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SUMMARY. For Markov chains that can be generated by iteration of i.i.d. random
maps from the state space X into itself (this holds if X is Polish) it is shown that the
Doeblin minorization condition is necessary and sufficient for the method by Propp and
Wilson for “perfect” sampling from the stationary distribution 7 to be successful. Using
only the transition probability P we produce in a geometrically distributed random number

of steps N a “perfect” sample from 7 of size N!.

1. Introduction

The problem of sampling exactly from the stationary distribution of an
ergodic Markov chain has received much attention in the Markov Chain
Monte Carlo literature after the pioneering work of Propp and Wilson (1996).
The present work explores this problem in some detail for Markov chains on
general state spaces.

Let (X, B) be a measurable space, and P : X x B — [0, 1] be a transi-
tion probability. That is, for each z € X, P(x,-) is a probability measure
on (X,B) and for each A € B, P(-, A) is B-measurable. Let P satisfy the
Doeblin hypothesis:

There exist a probability measure v on (X, B), and constant 0 < o < 1, such
that
P(z,-) > av(-), for all z € X. (1)

It is known, see e.g. Orey (1971), Athreya and Ney (1978) or Nummelin
(1978), that for such a P:
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i) there exists a unique invariant probability measure m on (X, B) i.e. a
probability measure satisfying,

T(A) = / P(z, A)dr(z), for all A € B, @)
X
and

(i) if {Z°}5°, denotes a Markov chain with transition probability P
and initial probability distribution pug, then for any pg

1P(Z;° €-) —m()l < (1 —a)" for n. >0, (3)

where || - || denotes the total variation norm. Thus Z,° may be regarded as
a sample from a distribution that is close to .

The goal of this paper is to show that if the Markov chain with transition
probability P satisfies Doeblin’s condition and can be generated by iteration
of i.i.d. random maps then it is possible to produce in a finite number of
steps using only P a sample of n-distributed random variables. In fact, our
scheme produces a random sample of random size M, say S := {z1,..., 2}
such that each x; is marginally distributed as m and conditional on M, they
are identically distributed and M = N!, where N is a random variable with
geometric(a) distribution. Such a sample S, has been referred to as an
“exact” or “perfect” sample in the Markov Chain Monte Carlo literature
(See Wilson (2002)).

It is also shown here that for Markov chains that can be generated by
iteration of i.i.d. random maps, success of the method by Propp and Wilson
of “perfect sampling” from the stationary distribution of a Markov chain
(understood in the sense of condition (A) below) implies the Doeblin condi-
tion (1) for some iterate P™ of P. Thus the Doeblin condition is necessary
and sufficient for the simulation algorithm by Propp and Wilson to be suc-
cessful for Markov chains that can be generated by iteration of i.i.d. random
maps. This includes Markov chains with a countable state space and more
generally Markov chains with a Polish (=complete, separable, metric) state
space. This result has been obtained (independently) by Foss and Tweedie
(1998) (see Remark 11 below).

In the next section, we review some relevant concepts from the theory of
iteration with i.i.d. random maps and prove some preliminary useful facts.

In Section 3 we apply these concepts to establish the above claims about
Doeblin chains. A numerical example is presented at the end.
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2. Iteration of i.i.d. Random Maps and Markov Chains

The simulation of Markov chains in discrete time is often accomplished
by representing the Markov chain in the form

Xn-H = f(Xna In) (4)

where f is a function and {I,} is a sequence of independent and identi-
cally distributed random variables. Under mild conditions it is possible to
represent a general state space Markov chain in this form. Conversely a
random dynamical system of the form (4) where {I,,} is a sequence of i.i.d.
random variables generates a Markov chain under appropriate measurability
conditions.

