .)
Thus,

lim
n→∞ n−1/2(log n)1+δ

n−1∑
k=0

�f

(
sup

x,y∈X

Ed(Z
(x,y)

k (x), Z
(x,y)

k (y))

)
= 0.

Since by the definition of �f and Jensen’s inequality,

�f

(
sup

x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y))

)
� sup

x,y∈X

�f (Ed(Z(x,y)
n (x), Z(x,y)

n (y)))

� sup
x,y∈X

E�f (d(Z(x,y)
n (x), Z(x,y)

n (y)))

� sup
x,y∈X

E|f (Z(x,y)
n (x)) − f (Z(x,y)

n (y))|

and

n−1∑
k=0

sup
x,y∈X

E|f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y))| �sup
x,y∈X

E

n−1∑
k=0

|f (Z
(x,y)

k (x)) − f (Z
(x,y)

k (y))|,
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we see that an application of proposition 1 completes the proof of the second part of
corollary 1. �

3. Main results

Theorem 1. Let W : X2 × [0, 1] → X2 be a measurable map such that for any fixed
(x, y) ∈ X2 the map W(x, y, ·) := (W(x,y)(x), W(x,y)(y))(·) defines random variables with
P(W(x,y)(x) ∈ ·) = P(x, ·) and P(W(x,y)(y) ∈ ·) = P(y, ·), where P denotes the uniform
probability measure on the Borel subsets of [0, 1].

Let � : [0, ∞) → [0, 1), be an increasing function with �(0) = 0. Suppose there exists
a constant c < 1, such that

P(d(W(x,y)(x), W(x,y)(y)) � cd(x, y)) � 1 − �(d(x, y)), (10)

for any two points x, y ∈ X.
Then

(i) (Distributional stability theorem)

dw(Pn(x, ·), µ(·)) � sup
x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y)) � EDn, (11)

for any stationary probability distribution µ, where Dn is a homogeneous Markov chain with
D0 = diam(X) := supx,y d(x, y),

P(Dn+1 = ct | Dn = t) = 1 − �(t)

and
P(Dn+1 = diam(X) | Dn = t) = �(t),

for any 0 � t � diam(X).
If

∞∑
n=1

n∏
k=1

(1 − �(ck)) = ∞, (12)

then EDn → 0 and thus by corollary 1 there is a unique stationary distribution, µ.
(ii) (Central limit theorem)

If
∑∞

k=0 �(ck) < ∞, then the conclusions of proposition 1 hold for any Hölder-continuous
function f with exponent α > 1

2 .

Proof (theorem 1(i)). Fix two points x and y in X. Define Z
(x,y)

0 (x) = x, Z
(x,y)

0 (y) = y and
inductively

Z(x,y)
n (x) = W(Z

(x,y)

n−1 (x),Z
(x,y)

n−1 (y))(Z
(x,y)

n−1 (x))

and
Z(x,y)

n (y) = W(Z
(x,y)

n−1 (x),Z
(x,y)

n−1 (y))(Z
(x,y)

n−1 (y)),

as in (2). Then Z
(x,y)
n (x) and Z

(x,y)
n (y) are random variables such that Ef (Z

(x,y)
n (x)) = T nf (x)

and Ef (Z
(x,y)
n (y)) = T nf (y), for any n.

We have from assumption (10) that

P(d(Z(x,y)
n (x), Z(x,y)

n (y)) � ct | d(Z
(x,y)

n−1 (x), Z
(x,y)

n−1 (y)) � t)

� 1 − �(t) = P(Dn = ct |Dn−1 = t),
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for any t ∈ {ckdiam(X)}∞k=0. (Note that Dn takes values in the discrete state space
{ckdiam(X)}∞k=0.)

Dn is therefore stochastically larger thand(Z
(x,y)
n (x), Z

(x,y)
n (y)), and consequentlyEDn �

Ed(Z
(x,y)
n (x), Z

(x,y)
n (y)), for any x, y ∈ X. The other inequality of (11) follows from (3).

Since {Dn} is a non-ergodic Markov chain under condition (12) (see [24], p 80), it follows
that EDn → 0 as n → ∞, if (12) holds, and we have thus proved theorem 1(i).

In order to prove theorem 1(ii), we first observe that it is well known that
∑∞

k=0 �(ck) < ∞
implies that Dn is transient (see [24], p 80). Therefore (see [25], p 575),

∑∞
k=0 P(Dk =

diam(X)) < ∞ and it follows that

∞∑
k=0

EDk =
∞∑

k=0

k∑
j=0

cj diam(X)P (Dk = cj diam(X))

� diam(X)

∞∑
k=0

k∑
j=0

cjP (Dk−j = diam(X))

= diam(X)

1 − c

∞∑
k=0

P(Dk = diam(X)) < ∞.

