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Abstract

We give an example of place-dependent random iterations with two a/ne contractions on the unit interval generating
a Markov chain with more than one stationary probability measure. The probability function is continuous and strictly
positive. This constitutes a counterexample to a conjecture raised by an incomplete proof by Karlin (Paci4c J. Math. 3
(1953) 725–756). c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

Let f0 and f1 be two maps from [0; 1] into itself de4ned by

f0(x)= �x and f1(x)= �+ (1− �)x; (1)

where both � and � satisfy 0¡�; �¡ 1, and let p be a real-valued continuous function on [0; 1] with
0¡p(x)¡ 1.
Suppose a point x∈ [0; 1] moves randomly with probability p(x) to f0(x) and with probability 1−p(x) to

f1(x). This procedure generates a Markov chain on [0; 1].
It is a natural question to ask whether a Markov chain generated in this way necessarily has a unique

stationary probability measure. In this paper we give an example based on a result by Bramson and Kalikow
(1993) showing that this is not necessarily the case.
The history of this question dates back to the paper by Karlin (1953). At that time Markov chains of this

form were mostly known as learning models. Nowadays, ‘Random systems with complete connections’ or
‘Iterated Function Systems with place-dependent probabilities’, are more widely used terms.
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In Karlin (1953, Theorem 36), a theorem was stated under the above assumptions which (for any 4xed
choice of parameter values � and �) would imply an attractive, and thus necessarily unique, stationary prob-
ability distribution. The proof of this theorem contained a gap in that an argument requiring that the function
p(x) has bounded derivative was used. We may in this context regard the case of a unique stationary prob-
ability distribution (for any choice of parameter values � and �) under merely continuity assumptions on p
as Karlin’s conjecture. The result in the present paper may thus be regarded as a negative answer to Karlin’s
conjecture. See e.g. Keane (1972), Kaijser (1981), Barnsley et al. (1988) and Kaijser (1994) for further
comments on Karlin’s paper.
For p as above, de4ne the modulus of uniform continuity

Op(t)= sup{p(x)− p(y) : |x − y|¡ t}:
We say that p(x) is Dini-continuous if∫ 1

0

Op(t)
t

dt ¡∞;

or equivalently

∞∑
n=1

Op(cn)¡∞;

for some (and thus all) 0 ¡ c ¡ 1.
In 1937 Doeblin and Fortet (1937) proved a result implying uniqueness of the stationary probability measure

(for any choice of parameter values � and �) under the assumption that p(x) is Lipschitz-continuous. Kaijser
(1981), Barnsley et al. (1988) and Li (1995) all contain diPerent proofs generalising this result (for any choice
of parameter values � and �) to the Dini-continuous p(x) case. (In Li, 1995, Theorem 2:2:3, the theorem was
stated in a form merely assuming a continuous p(x), but also these further assumptions on p(x) are needed.)
A proof of Karlin’s theorem in the case when p(x) is Dini-continuous also follows from Walters (1975), see
Fan and Lau (1999). All the above mentioned papers allow a 4nite set of maps. The papers Kaijser (1981)
and Barnsley et al. (1988) are more general in that also average contractive systems are covered, and Fan and
Lau (1999) is more general in that the “probabilistic” assumption on p(x) is relaxed. Note that Dini-continuity
is weaker than H!older continuity.
Also the Dini-condition can be relaxed. Harris (1955) (see also Kaijser (1994)) proved that if

∞∑
m=0

m∏
n=0

(1−Op(cn))=∞;

where c=max(�; 1 − �), then there exists a unique invariant probability measure. A related condition for
uniqueness can also be found in Berbee (1987). It also follows from Theorem 7:1. in Kaijser (1979) and
Theorem 1 in Burton and Keller (1993), that Karlin’s theorem holds if p(x) is non-increasing and continuous.
(In Burton and Keller, 1993, Theorem 1, assumption (v) it appears to be a typographical error in that all
inequalities except the 4rst inequality should be reversed.)
A closely related question within the theory of dynamical systems concerns uniqueness=non-uniqueness of

g-measures. A regular g-function (see Bramson and Kalikow, 1993) is a function satisfying certain conditions
corresponding to the properties of our p. A g-measure is an invariant probability measure with conditional
probabilities determined by the function g. (See e.g. Quas (1996) for details.) The concept of g-measures was
introduced by Keane (1972). The reader is referred to Quas (1996) for an account on the history of su/cient
conditions ensuring uniqueness of g-measures. In an ingenious paper by Bramson and Kalikow (1993), a
regular g-function with more than one g-measure on the space � := {0; 1}N was constructed. Based on their
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methods, Quas (1996) gave an example constructing a function g such that the map T (x)= 10x mod 1 on the
unit circle has more than one g-measure.
Since we may (for parameter values such that f0([0; 1]) ∩ f1([0; 1])= ∅) look at our maps as inverse

branches of a 2-1 expanding local homeomorphism T (de4ned on a Cantor set), and g as a function equivalent
to p, Quas’ example strongly indicated that a counterexample to Karlin’s conjecture (with p(x) being merely
continuous) would exist.
In this paper we will show that a counterexample to Karlin’s conjecture directly follows from Bramson and

Kalikow (1993).