Sequences of the form (4) in the case when {I,} is stationary has been
considered by many authors. See e.g. Brandt, Franken and Lisek (1990),
Elton (1990), Arnold (1998) and Borovkov (1998) for an overview. See Sil-
vestrov and Stenflo (1998) for the case when {I,,} is a regenerative sequence.
The particular case when {I,} is i.i.d. allows a richer analysis. See Kifer
(1986), Stenflo (1998) and Diaconis and Freedman (1999) for surveys of this
literature.

2.1.  Random dynamical systems. Let (X, B) and (S,S) be two measur-
able spaces and w : X x S — X be jointly measurable, i.e. for any A € B,
w(A) € Bx S. Let {I; }321 be a sequence of random elements of S defined
on the same probability space (2, F, P). Consider the random dynamical
system defined by

Zn(z,w) = w(Zp—1(z,w), In(w), n>1, Zy(z,w) =2 (5)

If we write
ws(z) = w(z, s), (6)

then (5) can be rewritten (suppressing w)
Zn(z) :=wyr, owy, ,0---owp (), n>1, Zy(z)=z. (7)

Consider also the reversed iterates

A A

Zn(z) :=wp, owr,0---owyr, (z), n>1, Zy(r) == (8)

The assumption that w : X x S — X is jointly measurable is crucial in
rendering both Z,(z) and Z,(z) random variables on (2, F, P) for any fixed
n and z.
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2.2. LLD. random maps. Of particular importance is the special case
when {I;}7°, of 2.1 are independent and identically distributed with com-
mon distribution p. It is intuitively clear from (7) that for each fixed =z,
{Zp(2)}52, is a Markov chain starting at z, with transition probability

P(z,A) = p(s:w(z,s) € A), x € X, A€ B. (9)

We call the set of objects {(X,B),(S,S,u),w(z,s)} an Iterated Func-
tion System (IFS) with probabilities. (This generalizes the usual definition,
see e.g. Barnsley and Demko (1985), where S typically is a finite set and
the functions ws = w(-,s) : X — X typically have (Lipschitz) continuity
properties.)

The above suggests the question: Given a transition probability P on
some state space (X, B) does there exist an IFS with probabilities that gen-
erates a Markov chain with P as its transition probability? (We call such an
IFS with probabilities an IFS representation of P.) The answer is yes under
general conditions including the case when X is a Polish space. The fol-
lowing proposition and its proof are essentially as in Kifer (1986), Theorem
1.1.

PRrROPOSITION 1. Suppose P is a transition probability on a metric space
(X,d) that is a standard Borel space, i.e., Borel measurably isomorphic to a
Borel subset of the real line. Then there exist a jointly measurable function
w: X x (0,1) = X such that

P(z,A) = u(s € (0,1) : we(x) € A), (10)

for any © € X and Borel set A in X where u is the Lebesque measure re-
stricted to the Borel subsets of (0,1).

If X is (a Borel subset of) R, then w: R x (0,1) — R defined by
w(z,s) = inf{y : P(z, (—o0,y]) > s},

is an explicit expression for a map as above.

If X is a standard Borel space, and ¢ : X — R is a one-to-one Borel
map such that M = ¢(X) is a Borel subset of R with the property that
¢~ M — X is also Borel measurable then we can do the following. Define
Y :R — X as ¢~ on M and xzy on R\M for some point zy € X. For
each = € R and Borel subset B of R define P(x, B) = P(¢(x), ¢~ (BN M)).
Define g : R x (0,1) = R by g(z,s) = inf{y : P(z,(—o0,y]) > s}, and
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let w(z,s) = ¥(g(p(x),s)). Then w is an explicit expression for a map as
above.

REMARK 1. If (X,d) is a Polish (=complete, separable, metric) space
then (X, d) is a standard Borel space.

REMARK 2. Note that an IFS representation for a transition probability
is typically not unique.

Since {I;}72, is i.i.d. it follows that Z,(z) and Zn(z) defined in (7) and
(8) respectively are identically distributed random variables for each fixed
n and z. Thus in order to prove distributional limit results for the Markov
chain {Z,(z)} as n tends to infinity we may instead study the pointwise
more well behaved (but non-Markovian) sequence {Z,(z)}.