By stochastic monotonicity EDk is decreasing, and thus
∑n

k=1 EDk � nEDn, for any n. This
implies that EDn � c0/n, for c0 := ∑∞

k=0 EDk .
Thus supx,y Ed(Z

(x,y)
n (x), Z

(x,y)
n (y)) � c0/n, for any n � 1. If f is a Hölder-continuous

function on X, with modulus of uniform continuity �f satisfying �f (t) � c1t
α , for some

constants c1 and α > 1
2 , and any t � 0, it follows that for any δ > 0,

lim
n→∞

√
n(log n)1+δ�f

(
sup

x,y∈X

Ed(Z(x,y)
n (x), Z(x,y)

n (y))

)

� lim
n→∞

√
n(log n)1+δc1

(c0

n

)α

= 0.

An application of corollary 1 now completes the proof of theorem 1(ii). �

4. IFSs with place-dependent probabilities

Let {wi}∞i=1 be a set of strictly contracting maps, i.e. there exist a constant c < 1 such that
d(wi(x), wi(y) � cd(x, y), for any x, y ∈ X and any integer i. Let {pi(x)}∞i=1 be associated
place-dependent probabilities, i.e. non-negative continuous functions, with

∑
i pi(x) = 1,

for any x ∈ X. This system defines a Markov chain with transfer operator defined by
Tf (x) = ∑∞

i=1 pi(x)f (wi(x)), for real-valued measurable functions f on X.
Let

�(t) = 1

2
sup

d(x,y)�t

∞∑
i=1

|pi(x) − pi(y)| = 1 − inf
d(x,y)�t

∞∑
i=1

min(pi(x), pi(y)) (13)

and let for any two points x, y ∈ X, W(x,y)(x) and W(x,y)(y) be random variables defined by

P(W(x,y)(x) = wi(x), W(x,y)(y) = wi(y)) = min(pi(x), pi(y)) (14)



1964 A N Lagerås and Örjan Stenflo

and

P(W(x,y)(x) = wi(x), W(x,y)(y) = wj(y))

= (pi(x) − min(pi(x), pi(y)))(pj (y) − min(pj (x), pj (y)))

1 − ∑∞
k=1 min(pk(x), pk(y))

, (15)

when i 
= j . (If pi(x) = pi(y), ∀ i, then we understand the expression in (15) as zero.)
It is straightforward to check that by construction P(W(x,y)(x) = wi(x)) = pi(x), and

P
(
W(x,y)(y) = wj(y)

) = pj (y) for any i and j .
It follows from (14) that

P(d(W(x,y)(x), W(x,y)(y)) � cd(x, y)) �
∞∑
i=1

min(pi(x), pi(y)) � 1 − �(d(x, y)),

and we may therefore apply theorem 1 to obtain the following.

Corollary 2. Let {wi}∞i=1 be an IFS with strictly contractive maps, and let {pi(x)} be associated
place-dependent probabilities. Then the conclusions of theorem 1 hold with � defined as
in (13) above.

Let us illustrate the above corollary with an example.

Example 1. Let w1 and w2 be two maps from [0, 1] into itself defined by

w1(x) = βx and w2(x) = βx + (1 − β),

where 0 < β < 1 is a constant parameter. Consider the Markov chain with transfer operator
T : C([0, 1]) → C([0, 1]) defined by

Tf (x) = p(x)f (w1(x)) + (1 − p(x))f (w2(x)), f ∈ C([0, 1]),

where p : [0, 1] → (0, 1), is a continuous function with modulus of uniform continuity
� = �p.

The case when p(x) ≡ 1
2 and β = 1

2 , where the uniform distribution on [0, 1] is the unique
stationary distribution, and the case when p(x) ≡ 1

2 and β = 1
3 , where the uniform distribution

on the (middle third) Cantor set is the unique stationary distribution, are two important particular
cases of this model.

For general p, Markov chains of this form always possess a stationary probability
distribution, but they may possess more than one stationary probability distribution (see [26]).

From theorem 1 it follows that the distribution will be unique (for any fixed value of the
parameter β) provided (12) holds, and this theorem also enables us to quantify the rate of
convergence as a function of the modulus of uniform continuity of p. It also follows that this
Markov chain will obey the functional CLT (6) and (7) for Hölder-continuous functions f

with exponent α > 1
2 provided p is Dini-continuous. Observe that our conditions are only

sufficient. It is an interesting open problem to try to find critical smoothness properties of p

to ensure a unique stationary measure and a CLT.

Remark 7. If X = {1, . . . , N}N and for two elements x = x0x1 . . . and y = y0y1 . . . in
X, we define d(x, y) := 2− min(k�0; xk 
=yk) if x 
= y, and d(x, y) := 0 if x = y, then
(X, d) is a compact metric space. Let g be a continuous function from X to (0, 1], such
that

∑N
x0=1 g(x0x1 . . .) = 1 for all x1x2 . . . ∈ X. g describes an IFS with place-dependent

probabilities: {(X, d), wi(x), pi(x), i ∈ {1, . . . , N}}, where wi(x) = ix and pi(x) = g(ix),
and corollary 2 applies. This generalizes theorem 1 in [28] and also implies a CLT for the
associated Markov chains under the ‘summable variations’ condition used in [8] or [29].
Stationary probability measures for such Markov chains are sometimes called g-measures, a
concept coined by Keane [18].
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