2. Construction of the counterexample

For a compact metric space X , random iterations with two functions, h0 and h1 from X into itself, according
to a probability function P :X → (0; 1) generates a Markov chain by the rule that a point x∈X moves
randomly with probability P(x) to h0(x) and with probability 1− P(x) to h1(x).
Our main result is the following;

Theorem 1. Let f0 and f1 be maps from [0; 1] into itself de3ned by

f0(x)=
x
3

and f1(x)=
x
3
+
2
3
:

Then there exist a real-valued continuous function p on [0; 1] with 0¡p(x)¡ 1 such that the generated
Markov chain has more than one stationary probability measure.

Proof. We are going to use a result by Bramson and Kalikow (1993) in a crucial way. In order to state their
result in a form 4tting our context, we need to introduce some notation. Let � := {0; 1}N and introduce a
topology on � induced by the metric

d(i; j) :=

{
2−n; if i and j differ for the 4rst time in the nth digit

0; if i= j:

The space (�; d) is a compact metric space.

For a∈{0; 1} and i= i0i1i2 : : :∈�, let ai= ai0i1i2 : : :
The following result was proved in Bramson and Kalikow (1993):

Theorem 2 (Bramson and Kalikow (1993)). Let f̂0 and f̂1 be maps from � into itself de3ned by

f̂0(i)= 0i and f̂1(i)= 1i:

Then there exist a real-valued continuous function p̂ on � with 0¡p̂(i)¡ 1 such that the generated Markov
chain has more than one stationary probability measure.

The reader is referred to Bramson and Kalikow (1993) for a proof of this result and details concerning the
construction of p̂.
We are going to use this result to 4rst construct our p on the middle-third Cantor set and then extend p

to the remaining points in [0; 1] by linear interpolation.
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For a sequence i= i0i1i2 : : :∈�, de4ne
Ẑ(i)= lim

n→∞fi0 ◦ fi1 ◦ · · · ◦ fin(0): (2)

The map Ẑ : � → [0; 1] is 1 − 1 and the image of � is the middle-third Cantor set, C. It is also readily
checked that Ẑ regarded as a bijective map from � onto C is continuous if we consider C with its subspace
topology. De4ne, for x∈C, p(x) := p̂(Ẑ

−1
(x)).

For x∈ [0; 1] \C de4ne a1 = sup{y∈C: y¡x} and a2 = inf{y∈C: y¿x}. Note that since C is closed,
a1 and a2 belong to C, and a1¡x¡a2. De4ne p(x)=p(a1) + ((x − a1)=(a2 − a1))(p(a2)− p(a1)).
Let �̂1 and �̂2 be two distinct stationary probability measures on � for the Markov chain generated by f̂0; f̂1

and p̂, existing according to the theorem by Bramson and Kalikow stated above. That is, for any real valued
continuous function ĥ on �, we have that �̂i ; i=1; 2, satisfy the invariance equation∫

�
ĥ d�̂i=

∫
�
(p̂(i)ĥ(f̂0(i)) + (1− p̂(i))ĥ(f̂1(i))) d�̂i(i): (3)

De4ne �1 := �̂1 ◦ Ẑ−1
and �2 := �̂2 ◦ Ẑ−1

. From (3) and by changing variables it follows that for any real
valued continuous function h on [0; 1] the probability measures �i; i=1; 2, satisfy the invariance equation∫

[0;1]
h d�i =

∫
�
(h ◦ Ẑ) d�̂i

=
∫
�
(p̂(i)h ◦ Ẑ(f̂0(i)) + (1− p̂(i))h ◦ Ẑ(f̂ 1(i))) d�̂i(i)

=
∫
�
(p(Ẑ(i))h ◦ f0(Ẑ(i)) + (1− p(Ẑ(i)))h ◦ f1(Ẑ(i))) d�̂i(i)

=
∫
[0;1]

(p(x)h ◦ f0(x) + (1− p(x))h ◦ f1(x)) d�i(x):

Thus �1 and �2 are two distinct stationary probability measures for the Markov chain generated by f0; f1
and p.
This completes the proof of the theorem.

Remark. Note that a crucial point in the proof above was that Ẑ de4ned in (2) was 1 − 1 and continuous.
Thus all choices of parameter-values with �¡� in (1) will work and there is thus nothing special with our
choice of parameter values corresponding to �=1=3 and �=2=3.
The stationary probability measures constructed in our example are singular w.r.t. Lebesgue measure. It is

an interesting problem to 4nd counterexamples in the ‘overlapping’ cases when �¿ � and counterexamples
giving stationary measures absolute continuous w.r.t. Lebesgue measure. A paper closely related to the latter
question is the paper by Quas (1996).
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