The following proposition is part of the folklore in this subject. The
proof is straightforward, and we omit it here.

PROPOSITION 2. Let (X,d) be a metric space.
(i) Suppose for some © € X there exists a random variable Z(z) such
that
Zn(z) = Z(z), in distribution.

Let m, denote the probability distribution of Z(z), i.e. m,(-) = P(Z(z) € -).
Then
Eh(Zy(z)) — Eh(Z(z)) == / hdr,,
X
forany h € C(X), the space of real-valued, bounded and continuous functions
on X, i.e. Zn(z) converges in distribution to Z(x).

(11) Suppose in addition that P (defined as in (9) above) has the Feller
property i.e. the map Th(z) = [y h(y)P(z,dy) is continuous for any h €
C(X). Then 7y is invariant for P.

(153) If P has the Feller property and m, in (i) is independent of © € X,
then m, = 7 s the unique invariant probability measure for P.

REMARK 3. As a corollary of the above proposition we obtain that if
the maps, wg, s € S, are all continuous and the limit

A~ A~

Z := lim Z,(z) (11)

n— 00

exists and does not depend on z € X a.s., then 7 defined by 7 (-)=P(Z€") is
the unique invariant probability measure for the Markov chain with transi-
tion probability P defined as in (9) above. This was formulated as a principle
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in Letac (1986) and follows since the Markov chains obtained in this case will
have the Feller property and almost sure convergence implies convergence in
distribution.

REMARK 4. In the last 15 years, there has been a considerable interest
for the case when S'is a finite set and the maps ws, s € S, are (affine) uniform
contractions. In this case the limit in (11) exists also in the deterministic
sense and the compact limit point set Z(€) (called the associated fractal
set) typically has an intricate self-similar geometry. This set is approached
by any trajectory with an exponential rate. The invariant probability mea-
sures obtained for these chains are supported on the associated fractal set.
See Barnsley (1993) for more on this and an inspiring account on how to
generate fractals such as flowers and landscapes as well as applications to
image encoding. The Markov chains generated in this way are typically not
Harris recurrent. (See e.g. Meyn and Tweedie (1993) for the definition of
Harris recurrent Markov chains).

REMARK 5. For an overview of well known sufficient average contraction
and stability conditions ensuring (11) with an (almost surely) exponential
rate of convergence, or as in condition (A) below uniform in z € X, see e.g.
Stenflo (1998), Diaconis and Freedman (1999) and Steinsaltz (1999).

If the convergence in (11) is in the discrete metric and uniform in z € X,
then Propp and Wilson (1996) gave an algorithm for exact sampling from 7.
The following proposition may be viewed as a (slightly weaker) alternative
formulation of the simulation algorithm by Propp and Wilson (1996).

The algorithm by Propp and Wilson (1996) for exact simulation: Suppose
there exists a random variable Z : (Q, F, P) — (X, B) with the property that

(A): supgey d(Zn(x), Z) “30, as n — oo,

where d denotes the discrete metric (d(z,y) =1 <= z # y) then (equiv-
alently formulated) there exists a random integer N, with P(N < o0) = 1,
such that Z,(z) = Z for all n > N and z € X and thus Zy(z) is a 7
distributed random point.

In practice, we continue to simulate i.i.d. random variables I, ..., Iy until
the first moment when the function Zy () does not depend on z € X. (It
is clear that Z,(z) = Z for all n > N since for n > N we have that
Zn(z) = ZN(w[NJrl o---owp,(x)) and Zy(y) does not depend on y € X.)
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REMARK 6. In order for this algorithm to be effective we need a good
tool to determine whether Zn(x) does depend on z or not.

In the case when X is a partially ordered set with the additional property
of the existence of a largest and smallest element y; and y, respectively and
w; are monotone with respect to this ordering for any s € S, then Z, (:E w)
is a map monotone in z and we only need to check whether Z,(y;) = Z,(ys)
since all other Zn( ) will be sandwiched between these values. See e.g.
Diaconis and Freedman (1999) for further details and examples.

If (11) holds and X has a smallest element, ys, and all maps w; are
decreasing with respect to the given partial order, then we only need to
check if Z,(ys) = Zns1(ys). (A “symmetric” analogue of this statement
when only a largest element y; exists and all maps are increasing can of
course also be stated.) This can be regarded as an extension of the Propp
and Wilson algorithm. Interesting examples and extensions of this idea for
“dominating chains” can be found in e.g. Higgstrom and Nelander (1998),
Mpller (1999) and Kendall and Mgller (2000).

If wy, is constant for some n then Z, will also be constant. This simple
property is an essential property we are going to use here.

REMARK 7. If the convergence in (A) is only true with the metric d
replaced by the metric d, we obtain an algorithm for simulation of points from
a distribution, 7, close to 7 in the Prokhorov metric for probability measures.
The algorithm can be formulated as follows; Fix a point £y € X and an € > 0.
Let N := min{n : sup, ,cy d(Zn (), Zn(y)) < €}. Then Zy(zo) will have
the desired property, with #(-) := P(Zxn(z) € -) being e-close to 7 in the
Prokhorov metric. This extension of the Propp and Wilson algorithm thus
makes sense also in cases when we do not have convergence in total variation
norm which e.g. is the typical case for fractal supported invariant probability
measures. Note however that N need not be measurable in general. In the
case when the metric space (X,d) is separable and partially ordered with
the additional property of the existence of a largest and smallest element
and y, respectively and ws are monotone with respect to this ordering for
any s € S then N will be measurable.

REMARK 8. Note that any map on X into itself is continuous if X is
given the topology induced by the discrete metric. Thus 7(-) = P(Z € +) is
invariant if condition (A) holds.

REMARK 9. Versions of the Propp and Wilson algorithm can be stated
also in cases when {I,} is not i.i.d. but has an underlying i.i.d. structure. See
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Stenflo (2001) for a version of the Propp and Wilson algorithm for Markov
chains in random environments.

Let us now consider the following conditions:

(B) : There is a set A of positive probability and an ngy such that for w € A,
Zno(T,w) is a constant function.

and

(C) : (The (general) Doeblin hypothesis): There exist a probability measure
v on (X, B), and constants 0 < o < 1 and ng > 1 such that

P™(z,-) > av(-), for all z € X.

We call an IFS regular if the sets {Z, is a constant function}, and {Z,
is a constant function} are measurable for each n.

Note that if X is separable and {¢;};2, is a countable dense set in X
we have that {w : Zn,(q1) = Zn, (i), Vi} = N Ug, Ng{w : Zne (g5, w) € {2 :
d(z,q;) < 1/n}}, and {w : Zny(q1) = Zny(qi),Vi} are measurable and thus
any IFS representation on a separable metric space with all ws,s € S being
continuous is necessarily regular.

If S is a finite or countable set and if w, is measurable for each fixed
s € S, then the IFS is regular and no further topological assumptions on X
is needed.

THEOREM 1. For a reqular IFS we have the following relations between our
conditions:

(4) = (B) = (C)

and conversely any transition probability on a standard Borel space satisfying

condition (C) with ng =1 can be represented by an IFS satisfying conditions
(A) and (B).

REMARK 10. Many extensions of the Propp and Wilson algorithm exist
in the literature. For instance it is easy to see that if there is a set K invariant
for all ws, s € S i.e. Usesws(K) C K, and the Markov chain {Z,(z)} hits
K with probability one for any starting point x € X, then we can view K
as the state space when applying the Propp and Wilson algorithm. It is
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thus also possible to make perfect sampling for Markov chains that are not
necessarily uniformly ergodic.

The first nontrivial examples of perfect sampling from the invariant prob-
ability distributions for non-uniformly ergodic Markov chains was presented
by Kendall (1998). (For further papers and extensions, see the papers cited
in Remark 6 and their references.)

REMARK 11. If we understand the perfect sampling method of Propp
and Wilson as successful if and only if condition (A) holds, then Doeblin’s
hypothesis also holds for some ng. (This result has also been obtained by
Foss and Tweedie (1998)). Thus we cannot perform perfect sampling from
invariant distributions of general Harris chains using Propp and Wilson’s
method.

PROOF (A) = (B) : Let A, = {Z, is a constant function }. The sets A,
are measurable by assumption and increasing i.e. A, C A,41, for any n > 1.
Assume condition (A) holds. Condition (A) is equivalent to P(UA,) = 1.
This implies that lim,, o, P(A4,) = 1 and hence P(A4,,,) > 0 for some ng > 1
which is the same as (B) since for each fixed n, P(A,) = P(Z, is a constant
function).

PROOF (B) = (A) : Assume « := P(Z,, is a constant function) > 0
for some ng. For integers m > 1, define the independent random functions
Wm = Wl © Wl 1 O O WL, 4y, - Thus Z,,,y = Wm o --- o wy, and
consequently P(Z,p, is not a constant function) < P(wj is not a constant
function for any ¢ = 1,...,m) = II'", P(w; is not a constant function) =
(1 —@)™. Thus P(Znn, is a constant function) = P(Zy,, is a constant
function) > 1 — (1 — @)™ — 1, as m — o0, and consequently condition (A)
holds. g

PROOF (B)
Define v(-) := P

= (C) : Assume « := P(Z,, is a constant function) > 0.
(Z
measure on (X, B

no € * | Zn, is a constant function). Then v is a probability
It follows that

P (z,) = P(Zy,(z)€")
> P(Zp,(x) €+, Zy, is a constant function)
= CMI/(-),
and thus condition (C) holds. O

The converse of Theorem 1 will be proved as a part of the proof of
Theorem 2 below, stated and proved in the next section.
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3. Perfect Sampling for Doeblin Chains

The goal of this section is to establish the claims made in Section 1 about
Doeblin chains.

THEOREM 2. Let P be a transition probability on o standard Borel space.
Suppose the Doeblin hypothesis (1) holds.

Let w denote the unique invariant probability measure for P. Then we
can produce a non-trivial sample of w-distributed random variables of random
size M, {Xy,...,Xp}, where M = N! and N is a geometric(a)-distributed
random variable. Conditional on N = n, {X1,..., X} are identically dis-
tributed.

The sample can be explicitly constructed according to the following scheme:

1. Generate a geometric(a)-distributed random integer, n.
2. Generate n independent random numbers, i1, ..., i, uniformly distributed
in (0,1). The sample can now be expressed by {z, : o is a permuta-
tion of {1,...,n}}, where 2o = fi, ) © fi, © "0 fisu_yy © Gipey and
where the functions fs : X — X and X-valued constants gs, s € (0,1)
are constructed by using the algorithm described in Proposition 1 above, for
Q(z,) = (P(z,-) —av(:))/(1 — a), and v(z,-) := v(-) respectively.

REMARK 12. Murdoch and Green (1998) were the first to show how
to generate a random point from the unique invariant probability measure
of a Doeblin chain using the Propp and Wilson method. Their result can
be considered as the special case of Theorem 2 corresponding to the point
%, where o is the identity permutation. The result by Murdoch and Green
(1998) was expressed in the context of stochastic recursive sequences by
Foss and Tweedie (1998). We believe that our IFS terminology is the most
appealing terminology both with respect to intuition and also in order to be
able to express results in this field in the most simple way.

REMARK 13. If a Doeblin chain is known to have some additional struc-
ture, then there are often algorithms that converges faster than the algo-
rithm in Theorem 2. See e.g. Corcoran and Tweedie (2001). Note, however,
that in compensation we here typically get huge samples from the invariant
probability measure in these slowly converging cases.

PrROOF OF THEOREM 2. Using the algorithm described in Proposition
1 above, let f(-,s) = fs,s € (0,1), and g(-,s) = gs,s € (0,1) together with
the Lebesgue measure restricted to (0,1) be IFS representations of Markov
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chains with transition probabilities Q and v(-) respectively. (We identify v
with a transition probability defined by v(z,-) := v(-)).
Let {I},} be a sequence of independent random variables uniformly dis-
tributed in (0,1). Let {I)/} be another (independent) such i.i.d. sequence.
Then {I,}, with I,, = (I},, 1)) forms an independent sequence uniformly

distributed in (0, 1) x (0,1). If we define w,; = fs for 0 <t <1 — o and g
otherwise, we obtain that

wr, = x(I, <1—a)fp +x(I, >1—a)gp,

where x denotes the indicator function. Thus {(X,d),wss, (s,t) € (0,1) x
(0,1)} together with the Lebesgue measure restricted to (0,1) x (0,1) forms
an IFS representation of the transition probability P.

Note that gs, s€(0,1) are all constant maps chosen with positive probabi
lity and thus condition (B) is fulfilled proving the converse of Theorem 1.

Let N = min{n > ;I > 1 —a}. Then P(N =n) = (1 — @)" 'a and
thus P(N > n) = (1 — a)™.

Define Z, () and Z,(z) as before and note that if N < n then Z,(z) =
Zn(z) is a constant function. Note also that P(N < n) — 1 as n — .
Define Z := Zy(z) and n() := P(Z € ).

For fixed integers n > 1, and permutations o of {1,...,n}, define

~0- f— R
Zp =W(I LT © oW T

A

Note that for o = id, the identity permutation, we have that Z{{ =Z, Itis
clear that Z7(z) and Z7(z) are identically distributed for any pair o and &
of permutations of {1,...,n} and any € X. It is also clear that conditional
on the event {N = n}, Zj{, and Z]‘{, have the same distribution and the value
is independent of x.

Thus for any permutation o of {1,..., N} we have that X, := fp o

o(1)
fr 0 0O fr wen 2 I, is w-distributed. From this expression we also

observe that conditional on N the random variables {X,} are identically
distributed. This completes the proof of Theorem 2. O

REMARK 14. If V(-) is a real valued function on (X, B) that is integrable
with respect to 7, then an estimate of A = fX Vdr is

1 N!
A=152 V(X
i=1

where {X;: 1 <i< M} is as in Theorem 2.
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There is an alternative formulation of Theorem 2 which can be more use-
ful in cases when an IFS representation of Q, defined in Theorem 2 above,
is a-priori known. The following theorem states this and also gives a repre-
sentation of the unique invariant probability measure.

THEOREM 3. Let P be a transition probability on a measurable space (X, B)
satisfying the Doeblin condition:

P(z,-) > av(-), for all x € X,

where 0 < a < 1, and v is a probability measure on (X,B). Define the
transition probability,

P(z,) —av()
11—«

Q(xa ) = )
and suppose {(X,B), (S,S,un), f(z,s)} is an IFS representation of Q.
Then

(a) P"(z,) =300 (L— a)a [ QI (y, )dv(y) + (1 — )" Q™(z,-), n > 1,

(b) w(-) = 327201 = a)a [y Q(y, )dv(y) is the unique invariant proba-
bility measure for P.

(c) Let {I;}32,, n and N be independent random variables on the same
probability space (2, F, P) such that for each j, I; is an (S,S)-valued
random variable with distribution u, n is an (X, B)-valued random vari-
able with distribution v, and N is an integer valued random variable
with geometric(a) distribution, i.e., P(N = j) = (1—a)/ '« for j > 1.
Let for n > 1, X, be the set of all permutations of {1,2,...,n}. For
n>2ando € X1 let X, = f]a_(l) o ffa(z) 0--+0 ffa(n_l)(n). For
n =1, set ¥g = {0} and Xog = n. Let for any n > 1, {op; : i =
L,2,...,(n— 1)} be a listing of the elements of ¥,,—1. Then the col-
lection {Xoy, 1 < i < (N — 1)!} has the property that they are -
distributed. Further, conditional on N = n and n = x the collection
of random variables { X, , 1 < i < (n —1)!} are also identically dis-
tributed with distribution Q™' (z,").

REMARK 15. When (X, B) satisfy the conditions of Theorem 2 then we
can use Proposition 1 in order to find an IFS representation for Q.
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REMARK 16. As a consequence of the representations in Theorem 3 we
see that for any z € X and n > 0,

oo

[P (z,)—m()] = [la) (1—a)* [ Q"(y,)dv(y) — Q"(z,")|(1 — )"
kZ:O /X y y
< 1—a)".

We have thus in particular proved (3).

REMARK 17. If for any x € X, Q(z,-) is absolutely continuous with
respect to A for some measure A then 7 is also absolutely continuous with
respect to A and

(47 ) ji:%(l —aa [ e p)ivla),

where ¢\/)(z,-) is the density of Q7(z,-) with respect to A. This can be seen
by using the representation in Theorem 3 (b).

REMARK 18. Versions of Theorems 2 and 3 can also be given under the
generalized Doeblin hypothesis (C). If we consider subsequences {Z,,,}>>
and note that they have the same invariant probability measure as the full
sequence, we see that the methods for the case ng = 1 can be used.

4. Example
We illustrate our sampling algorithm with a simple example.

ExXAMPLE 1. Let

0.7 0.2 0.1
P=| 04 02 04 |,
0.1 0.6 0.3

be a Markov transition matrix for a Markov chain on the three points state
space {0,1,2}. This Matrix can be written as

0.7 02 0.1 1/4 2/4 1/4 1 0 0
04 02 04 | =04 1/4 2/4 1/4 | +06| 1/2 0 1/2
0.1 06 0.3 1/4 2/4 1/4 0 2/3 1/3

(12)
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Using the algorithm described in Proposition 1 above for generating an
IF'S representation for the first matrix on the right side of (12), we obtain
9s=0,if0<s<1/4, g, =1,if1/4 < s <3/4, and g; = 2, if 3/4 < 5 < 1,
and for the second matrix on the right side of (12), we obtain fs = hy, if
0<s<1/2 fs=ho,if1/2 <s<2/3,and f; = hs, if 2/3 < s < 1, where
the functions h; : {0,1,2} — {0,1,2}, i = 1,2, 3, can be expressed by

01 2 01 2 01 2
h1_<0 0 1>’h2_<0 2 1>’h3_<0 2 2)'

In order to use the algorithm described in Theorem 2, we toss a “skew
coin” with probability 0.4 to obtain “head” until the first time, NV, when
“head” occurs.

Suppose that the value we obtain by this experiment is equal to 3. We
now generate 3 random points uniformly distributed in (0, 1). Suppose that
0.367,0.252, and 0.839 are the results we obtain from this experiment. We
note that go.367 = go.2s2 = 1, and go.g39 = 2 and fo367 = fo.252 = h1, and
fo.830 = h3. Let m denote the unique invariant probability measure for P.
We obtain the following sample of w-distributed points; z; := fy.367 © fo.252 ©

g0.839 = 0,22 := fo.367 © f0.839 © go.252 = 1,23 := fo.252 © fo.839 © Go.367 =
1,24 := fo.252 © fo.367 © go.839 = 0,25 := fo.839 © fo.252 © go.367 = 0,26 :=
fo.839 © f0.367 © go.252 = 0.
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